EQUIVARIANT K-THEORETIC EULER CLASSES AND MAPS OF REPRESENTATION SPHERES

Dedicated to Professor Fuichi Uchida on his 60th birthday

KATSUHIRO KOMIYA

(Received April 1, 1999)

0. Introduction

Let G be a compact Lie group, and U a unitary representation of G. The unit sphere SU of U is called a *representation sphere* of G. In this paper we study G-maps between finite dimensional representation spheres of G.

In Atiyah and Tall [2], Bartsch [3], tom Dieck and Petrie [4], Komiya [5], [6], Liulevicious [7], and Marzantowicz [8], the equivariant K-theory is successfully employed for the study of G-maps. In [2] and [4], that is employed for the study of degrees of G-maps between representation spheres. In [3], [5], [6] and [7], that is employed to obtain necessary conditions for the existence of G-maps. In [8], the equivariant K-theoretic Lefschetz number is defined.

The main tool in this paper is also the equivariant *K*-theory. We give the definitions of the Thom class $tU \in K_G(U)$ of *U* and the Euler class $eU \in K_G(pt) = R(G)$, and then show that if there exists a *G*-map $f : SU \rightarrow SW$ between representation spheres *SU* and *SW* then $eW = z(f) \cdot eU$ for some element $z(f) \in R(G)$ (Theorem 1.2). Using this equality, we show that if *G* is connected then the degree of *f* is uniquely determined only by *U* and *W* (Theorem 4.1).

If *G* is compact abelian, then the degree of *f* is more explicitly discussed. Let $S^1 = \{z \in \mathbb{C} \mid |z| = 1\}$ be the circle group of complex numbers with absolute value 1, and \mathbb{Z}_n be the cyclic group of order *n* considered as a subgroup of S^1 . For any integer *i*, let $V_i = \mathbb{C}$ be a complex representation of S^1 and \mathbb{Z}_n given by $(z, v) \mapsto z^i v$ for $z \in S^1$ (or \mathbb{Z}_n) and $v \in V_i$. A compact abelian group *G* decomposes into a cartesian product

$$G = T^k \times \mathbb{Z}_{n_1} \times \cdots \times \mathbb{Z}_{n_k}$$

where $T^k = S^1 \times \cdots \times S^1$, the cartesian product of k copies of S^1 . Letting γ be a sequence $(a_1, \ldots, a_k, b_1, \ldots, b_l)$ of integers, denote by V_{γ} the tensor product

$$V_{a_1} \otimes \cdots \otimes V_{a_k} \otimes V_{b_1} \otimes \cdots \otimes V_{b_l},$$

which is considered as a representation of G. Let Γ be the set of sequences

$$\gamma = (a_1, \ldots, a_k, b_1, \ldots, b_l)$$

of integers a_i $(1 \le i \le k)$ and b_j with $0 \le b_j \le n_j - 1$ $(1 \le j \le l)$. The set $\{V_{\gamma} \mid \gamma \in \Gamma\}$ gives a complete set of irreducible unitary representations of *G*, and any unitary representation *U* of *G* decomposes into a direct sum

$$U = \bigoplus_{\gamma \in \Gamma} V_{\gamma}^{u(\gamma)},$$

where $u(\gamma)$ is a nonnegative integer and $V_{\gamma}^{u(\gamma)}$ denotes the direct sum of $u(\gamma)$ copies of V_{γ} .

Let

$$W = \bigoplus_{\gamma \in \Gamma} V_{\gamma}^{w(\gamma)}$$

be a second unitary representation of G with dim $U = \dim W$. Let $|\gamma| = a_1 + \cdots + a_k + b_1 + \cdots + b_l$ for $\gamma = (a_1, \ldots, a_k, b_1, \ldots, b_l)$. If there exists a G-map $f : SU \to SW$, then we obtain

$$\deg f \cdot \prod_{\gamma \in \Gamma} |\gamma|^{u(\gamma)} = \prod_{\gamma \in \Gamma} |\gamma|^{w(\gamma)} + nr$$

for $n = g.c.d.\{n_1, \ldots, n_l\}$ and some integer r (Theorem 4.2).

In Marzantowicz [9, Theorems 2.2, 2.5], he obtained the same kind of results as this for $G = T^k$ or $G = \mathbb{Z}_p^k (= \mathbb{Z}_p \times \cdots \times \mathbb{Z}_p)$ with p prime. To obtain the result, he employed the Borel cohomology theory. In the Borel cohomology theory the Euler class resides in $H_G^*(\text{pt}; \mathcal{K}) = H^*(BG; \mathcal{K})$. The choice of the coefficients \mathcal{K} practically depends on G considered. For example, if $G = T^k$ then \mathcal{K} is \mathbb{Z} , and if $G = \mathbb{Z}_p^k$ then \mathcal{K} is \mathbb{Z}_p . This means that the Borel cohomological Euler classes are not so systematically treated as the equivariant K-theoretic Euler classes. In fact, [9] treated the cases of $G = T^k$ and $G = \mathbb{Z}_p^k$ separately, but in this paper we can simultaneously treat all of compact abelian groups as in Theorem 4.2.

As long as the author knows, the results about G-maps obtained by using the Borel cohomology theory are almost only for the cases of $G = T^k$ and $G = \mathbb{Z}_p^k$.

There seems one more advantage of the equivariant K-theoretic Euler classes. If $G = T^k$ for example, then a unitary representation U of G decomposes into a direct sum

$$U = \bigoplus_{\Gamma} (V_{a_1} \otimes \cdots \otimes V_{a_k})^{u(a_1, \dots, a_k)}$$

where the direct sum \oplus_{Γ} is taken over all sequences (a_1, \ldots, a_k) of integers. Denote

by e'U the Borel cohomological Euler class of U. We see

$$eU = \prod_{\Gamma} (1 - x_1^{a_1} \cdots x_k^{a_k})^{u(a_1, \dots, a_k)} \text{ in } R(T^k) = \mathbb{Z}[x_1, \dots, x_k]_L,$$

$$e'U = \prod_{\Gamma} (a_1 x_1 + \dots + a_k x_k)^{u(a_1, \dots, a_k)} \text{ in } H^*(BT^k; \mathbb{Z}) = \mathbb{Z}[x_1, \dots, x_k].$$

where $\mathbb{Z}[\cdots]_L$ denotes the Laurent polynomial ring and $\mathbb{Z}[\cdots]$ the ordinary polynomial ring. The degree of eU (as a polynomial) is higher than that of e'U. This means that eU contains much more information than e'U.

In the final section of this paper we show that the *K*-theoretic Euler class distinguishes the isomorphism class of real representations of S^1 (Theorem 5.1). But for the Borel cohomology theory we easily have examples of two nonisomorphic representations *U* and *W* of S^1 with e'U = e'W.

1. Thom classes and Euler classes

Let *G* be a compact Lie group. The equivariant *K*-ring $K_G(X)$ of a compact *G*-space *X* is defined to be the Grothendieck ring of the isomorphism classes of complex *G*-vector bundles over *X* (see Atiyah [1], Segal [10]). If *X* has a distinguished base point x_0 , then $\tilde{K}_G(X)$ is the kernel of the homomorphism $i^* : K_G(X) \to K_G(x_0)$ induced from the inclusion $i : x_0 \to X$. If *X* is noncompact but locally compact, then $K_G(X)$ is defined to be $\tilde{K}_G(X^+)$, where X^+ is the one-point compactification of *X*.

Given a complex *G*-vector bundle $E \to X$ over a compact *G*-space *X*, there is the Thom isomorphism $\Psi : K_G(X) \to K_G(E)$. In what follows we only consider the case in which *X* is the one-point space {pt}. In this case the total space of a *G*-vector bundle is a complex representation *U* of *G*, and the Thom isomorphism is an isomorphism $\Psi : R(G) \to K_G(U)$, since $K_G(pt)$ is canonically identified with the complex representation ring R(G) of *G*. The *Thom class* $tU \in K_G(U)$ of *U* is defined as $tU = \Psi(1)$, where $1 \in R(G)$ is the 1-dimensional trivial representation. The *Euler class* $eU \in R(G)$ is defined as $eU = s^*(tU)$, where $s^* : K_G(U) \to K_G(pt) = R(G)$ is the homomorphism induced from the zero section $s : \{pt\} \to U$. eU can also be given as $eU = \sum_i (-1)^i \Lambda^i U$, where $\Lambda^i U$ is the *i*-th exterior power of *U*. The Euler class is multiplicative, i.e., $e(U \oplus W) = eU \cdot eW$ for two complex representations *U* and *W*.

Let $f: SU \to SW$ be a *G*-map between representation spheres. The radial extension of *f* induces a homomorphism $f^*: K_G(W) \to K_G(U)$. Since $K_G(U)$ is a free R(G)-module over just one generator tU, there exists a unique element $z(f) \in R(G)$ such that $f^*(tW) = z(f) \cdot tU$.

We consider an element of R(G) as a class function $G \to \mathbb{C}$, and observe z(f)(1), where 1 is the identity element of G.

Theorem 1.1 (cf. Atiyah-Tall [2, IV. §1]). Let $f : SU \rightarrow SW$ be a G-map between representation spheres of a compact Lie group G. Then

$$z(f)(1) = \begin{cases} \deg f & \text{if } \dim U = \dim W \\ 0 & \text{if } \dim U \neq \dim W \end{cases}$$

where deg f is the Brouwer degree of f with respect to the canonical orientation of SU and SW induced from the complex structure.

Proof. Let DU denote the unit disk of U. Consider the following commutative diagram:

$$\begin{split} K_{G}(W) &= K_{G}(DW, SW) \xrightarrow{f_{1}^{*}} K_{G}(DU, SU) = K_{G}(U) \\ F \downarrow & \downarrow F \\ K(DW, SW) \xrightarrow{f_{2}^{*}} K(DU, SU) \\ ch \downarrow & \downarrow ch \\ \mathbb{Z} \cong H^{ev}(DW, SW; \mathbb{Z}) \xrightarrow{f_{3}^{*}} H^{ev}(DU, SU; \mathbb{Z}) \cong \mathbb{Z}, \end{split}$$

where f_i^* is the homomorphism induced from f, F is the homomorphism which forgets the *G*-action, *ch* is the Chern character which has its image in the cohomology with integer coefficients in this case, and $H^{ev}(\)$ denotes the direct sum of even dimensional parts.

We see

$$ch \circ F \circ f_1^*(tW) = ch \circ F(z(f) \cdot tU)$$
$$= ch(z(f)(1) \cdot F(tU))$$
$$= z(f)(1),$$

since F(tU) is the canonical generator of $K(DU, SU) \cong \mathbb{Z}$, and on the other hand we also see

$$f_3^* \circ ch \circ F(tW) = f_3^*(1)$$
$$= \begin{cases} \deg f & \text{if } \dim U = \dim W \\ 0 & \text{if } \dim U \neq \dim W. \end{cases}$$

By the commutativity of the diagram we can obtain the theorem.

Given a G-map $f: SU \to SW$, there is a commutative diagram:

242

From this we see in R(G),

$$eW = s^{*}(tW) = s^{*}f^{*}(tW) = z(f) \cdot eU$$

Thus we obtain

Theorem 1.2. If there exists a G-map $f : SU \rightarrow SW$ between representation spheres of a compact Lie group G, we obtain in R(G),

$$eW = z(f) \cdot eU$$
.

Corollary 1.3. If eU = 0 and $eW \neq 0$, then there exists no G-map $SU \rightarrow SW$.

The converse of Theorem 1.2 does not hold. We give an example in the following section. That shows that the answer to the question by Marzantowicz [9, Problem 2.6] is negative in K-theoretic version.

2. Representation rings of compact abelian groups

The complex representation ring R(G) of a compact abelian group $G = T^k \times \mathbb{Z}_{n_1} \times \cdots \times \mathbb{Z}_{n_l}$ is isomorphic to $\mathbb{Z}[x_1, \ldots, x_k, y_1, \ldots, y_l]_L/Y$, where $\mathbb{Z}[x_1, \ldots, x_k, y_1, \ldots, y_l]_L$ is the Laurent polynomial ring with indeterminates $x_1, \ldots, x_k, y_1, \ldots, y_l$, and Y is the ideal generated by $1 - y_j^{n_j}$ $(1 \le j \le l)$. For a Laurent polynomial

$$\varphi = \varphi(x_1, \ldots, x_k, y_1, \ldots, y_l) \in \mathbb{Z}[x_1, \ldots, x_k, y_1, \ldots, y_l]_L,$$

we denote by $[\varphi]$ the element in $\mathbb{Z}[x_1, \ldots, x_k, y_1, \ldots, y_l]_L/Y$ represented by φ . Through the isomorphism $R(G) \cong \mathbb{Z}[x_1, \ldots, x_k, y_1, \ldots, y_l]_L/Y$,

$$V_{\gamma} = \begin{bmatrix} x_1^{a_1} \cdots x_k^{a_k} y_1^{b_1} \cdots y_l^{b_l} \end{bmatrix}, \\ eV_{\gamma} = \begin{bmatrix} 1 - x_1^{a_1} \cdots x_k^{a_k} y_1^{b_1} \cdots y_l^{b_l} \end{bmatrix}$$

for $\gamma = (a_1, ..., a_k, b_1, ..., b_l)$.

EXAMPLE 2.1 (in which the converse of Theorem 1.2 does not hold). Consider the group $\mathbb{Z}_2 \times \mathbb{Z}_2$, where $\mathbb{Z}_2 = \{\pm 1\}$ is the cyclic group of order 2. We see

$$R(\mathbb{Z}_2 \times \mathbb{Z}_2) \cong \mathbb{Z}[x, y]/(1 - x^2, 1 - y^2)$$

where $(1 - x^2, 1 - y^2)$ is the ideal generated by $1 - x^2$ and $1 - y^2$. For $i, j \in \{0, 1\}$, $V_{(i,j)}$ is the one-dimensional complex representation on which $\mathbb{Z}_2 \times \mathbb{Z}_2$ acts in such a way that $((s, t), v) \mapsto s^i t^j v$ for $(s, t) \in \mathbb{Z}_2 \times \mathbb{Z}_2$, $v \in V_{(i,j)} = \mathbb{C}$. Let $U = V_{(1,0)} \oplus V_{(1,0)}$ and $W = V_{(1,0)} \oplus V_{(0,1)} \oplus V_{(1,1)}$. We see in $R(\mathbb{Z}_2 \times \mathbb{Z}_2)$

$$eU = eV_{(1,0)} \cdot eV_{(1,0)} = [(1-x)^2] = [2(1-x)],$$

$$eW = eV_{(1,0)} \cdot eV_{(0,1)} \cdot eV_{(1,1)} = [(1-x)(1-y)(1-xy)] = 0.$$

Thus eU devides eW, but we can see that there can not exist a $\mathbb{Z}_2 \times \mathbb{Z}_2$ -map f: $SU \to SW$. Assume that such $f : SU \to SW$ exists, and let $H_1 = \mathbb{Z}_2 \times \{1\}$, $H_2 = \{1\} \times \mathbb{Z}_2$. Restricting f to the fixed point set of the H_2 -action, we obtain an H_1 -map $f^{H_2} : S(U^{H_2}) \to S(W^{H_2})$. Since $U^{H_2} = V_{(1,0)} \oplus V_{(1,0)}$ and $W^{H_2} = V_{(1,0)}$, the existence of f^{H_2} contradicts the Borsuk-Ulam theorem.

Lemma 2.2. Let $G = T^k \times \mathbb{Z}_{n_1} \times \cdots \times \mathbb{Z}_{n_l}$, and let

$$\varphi = \varphi(x_1, \ldots, x_k, y_1, \ldots, y_l) \in \mathbb{Z}[x_1, \ldots, x_k, y_1, \ldots, y_l]_L$$

be a representative of

$$z \in R(G) \cong \mathbb{Z}[x_1, \ldots, x_k, y_1, \ldots, y_l]_L/Y$$

i.e., $z = [\varphi]$. Then

$$z(1) = \varphi(1, \cdots, 1, 1, \cdots, 1),$$

where 1 in the left hand side is the identity element of G, and 1's in the right hand side are the numerical 1.

Proof. There are complex representations U and W of G such that z = U - W. Decompose U and W into the direct sums of irreducible representations,

$$U = \bigoplus_{\gamma \in \Gamma} V_{\gamma}^{u(\gamma)}$$
 and $W = \bigoplus_{\gamma \in \Gamma} V_{\gamma}^{w(\gamma)}$,

and let

$$\varphi_1 = \varphi_1(x_1, \dots, x_k, y_1, \dots, y_l) = \sum_{\gamma \in \Gamma} u(\gamma)(\mathbf{xy})^{\gamma},$$

$$\varphi_2 = \varphi_2(x_1, \dots, x_k, y_1, \dots, y_l) = \sum_{\gamma \in \Gamma} w(\gamma)(\mathbf{xy})^{\gamma},$$

where $(xy)^{\gamma} = x_1^{a_1} \cdots x_k^{a_k} y_1^{b_1} \cdots b_l^{b_l}$ for $\gamma = (a_1, \dots, a_k, b_1, \dots, b_l)$. Then $z = [\varphi_1] - [\varphi_2]$ in $\mathbb{Z}[x_1, \dots, x_k, y_1, \dots, y_l]_L / Y$, and

$$z(1) = \dim U - \dim W$$

$$= \varphi_1(1, \cdots, 1, 1, \cdots, 1) - \varphi_2(1, \cdots, 1, 1, \cdots, 1)$$

Since

$$arphi_1 - arphi_2 = arphi + \sum_{j=1}^l \psi_j \cdot \left(1 - y_j^{n_j}\right)$$

for some $\psi_j \in \mathbb{Z}[x_1, \ldots, x_k, y_1, \ldots, y_l]_L$, we obtain $z(1) = \varphi(1, \cdots, 1, 1, \cdots, 1)$.

3. Nonvanishing of Euler classess

In this section we give a necessary and sufficient condition for the nonvanishing of Euler classes of representations of *G*. We first consider the case $G = \mathbb{Z}_n$. The set $\{V_i \mid 0 \le i \le n-1\}$ gives a complete set of irreducible complex representations of \mathbb{Z}_n , and $R(\mathbb{Z}_n)$ is isomorphic to $\mathbb{Z}[x]/(1-x^n)$. If *U* is a complex representation of \mathbb{Z}_n decomposed into a direct sum $\bigoplus_{i=0}^{n-1} V_i^{u_i}$ for nonnegative integers u_i , then we see

(3.1)
$$eU = \prod_{i=0}^{n-1} (eV_i)^{u_i} = \left[\prod_{i=0}^{n-1} (1-x^i)^{u_i}\right].$$

Lemma 3.2. For a complex representation $U = \bigoplus_{i=0}^{n-1} V_i^{u_i}$ of \mathbb{Z}_n , $eU \neq 0$ in $R(\mathbb{Z}_n)$ if and only if $U^{\mathbb{Z}_n} = \{0\}$, *i.e.*, $u_0 = 0$.

Proof. From (3.1) we easily see that $eU \neq 0$ implies $u_0 = 0$. Conversely assume $u_0 = 0$. Then

$$eU = \left[\prod_{i=1}^{n-1} (1-x^i)^{u_i}\right]$$
 in $\mathbb{Z}[x]/(1-x^n)$.

If eU = 0, then there is $\varphi(x) \in \mathbb{Z}[x]$ such that

(3.3)
$$\prod_{i=1}^{n-1} (1-x^i)^{u_i} = \varphi(x)(1-x^n) \text{ in } \mathbb{Z}[x].$$

We see

$$1-x^i=-\prod_{j\mid i}\Phi_j(x),$$

where the product $\prod_{j|i}$ is taken over all divisors *j* of *i*, and $\Phi_j(x)$ is the *j*th cyclotomic polynomial which is irreducible in $\mathbb{Z}[x]$. From this the right hand side of (3.3) contains $\Phi_n(x)$ as a factor, but the left hand side does not. This is a contradiction.

For a subgroup *H* of *G* we obtain a homomorphism $\gamma_H : R(G) \rightarrow R(H)$ by restricting the action of *G* to *H*.

Lemma 3.4. For any compact Lie group G,

$$\gamma = \bigoplus_{H} \gamma_{H} : R(G) \to \bigoplus_{H} R(H)$$

is injective, where the direct sum \oplus_H is taken over all finite cyclic subgroups H of G.

Proof. Assume that $\gamma(a) = 0$ for $a \in R(G)$. Then $\gamma_H(a) = 0$ in R(H) for any finite cyclic subgroup H of G. To show a = 0, considering a as a class function, we will show a(g) = 0 for any $g \in G$. To show this we divide into two cases. First, if g is of finite order, i.e., $g^n = 1$ for some integer n, then g generates the cyclic group $\langle g \rangle$ of order n. By the assumption, we have $\gamma_{\langle g \rangle}(a) = 0$ in $R(\langle g \rangle)$. Hence

$$a(g) = \gamma_{\langle g \rangle}(a)(g) = 0.$$

Second, if g is of infinite order, then there exists a sequence of elements of finite order which converges to g. From the continuity of class function, we see a(g) = 0.

We obtain the following theorem by Lemmas 3.2 and 3.4.

Theorem 3.5. For a complex representation U of a compact Lie group G, $eU \neq 0$ in R(G) if and only if there exists a cyclic subgroup $\mathbb{Z}_n \leq G$ such that $U^{\mathbb{Z}_n} = \{0\}$.

4. Degrees of G-maps

In this section we discuss the degree of a G-map between representation spheres.

Theorem 4.1. Let U and W be unitary representations of a compact connected Lie group G with dim $U = \dim W$ and $eU \neq 0$. If there exists a G-map $f : SU \rightarrow SW$, then

(i) deg f is uniquely determined only by U and W, and

(ii) in particular, deg f = 0 if eW = 0.

Proof. (i) Assume $g : SU \to SW$ is another *G*-map. From Theorem 1.2 we have $eW = z(f) \cdot eU$ and $eW = z(g) \cdot eU$, and hence $(z(f) - z(g)) \cdot eU = 0$ in R(G). This implies z(f) = z(g) since the restricting homomorphism $\gamma_{T^k} : R(G) \to R(T^k)$ is injective where T^k is a maximal torus of *G*, and since $R(T^k)$ has no zero divisor. Hence Theorem 1.1 shows deg $f = z(f)(1) = z(g)(1) = \deg g$.

(ii) If eW = 0, we have $z(f) \cdot eU = 0$ and hence z(f) = 0. This implies deg f = z(f)(1) = 0.

If G is compact abelian, the degree can be more explicitly discussed in the following theorem.

Theorem 4.2. Let G be a compact abelian group, say, $G = T^k \times \mathbb{Z}_{n_1} \times \cdots \times \mathbb{Z}_{n_l}$. Let

$$U = \bigoplus_{\gamma \in \Gamma} V_{\gamma}^{u(\gamma)}$$
 and $W = \bigoplus_{\gamma \in \Gamma} V_{\gamma}^{w(\gamma)}$

be unitary representations of G with dim $U = \dim W$. If there exists a G-map $f : SU \rightarrow SW$, then

$$\deg f \cdot \prod_{\gamma \in \Gamma} |\gamma|^{u(\gamma)} = \prod_{\gamma \in \Gamma} |\gamma|^{w(\gamma)} + nr$$

for $n = g.c.d.\{n_1, \ldots, n_l\}$ and some integer r.

Proof. Theorem 1.2 gives $z(f) \cdot eU = eW$ in $R(G) \cong \mathbb{Z}[x_1, \ldots, x_k, y_1, \ldots, y_l]_L/Y$. Let $\varphi \in \mathbb{Z}[x_1, \ldots, x_k, y_1, \ldots, y_l]_L$ be a representative of z(f), i.e., $z(f) = [\varphi]$. The equality $z(f) \cdot eU = eW$ gives the following equality in $\mathbb{Z}[x_1, \ldots, x_k, y_1, \ldots, y_l]_L$,

$$\varphi \cdot \prod_{\gamma \in \Gamma} \left(1 - (\mathbf{x}\mathbf{y})^{\gamma} \right)^{u(\gamma)} = \prod_{\gamma \in \Gamma} \left(1 - (\mathbf{x}\mathbf{y})^{\gamma} \right)^{w(\gamma)} + \sum_{j=1}^{\iota} \psi_j \cdot \left(1 - y_j^{n_j} \right)$$

1

for some $\psi_j \in \mathbb{Z}[x_1, \ldots, x_k, y_1, \ldots, y_l]_L$. Substituting *X* for all of $x_1, \ldots, x_k, y_1, \ldots, y_l$, we obtain

(4.3)
$$\bar{\varphi}(X) \prod_{\gamma \in \Gamma} (1 - X^{|\gamma|})^{u(\gamma)} = \prod_{\gamma \in \Gamma} (1 - X^{|\gamma|})^{w(\gamma)} + \sum_{j=1}^{l} \bar{\psi}_{j}(X) (1 - X^{n_{j}})$$

in $\mathbb{Z}[X]_L$, where $\bar{\varphi}(X) = \varphi(X, \ldots, X)$, $\bar{\psi}_j(X) = \psi_j(X, \ldots, X)$. We note that

$$\prod_{\gamma\in\Gamma} \left(1-X^{|\gamma|}\right)^{u(\gamma)} = (1-X)^{\sum_{\gamma\in\Gamma} u(\gamma)} \prod_{\gamma\in\Gamma} \left(1+X+X^2+\cdots+X^{|\gamma|-1}\right)^{u(\gamma)},$$

and

$$\sum_{\gamma \in \Gamma} u(\gamma) = \dim U = \dim W = \sum_{\gamma \in \Gamma} w(\gamma).$$

Thus, dividing (4.3) by $(1 - X)^{\dim U}$, we obtain

$$\bar{\varphi}(X) \prod_{\gamma \in \Gamma} \left(1 + X + X^2 + \dots + X^{|\gamma|-1} \right)^{u(\gamma)} = \prod_{\gamma \in \Gamma} \left(1 + X + X^2 + \dots + X^{|\gamma|-1} \right)^{w(\gamma)} + A(X),$$

where

$$A(X) = \frac{\sum_{j=1}^{l} \bar{\psi}_j(X)(1 - X^{n_j})}{(1 - X)^{\dim U}} \in \mathbb{Z}[X]_L$$

= $(1 + X + X^2 + \dots + X^{n-1})B(X)$ for some $B(X) \in \mathbb{Z}[X]_L$.

Substituting 1 for *X*, we obtain the desired equality since $\bar{\varphi}(1) = \deg f$ from Theorem 1.1 and Lemma 2.2.

REMARK 4.4. In Theorem 4.2, if G is connected, i.e., $G = T^k$, then n = 0. If G is finite, i.e., $G = \mathbb{Z}_{n_1} \times \cdots \times \mathbb{Z}_{n_l}$, and if $eU \neq 0$, then we see $\prod_{\gamma \in \Gamma} |\gamma|^{u(\gamma)} \neq 0$ since $u(0, \ldots, 0) = 0$ from Theorem 3.5. If G is not finite, then $\prod_{\gamma \in \Gamma} |\gamma|^{u(\gamma)}$ can be zero even if $eU \neq 0$. For example, the representation $U = V_1 \otimes V_{-1}$ of $G = T^2$ gives an example for this. Essentially the same point as this is missed in [9]. If the last statement of [9, Theorem 2.2] would be correct, deg f would be always positive. This is incorrect.

5. Euler classes for representations of S^1

In this section we show that the Euler class distinguishes the isomorphism class of real representations of S^1 . The set $\{V_i \mid i \in \mathbb{Z}\}$ gives a complete set of irreducible complex representations of S^1 . We note that $R(S^1) \cong \mathbb{Z}[x]_L$, and that $V_i \cong V_{-i}$ as real representations.

Theorem 5.1. Let U and W be two complex representations of S^1 . If $eU = eW \neq 0$ in $R(S^1)$, then $U \cong W$ as real representations.

Proof. Decompose U and W into direct sums of irreducible representations as

$$U = \bigoplus_{i \in \mathbb{Z}} V_i^{u_i}$$
 and $W = \bigoplus_{i \in \mathbb{Z}} V_i^{w_i}$.

Here $u_0 = 0$ and $w_0 = 0$ since $eU \neq 0$ and $eW \neq 0$. Noting that $1 - x^i = -x^i(1 - x^{-i})$ in $\mathbb{Z}[x]_L$, we have

$$eU = (-1)^a x^b \prod_{i>0} (1-x^i)^{u_i+u_{-i}},$$

where $a = \sum_{i < 0} u_i$ and $b = \sum_{i < 0} i u_i$. Factoring $1 - x^i$ into the cyclotomic polynomials $\Phi_i(x)$, we have

$$eU = (-1)^{a'} x^b \prod_{j>0} \Phi_j(x)^{c_j},$$

248

where $a' = a + \sum_{i>0} (u_i + u_{-i})$ and $c_j = \sum_{j|i} (u_i + u_{-i})$ is the sum of $u_i + u_{-i}$ with *i* a multiple of *j*. Similarly we have

$$eW = (-1)^r x^s \prod_{j>0} \Phi_j(x)^{t_j}$$

for some integers r, s, and $t_j = \sum_{j|i} (w_i + w_{-i})$. Since $\mathbb{Z}[x]_L$ is a unique factorization domain, eU = eW implies $c_j = t_j$, i.e.,

$$\sum_{j|i} (u_i + u_{-i}) = \sum_{j|i} (w_i + w_{-i})$$

for all j > 0. From this we have $u_i + u_{-i} = w_i + w_{-i}$ for all i > 0, and hence $U \cong W$ as real representations.

References

- [1] M.F. Atiyah: Lectures on K-theory, Benjamin, New York-Amsterdam, 1967.
- [2] M.F. Atiyah and D.O. Tall: Group representations, λ-rings and the J-homomorphism, Topology 8 (1969), 253–297.
- [3] T. Bartsch: On the genus of representation spheres, Comment. Math. Helv. 65 (1990), 85–95.
- [4] T. tom Dieck and T. Petrie: Geometric modules over the Burnside ring, Invent. math. 47 (1978), 273–287.
- [5] K. Komiya: Equivariant K-theory and maps between representation spheres, Publ. RIMS, Kyoto Univ. 31 (1995), 725–730.
- [6] K. Komiya: Equivariant maps between representation spheres of a torus, Publ. RIMS, Kyoto Univ. 34 (1998), 271–276.
- [7] A. Liulevicious: Borsuk-Ulam theorems and K-theory degrees of maps, Springer Lecture Notes in Math. 1051 (1984), 610–619.
- [8] W. Marzantowicz: The Lefschetz number in equivariant K-theory, Bull. Acad. Pol. Sci. 25 (1977), 901–906.
- [9] W. Marzantowicz: Borsuk-Ulam theorem for any compact Lie group, J. London Math. Soc. (2) 49 (1994), 195–208.
- [10] G. Segal: Equivariant K-theory, Publ. Math. IHES 34 (1968), 129–151.

Department of Mathematics Yamaguchi University Yamaguchi 753-8512 Japan e-mail: komiya@po.cc.yamagichi-u.ac.jp