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BERNSTEIN TYPE THEOREMS FOR MINIMAL

LAGRANGIAN GRAPHS OF QUATERNION

EUCLIDEAN SPACE

YUXIN DONG, YINGBO HAN and QINGCHUN JI

Abstract. In this paper, we prove some Bernstein type results for n-

dimensional minimal Lagrangian graphs in quaternion Euclidean space H
n ∼=

R
4n. In particular, we also get a new Bernstein Theorem for special Lagrangian

graphs in C
n.

§1. Introduction

The celebrated theorem of Bernstein says that the only entire minimal

graphs in Euclidean 3-space are planes. This result has been generalized to

Rn+1, for n ≤ 7 and general dimension under various growth condition, see

[1] and the reference therein for codimension one case. For higher codimen-

sion, the situation becomes more complicated. Due to the counterexample

of Lawson-Osserman [7], the higher codimension Bernstein type result is

not expected to be true in the most generality. Hence we have to consider

the additional suitable conditions to establish a Bernstein type result for

higher codimension.

In recent years, remarkable progress has been made by [5], [6], [8], [10]

and [11] in Bernstein type problems of minimal submanifolds with higher

codimension and special Lagrangian submanifolds. The key idea in these

papers is to find a suitable subharmonic function, whose vanishing implies

the minimal graph is totally geodesic. Let M be a minimal submanifold of

Rn+m that can be represented as the graph of a smooth map f : Rn → Rm.

The function is given by

∗Ω =
1√

det(I + (df)tdf)
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Jost-Xin [5] established a Bernstein result for M under the condition ∗Ω ≥
K > 1/2, which improves the previous results in [3] and [2]. Wang in [10]

derived a nice Bochner type formula for the function ln(∗Ω)−1. Under the

so-called area-decreasing condition, he obtained a Bernstein result for higher

codimension case too.

Due to string theory, special Lagrangian submanifolds received much

attention in recent years. Some authors also tried to establish Bernstein

type results for special Lagrangian submanifolds (see [6], [8] and [11]). It is

known that a special Lagrangian graph may be represented by a gradient

of a smooth function, i.e., f = ∇u for a smooth function u : Rn → R.

The function u is called the potential function. Tsui and Wang in [8] ob-

tained Bernstein results for special Lagrangian graphs by applying the same

Bochner formula. We should point out that the same formula for special

Lagrangian graphs was also derived by Yuan in [11] from a different point of

view. An important technique used by Yuan is the so-called Lewy transfor-

mation which allows him to prove: Any special Lagrangian graph given by a

convex potential function must be an affine plane. Actually, Yuan obtained

a little bit stronger Bernstein result for special Lagrangian graph under the

condition Hess(u) ≥ −ǫ(n)I, where ǫ(n) is a small dimensional constant.

In this paper, we will investigate a real minimal Lagrangian graph Σn

in Quaternion space Hn ∼= R4n which is given by three potential functions

us : Rn → R, s = 1, 2, 3 as follows:

Σ = {(x,∇u1,∇u2,∇u3) : x ∈ Rn}.

The Lagrangian condition forces the three matrices Hess(us) to be commu-

tative with each other. As a result, we may choose a particular quaternionic

frame corresponding to singular value decomposition of ∇us (s = 1, 2, 3) at

each point. A useful formula for the minimal Lagrangian graph is derived

by applying Wang’s Bochner formula to the quaternionic frame. Using this

formula, we obtain some Bernstein theorems for Σ, which generalize those

results in [8] and [11] (see Section 3 for details). Obviously, when u2 and u3

are constant, Σ is just the special Lagrangian graph in Cn. By combining

Wang’s result in [8] and a Lewy transformation, we get a new Bernstein

Theorem for special Lagrangian graph too. Note that our lower bound for

Hess(u) is independent of the dimension. Finally, we consider the minimal

Lagrangian graph given by three same potential functions, i.e., ∇us = ∇u

(s = 1, 2, 3). In this case, we also find a suitable lewy transformation to

prove a Bernstein result similar to the above mentioned results.
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§2. Preliminaries

We first recall a formula derived in [9], [10]. Let Σ be an oriented n-

dimensional submanifold of Rn+m and Ω a parallel n form on Rn+m. Around

any point p ∈ Σ, we choose any oriented orthonormal frames {ei}ni=1 for TpΣ

and {eα}n+m
α=n+1 for NpΣ, the normal bundle of Σ. The second fundamental

form of Σ is denoted by hαij = 〈∇ei
ej, eα〉. If we assume Σ has parallel

mean curvature vector, then the global function ∗Ω = Ω(e1, . . . , en) satisfies

(see [9], [10]):

△∗Ω + ∗Ω
(∑

αlk

h2
α,l,k

)
− 2

∑

α,β,k

[
Ωαβ3···nhα1khβ2k + · · ·

· · ·+ Ω1···(n−2)αβhα(n−1)khβnk

]
= 0

(1)

(∗Ω)k =
∑

α

Ωα2···nhα1k + · · ·+ Ω1···(n−1)αhαnk(2)

1 ≤ i, j, k, . . . ≤ n, n + 1 ≤ α, β ≤ n + m

where △ is the Laplace operator of the induced metric on Σ and Ωαβ3···n =

Ω(eα, eβ , e3, . . . , en), etc.

Let g be the standard Euclidean metric on Hn ∼= R4n which is Kähler

with respect to the three natural complex structures I, J , K on R4n. Set

ωI = g(I, ), ωJ = g(J, ) and ωK = g(K, ). An n-dimensional submanifold

f : Σn → R4n is called Lagrangian if it satisfies:

f∗ωI = f∗ωJ = f∗ωK = 0.

Suppose Σ is a graph defined by f = (f1, f2, f3), where fs = (f1
s , . . . , fn

s ) :

Rn → Rn s = 1, 2, 3 are smooth maps. It is easy to see that Σ is Lagrangian

if and only if f1, f2, f3 satisfy:

(3)





− ∂f j
1

∂xi

+
∂f i

1

∂xj

+

n∑

k=1

{
∂fk

2

∂xi

∂fk
3

∂xj

− ∂fk
2

∂xj

∂fk
3

∂xi

}
= 0

− ∂f j
2

∂xi

+
∂f i

2

∂xj

+

n∑

k=1

{
∂fk

3

∂xi

∂fk
1

∂xj

− ∂fk
3

∂xj

∂fk
1

∂xi

}
= 0

− ∂f j
3

∂xi

+
∂f i

3

∂xj

+

n∑

k=1

{
∂fk

1

∂xi

∂fk
2

∂xj

− ∂fk
1

∂xj

∂fk
2

∂xi

}
= 0

where i, j ∈ {1, . . . , n}. Obviously, if fs = ∇us for some smooth functions

us : Rn → R (s = 1, 2, 3), then Σ is Lagrangian if and only if us, s = 1, 2, 3
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satisfy:

(4) Hess(us)Hess(ut) = Hess(ut)Hess(us) for all s, t ∈ {1, 2, 3}.

From now on, we will consider minimal Lagrangian graph given by the three

potential functions us, s = 1, 2, 3. Note that if u2, u3 are constants, Σ is

just the special Lagrangian graph considered in [6], [8] and [11].

Example 1. The smallest interesting dimension is n = 2. We would

like to give some examples of minimal Lagrangian surfaces in H2 = R8.

First, let us(x1, x2), s = 1, 2, 3 be harmonic functions on R2. We see

that (us)x1
−
√
−1(us)x2

is a holomorphic function of z = x1 +
√
−1x2

for each s. It follows that the graph Σ = {(x1, x2,∇u1,∇u2,∇u3) : x =

(x1, x2) ∈ R2} is a holomorphic curve in C4 = R8, and thus a minimal

surfaces in R8. In particular, if u is a harmonic function on R2, we have

minimal Lagrangian graphs Σ1 = {(x,∇u, x,∇u) : x ∈ R2} and Σ2 =

{(x,∇u,∇u,∇u) : x ∈ R2}.

From Example 1, we know that there exist many minimal graphic La-

grangian submanifolds of R4n.

§3. Main results for minimal Lagrangian graphs

Let Σ = (x,∇u1,∇u2,∇u3) be an n dimensional minimal Lagrangian

submanifold in R4n. From the previous section, we know that {us}s=1,2,3

satisfy (4) at each point x ∈ Rn. So we may diagonalize Hess(us), s = 1, 2, 3

simultaneously at each point x via the singular decomposition, that is, there

exist orthonormal bases {ai}i=1,...,n for Rn and {aα}α=n+1,...,4n for R3n such

that

Hess(us)ai = λ
(s)
i asn+i

and

Iai = an+i, Jai = a2n+i, Kai = a3n+i

for i = 1, . . . , n. Set

ei =
ai + λ

(1)
i an+i + λ

(2)
i a2n+i + λ

(3)
i a3n+i

Ai

en+i =
−λ

(1)
i ai + an+i − λ

(3)
i a2n+i + λ

(2)
i a3n+i

Ai
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e2n+i =
−λ

(2)
i ai + λ

(3)
i an+i + a2n+i − λ

(1)
i a3n+i

Ai

e3n+i =
−λ

(3)
i ai − λ

(2)
i an+i + λ

(1)
i a2n+i + a3n+i

Ai

where Ai =

√
1 + (λ

(1)
i )2 + (λ

(2)
i )2 + (λ

(3)
i )2. Note that, en+i = Iei, e2n+i =

Jei and e3n+i = Kei at the corresponding point p = (x,∇u1(x),∇u2(x),

∇u3(x)). Thus we have an orthonormal frame {ei}i=1,...,n for TpΣ and

{en+i, e2n+i, e3n+i}i=1,...,n for NpΣ. Define the second fundamental form

of Σ as follows:

h
(s)
ijk = 〈∇̃ei

ej , ens+k〉, s = 1, 2, 3.

Since ∇̃I = ∇̃J = ∇̃K = 0 and Σ is Lagrangian, we know that h
(s)
ijk is

symmetric in i, j, k. Now take Ω = dx1 ∧ · · · ∧ dxn. It is not hard to see

∗Ω =
1√∏n

i=1

(
1 +

∑3
s=1(λ

(s)
i )2

) .

By applying the formula (1) to the above quaternionic frame {ei, en+i, e2n+i,

e3n+i}i=1,...,n, we get

Proposition 3.1. Let Σ = (x,∇u1(x),∇u2(x),∇u3(x)) be a minimal

graph in R4n and {λ(s)
i } be the eigenvalues of Hess(us), s = 1, 2, 3. Then

∗Ω satisfies

(5) △∗Ω = −∗Ω
{ 3∑

s=1

n∑

ijk=1

(h
(s)
ijk)

2 − 2

3∑

st=1

∑

k,i<j

λ
(s)
i λ

(t)
j h

(s)
iikh

(t)
jjk

+ 2

3∑

st=1

∑

k,i<j

λs
iλ

(t)
j h

(s)
ijkh

(t)
ijk

}

where △ is the Laplace operator of the induced metric on Σ.

Now we shall calculate

(6) △(ln ∗Ω) =
∗Ω△(∗Ω)− |∇∗Ω|2

|∗Ω|2 .

By formula (2), the covariant derivative of ∗Ω is

(7) (∗Ω)k = −∗Ω
( 3∑

s=1

n∑

i=1

λ
(s)
i hs

iik

)
.



160 Y. DONG, Y. HAN AND Q. JI

Plug this and equation (5) into equation (6) and we obtain:

(8) △[ln(∗Ω)−1] =

3∑

s=1

n∑

ijk=1

(h
(s)
ijk)

2 +

3∑

st=1

n∑

ijk=1

λ
(s)
i λ

(t)
j h

(s)
ijkh

(t)
ijk.

Set Λi = (λ
(1)
i , λ

(2)
i , λ

(3)
i ) and hijk = (h

(1)
ijk, h

(2)
ijk, h

(3)
ijk). So

(9) △ ln[∗Ω](−1) =

{ n∑

ijk=1

hijk(I + ΛT
i Λj)h

T
ijk

}
.

We may rewrite (9) as

(10) △ ln[∗Ω](−1) =
1

3

{ n∑

ijk=1

hijk(3I + ΛT
i Λj + ΛT

j Λk + ΛT
k Λi)h

T
ijk

}
.

Set Sij = 1
2(ΛT

i Λj + ΛT
j Λi). We have the following:

Theorem 3.2. Let Σ = (x,∇u1,∇u2,∇u3) be an n-dimensional min-

imal Lagrangian submanifold of R4n. If there exist δ, K > 0 such that

|λ(s)
i | ≤ K, and Sij + Sjk + Ski ≥ (−3 + δ)I

for i, j, k ∈ {1, . . . , n}, s ∈ {1, 2, 3}, then Σ is an affine plane.

Proof. Set

Fijk(X) = X(3I + ΛT
i Λj + ΛT

j Λk + ΛT
k Λi)X

T

= X(3I + Sij + Sjk + Ski)X
T

for fixed i, j, k and any X ∈ R3. By the assumption we have

Fijk(X) ≥ δ‖X‖2.

From (10) we have

△ ln[∗Ω](−1) =
1

3

n∑

ijk=1

Fijk(hijk) ≥
1

3

n∑

ijk=1

δ‖hijk‖2 =
1

3
δ‖A‖2

where A is the second fundamental form of Σ. Note that |λ(s)
i | ≤ K means

Σ is of bounded slope. So we may perform blow down to get a minimal

Lagrangian cone. Obviously the minimal Lagrangian cone also satisfies the

assumption. By applying maximum principle we conclude that the minimal

cone is flat and then Allard regularity theorem implies that Σ is an affine

plane.
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Corollary 3.3. Let Σ = (x,∇u1,∇u2,∇u3) be a minimal Lagrangian

submanifold of R4n. If there exist δ, K > 0 such that

|λ(s)
i | ≤ K, and Sij ≥

(
−3

2
+ δ

)
I

where i, j ∈ {1, . . . , n}, s ∈ {1, 2, 3}, then Σ is an affine plane.

Proof.

Fijk(X) = X(3I + ΛT
i Λj + ΛT

j Λk + ΛT
k Λi)X

T

= 3‖X‖2 + XSijX
T + XSjkX

T + XSjkX
T .

It is easy to know that

XSijX
T = (X,Λi)(Λj ,X),

XSjkX
T = (X,Λj)(Λk,X),

XSkiX
T = (X,Λk)(Λi,X).

Observe that one of (X,Λi)(X,Λj), (X,Λj)(X,Λk), (X,Λk)(X,Λi) must be

nonnegative. From the assumption, we know

Fijk(X) ≥ 2δ‖X‖2

i.e.

Sij + Sjk + Ski ≥ (−3 + 2δ)I.

The conclusion follows immediately from Theorem 3.2.

Remark 3.4. When u1 and u2 are constants, we can recover Wang’s

result in [8] for special Lagrangian submanifolds.

Corollary 3.5. Let Σ = (x,∇u1,∇u2,∇u3) be a minimal Lagrangian

submnanifold of R4n. If there exists a small positive number δ such that

|Λi| ≤
√

3

2
− δ

for i ∈ {1, . . . , n}, then Σ is an affine plane.
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Proof. By the assumption |Λi| ≤
√

3
2 − δ for i = 1, . . . , n and the

Cauchy-Schwarz inequality, we have

XSijX
T = (X,Λi)(X,Λj) ≥

(
−3

2
+ δ

)
‖X‖2

for any fixed i, j ∈ {1, . . . , n} and X ∈ R3. So the symmetric matrix Sij

satisfies

Sij ≥
(
−3

2
+ δ

)
I.

Therefore the conclusion follows immediately from Corollary 3.3.

Remark 3.6. If u2 and u3 are constants, then Σ = (x,∇u1(x), 0, 0),

which may be regarded as a minimal Lagrangian graph Σ = (x,∇u1(x)) in

Cn. So the above Corollary generalizes those results in [8] and [11].

In the following, we will consider two special kinds of minimal La-

grangian graphs: Σ = (x,∇u, 0, 0) or Σ = (x,∇u,∇u,∇u) in Hn. We have

already pointed out that the previous case is just the special Lagrangian

graph.

Theorem 3.7. Let Σ = (x,∇u) be a minimal Lagrangian submanifold

of Cn. If there exists a positive constant C <
√

6/12 such that

Hess(u) ≥ −CI

then Σ is an affine plane.

Proof. We identify C with R2 as follows:

C ∋ x +
√
−1y ←→ (x, y) ∈ R2.

For a +
√
−1b ∈ SU(1), its real representation matrix on R2 is given by

A =

(
a −b
b a

)

where a2 + b2 = 1.

We consider the transformation A(n) = (A, . . . , A) on C × · · · ×C︸ ︷︷ ︸
n

=

R2n defined by

(11)

{
x̄ = ax + by

ȳ = −bx + ay
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where (x, y), (x̄, ȳ) ∈ Rn×Rn = Cn. Set a = h/
√

1 + h2 and b = 1/
√

1 + h2,

where h is a constant to be chosen. It follows that Σ has a new parametriza-

tion

(12)





x̄ =
1√

1 + h2
(hx +∇u)

ȳ =
1√

1 + h2
(−x + h∇u)

Since u + 1
2C‖x‖2 is a convex function, we have

|x̄1 − x̄2|2 =
1

1 + h2
|hx2 +∇u(x2)− hx1 −∇u(x1)|2(13)

=
1

1 + h2
|(h− C)(x2 − x1) + (∇u(x2) + Cx2)− (∇u(x1) + Cx1)|2

=
1

1 + h2

{
(h− C)2|x2 − x1|2

+ 2(h − C)(x2 − x1)
[
(∇u(x2) + Cx2)− (∇u(x1) + Cx1)

]

+ |(∇u(x2) + Cx2)− (∇u(x1) + Cx1)|2
}

≥ 1

1 + h2
(h− C)2|x2 − x1|2.

Now we assume h > C. Then (13) implies that Σ is still a graph over the

whole x̄ space Rn. Further Σ is still a Lagrangian graph over x̄, that means

Σ has the representation (x̄,∇ū(x̄)) with a potential function ū ∈ C∞(Rn).

We may derive from (12) that

Hess(ū(x̄)) = (hI + Hess(u(x)))−1(−I + hHess(u(x))).

From Hess(u) ≥ −CI, we see that

(14) −1 + hC

h− C
I ≤ Hess(ū) ≤ hI.

By solving h = 1+hC
h−C

, we get h = C +
√

C2 + 1 which obviously satisfies the

previous assumption h > C. So (14) becomes

−(C +
√

C2 + 1)I ≤ Hess(ū(x̄)) ≤ (C +
√

C2 + 1)I.

The condition C ≤
√

6/12 implies that any eigenvalue λ of Hess(ū) satisfies

|λ| ≤ C +
√

C2 + 1 <

√
3

2
.

From Corollary 3.5, we know that Σ is an affine plane.
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Remark 3.8. When n = 3, Yuan [11] showed that the lower bound for

Hess(u) in Bernstein Theorem can be relaxed to be an arbitrary constant.

Theorem 3.9. Let Σ = (x,∇u,∇u,∇u) be a minimal Lagrangian sub-

manifold of R4n. If there exists a positive constant C <
√

2/12 such that

Hess(u) ≥ −CI

then Σ is an affine plane.

Proof. We identify H with C2 as follows:

H ∋ x + Iy + Jz + Kw = (x + Jz) + I(y + Jw)←→ (x + Jz, y + Jw) ∈ C2.

For a matrix M = A + jB ∈ SU(2), its real representation on R4 is given

by

M




x
y
z
w


 =

(
A −B
B A

)



x
y
z
w




with AAT + BBT = I2 and ABT = BAT . Obviously if a2 + 3b2 = 1, then

(15) D =




a b b b
−b a b −b
−b −b a b
−b b −b a


 ∈ SU(2) = Sp(1).

We consider the transformation D(n) = (D, . . . ,D) on H × · · · ×H︸ ︷︷ ︸
n

= Hn =

R4n defined by

(16)





x̄ = ax + by + bz + bw

ȳ = −bx + ay + bz − bw

z̄ = −bx− by + az + bw

w̄ = −bx + by − bz + aw

where (x, y, z, w), (x̄, ȳ, z̄, w̄) ∈ Rn×Rn×Rn×Rn = R4n. Set a = h/
√

1 + h2

and
√

3b = 1/
√

1 + h2, where h is a constant to be chosen. It follows that
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Σ has a new parametrization

(17)





x̄ =
1√

1 + h2

(
hx +

√
3∇u

)

ȳ =
1√

1 + h2

(
− 1√

3
x + h∇u

)

z̄ =
1√

1 + h2

(
− 1√

3
x + h∇u

)

w̄ =
1√

1 + h2

(
− 1√

3
x + h∇u

)

Since u + 1
2C‖x‖2 is a convex function, we have

|x̄1 − x̄2|2 =
1

1 + h2
|hx2 +

√
3∇u(x2)− hx1 −

√
3∇u(x1)|2

(18)

=
1

1 + h2

∣∣(h−
√

3C)(x2 − x1) +
√

3
[
(∇u(x2) + Cx2)− (∇u(x1) + Cx1)

]∣∣2

=
1

1 + h2

{
[(h−

√
3C)2|x2 − x1|2]

+ 2
√

3(h−
√

3C)(x2 − x1)
[
(∇u(x2) + Cx2)− (∇u(x1) + Cx1)

]

+ 3|(∇u(x2) + Cx2)− (∇u(x1) + Cx1)|2
}

≥ 1

1 + h2
(h−

√
3C)2|x2 − x1|2.

Now we assume h >
√

3C. Then (18) implies that Σ is still a graph over

the whole x̄ − Rn, that is Σ has the representation (x̄, f1(x̄), f2(x̄), f3(x̄)).

Since Σ is still minimal Lagrangian, we see from (3) that f = ∇ū, that is,

Σ = (x̄,∇ū,∇ū,∇ū) for some function ū ∈ C∞(Rn). We may derive from

(17) that

Hess(ū(x̄)) = (hI +
√

3 Hess(u(x)))−1
(
− 1√

3
I + hHess(u(x))

)
.

From Hess(u) ≥ −CI, we see that

(19) −
1√
3

+ hC

h−
√

3C
I ≤ Hess(ū) ≤ h√

3
I.
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By solving h√
3

=
1

√

3
+hC

h−
√

3C
, we get h =

√
3C +

√
3C2 + 1 which obviously

satisfies the previous assumption h >
√

3C. So (19) becomes

−
√

3C +
√

3C2 + 1√
3

I ≤ Hess(ū) ≤
√

3C +
√

3C2 + 1√
3

I.

The condition C <
√

2/12 implies that any eigenvalue λ of Hess(ū(x̄))

satisfies

|λ| ≤
√

3C +
√

3C2 + 1√
3

<

√
1

2
.

Then the singular values Λi = (λi, λi, λi) of Σ = (x̄,∇ū(x̄),∇ū(x̄),∇ū(x̄))

satisfy:

|Λi| ≤
√

3C +
√

3C2 + 1 <

√
3

2
for i ∈ {1, . . . , n}.

Hence, by Corollary 3.5, we know that Σ is an affine plane.

Corollary 3.10. Let Σ = (x,∇u,∇u,∇u) be a minimal Lagrangian

submanifold of R4n. If u is a smooth convex function on Rn, then Σ is an

affine plane.
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