
B. Le Stum and A. Quirós

Nagoya Math. J.

Vol. 191 (2008), 79–110

THE FILTERED POINCARÉ LEMMA IN HIGHER
LEVEL

(WITH APPLICATIONS TO ALGEBRAIC GROUPS)

BERNARD LE STUM and ADOLFO QUIRÓS

Abstract. We show that the Poincaré lemma we proved elsewhere in the

context of crystalline cohomology of higher level behaves well with regard to

the Hodge filtration. This allows us to prove the Poincaré lemma for transversal

crystals of level m. We interpret the de Rham complex in terms of what we call

the Berthelot-Lieberman construction and show how the same construction can

be used to study the conormal complex and invariant differential forms of higher

level for a group scheme. Bringing together both instances of the construction,

we show that crystalline extensions of transversal crystals by algebraic groups

can be computed by reduction to the filtered de Rham complexes. Our theory

does not ignore torsion and, unlike in the classical case (m = 0), not all invariant

forms are closed. Therefore, close invariant differential forms of level m provide

new invariants and we exhibit some examples as applications.

Introduction

In a series of articles, starting with [9] and [10], we have been using

the partial divided powers of Berthelot to study the geometry of algebraic

varieties of positive characteristic. This gives new insight into the p-adic

cohomological theories. Unlike other works on the subject ([7], [13] and

[5]), we do not use crystalline cohomology of higher level as a tool to obtain

results in rigid cohomology and, in particular, we do not ignore torsion. In

fact, torsion is very rich in this theory and provides new invariants that help

understand the geometry of algebraic varieties. For example, we will show

how the sheaf of closed invariant differential forms of higher level can tell

you exactly where the supersingular locus of a family of elliptic curves is.
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Following A. Ogus in [11], we introduced in [9] the notion of transver-

sal crystal of higher level. Although we could slightly improve on some of

Ogus’ results, progress was hampered by the lack of de Rham techniques for

computing exactly crystalline cohomology in higher level. A natural answer

to this problem was provided in [10], where we developed ideas of P. Berth-

elot, introducing the de Rham complex of higher level and proving the exact

Poincaré lemma. In the present article, we extend the Poincaré lemma of

higher level to transversal crystals by paying close attention to filtrations.

This is used to give a precise description of the group of extensions of a

transversal crystal by a commutative group scheme. In a forthcoming arti-

cle, we want to use these results to show that Dieudonné crystals of higher

level are transversal.

After reviewing in Section 1 a few results on filtrations, and especially

fixing terminology about filtered derived categories, in Section 2 we verify

that the formal Poincaré lemma in higher level behaves as expected with

respect to filtrations. In doing so, we reinterpret the de Rham and linearized

de Rham complexes introduced in [10] as particular cases of what we call

a Berthelot-Lieberman complex. This general construction will be used in

Section 4 to define the conormal complex of higher level of a group scheme.

But first we prove the filtered Poincaré lemma for transversal crystals. This

is done in Section 3 and requires careful attention to the behavior of the

filtrations all along the process. In Section 4, which is completely indepen-

dent of the preceding one, we study the relation between the conormal sheaf

of higher level and invariant differential forms of higher level. Unlike in the

classical case (level 0), not all invariant forms are closed. Actually, the mod-

ule of closed invariant forms is isomorphic to the first cohomology group of

the conormal complex. We present concrete examples, including the Legen-

dre family of elliptic curves, and give the relation with de Rham cohomology

of higher level in the case of abelian schemes. Section 5 brings together the

two previous sections. More precisely, we show that crystalline extensions

of transversal crystals by abelian groups can be computed by reduction to

filtered de Rham complexes. As an application, we show that the exten-

sion group of the partial divided power ideal by a smooth abelian group is

nothing other than a lifting of the module of closed invariant differentials

of higher level.

Most results here are inspired by theorems that have been well known

for a long time in the case of usual divided powers and classical crystalline
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cohomology. In particular, this work owes much to P. Berthelot, L. Breen,

L. Illusie, W. Messing and A. Ogus.

Many thanks to the referee who pointed out several mistakes and en-

couraged us to improve the presentation of this article.

Conventions

Starting at Section 2, we let p be a prime, m ∈ N and, unless m = 0,

all schemes are assumed to be Z(p)-schemes.

§1. Generalities about filtrations

Concerning filtrations, we use the terminology of [6], 1.1. In particular,

we will only consider filtrations of type Z in additive categories. Also,

filtration will always mean decreasing filtration.

Definition 1.1. A filtration Fil• on an object M is effective if

Fil0 M = M .

Unless otherwise specified, we will only consider effective decreasing fil-

trations. Note that the filtration induced on a subquotient (cf. [6], 1.1.10)

by an effective filtration is still effective. One can also check that the image

of an effective filtration by a semi-exact (meaning left or right exact) mul-

tiadditive functor (cf. [6], 1.1.12) is still effective. This applies in particular

to the tensor product filtration.

Definition 1.2. The trivial (effective) filtration on an object M is

given by

Filk M =

{

M if k ≤ 0

0 if k > 0.

In [6] (Definition 1.3.6), filtered quasi-isomorphisms are only defined for

so-called biregular filtrations. This definition does not generalize well. As

in [11], Section 4.4, we will need a more restrictive notion.

Definition 1.3. A morphism of filtered complexes M• → N• is a

true filtered quasi-isomorphism if, for each k ∈ Z, the induced morphism

Filk M• → Filk N• is a quasi-isomorphism. A filtered homotopy is a homo-

topy s : M• → N• such that

∀k ∈ Z, ∀n ∈ Z, s(Filk Mn) ⊂ Filk Nn−1.
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Two morphisms of filtered complexes f, g : M• → N• are homotopic if there

exists a filtered homotopy h : M• → N• such that g is homotopic to f with

respect to h.

As explained in [11], page 80, the above notions of filtered homotopy and

true filtered quasi-isomorphisms are suitable to define the filtered derived

category of a Grothendieck category, e.g. a category of modules. Moreover,

any left exact additive functor F between such categories gives rise to a

filtered derived functor and this construction is completely compatible with

the non-filtered situation in the sense that we always have

RF (Filk M•) = Filk RFM•.

In particular, there exists a canonical spectral sequence

Ei,j
1 = Ri+jF (GriM•)⇒ RnF (M•)

that endows, for each n ∈ Z, RnF (M•) with a canonical filtration.

We now need to recall some definitions and results from [11] and [9] on

transversal filtrations.

Definition 1.4. A ring filtration on a ring A is an effective filtration

by ideals I(k) such that I(k)I(l) ⊂ I(k+l). A filtered A-module (M,Fil•) is

transversal (resp. almost transversal) to I(•) if for each k ∈ Z,

I(1)M ∩ Filk M = (resp. ⊂)
∑

i+j=k, i>0

I(i) Filj .

If (M,Fil•) is a filtered A-module, the saturation of the filtration with re-

spect to I(•) is the tensor product filtration Fil
•

on M under the identifica-

tion A⊗A M = M .

When A is filtered by the powers of an ideal I, we simply say transversal

(resp. almost transversal, resp. saturation with respect) to I. Note that a

module filtration is always transversal to 0 and that, if a filtration is almost

transversal, then its saturation is transversal.

Definition 1.5. The trivial transversal filtration on an A-module M

is the saturation of the trivial filtration.

Note that the trivial transversal filtration is given by

Fil
k
M =

{

M if k ≤ 0

I(k)M if k > 0.
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§2. The formal filtered Poincaré lemma

The aim of this section is to give a filtered version of Theorem 3.3 of

[10]. We first recall some properties of m-PD-envelopes and introduce the

notion of Berthelot-Lieberman complex.

If X →֒ Y is an immersion of schemes, then we will denote by PXm(Y )

its divided power envelope of level m. We will write PXm(Y ) for the struc-

tural sheaf and IXm(Y ) for the m-PD-ideal. We will use a superscript n to

denote the same objects modulo I
{n+1}
Xm (Y ). If X is an S-scheme, we will

denote by PX/Sm(r) the m-PD envelope of the diagonal embedding of X in

Xr+1 and modify all other notations accordingly.

The notion of m-PD envelope is functorial in the sense that any com-

mutative diagram
X ′ −֒−−→ Y ′





y

g





y
g′

X −֒−−→ Y

canonically extends to

X ′ −֒−−→ PX′m(Y ′) −֒−−→ Y ′





y





y





y

X −֒−−→ PXm(Y ) −֒−−→ Y

We recall the following fundamental results of Berthelot:

Proposition 2.1. Let f : X →֒ Y be an immersion of schemes with a

smooth retraction h : Y → X. We use h to endow Pn
Xm(Y ) and PXm(Y )

with the structure of an OX -algebra. Then,

1. For all n, Pn
Xm(Y ) is a locally free OX-module of finite rank. Actually,

PXm(Y ) itself is locally free when Y is uniformly killed by a power of

p.

2. Let

X ′ ←−−−
−֒−−→ Y ′





y

g





y
g′

X ←−−−
−֒−−→ Y
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be a be cartesian diagram (both ways). Then, we have for all n,

g∗Pn
Xm(Y ) ≃ Pn

X′m(Y ′)

and even

g∗PXm(Y ) ≃ PX′m(Y ′)

if Y is uniformly killed by a power of p.

Proof. This follows from Propositions 1.4.6 and 1.5.3 of [2].

Let X →֒ Y (•) be an immersion of a scheme into a simplicial scheme.

In other words, we are given a family of immersions of X →֒ Y (r) compat-

ible with the differentials di and the degeneracy arrows si of Y (•). Taking

m-PD envelopes gives rise to a simplicial scheme PXm(Y •) from which we

derive a complex (PXm(Y •),I
{k}
Xm(Y •)) of filtered rings. We then consider

as in [8] the normalization of PXm(Y •) which is the subcomplex of ideals

defined by NPXm(Y r) :=
⋂

ker s∗i . Finally, we are interested in the quo-

tient of NPXm(Y •) by the differential subalgebra generated by the ideal

I
{pm+1}
Xm (Y 1) of PXm(Y 1), which we write Ω•

Xm(Y ).

Definition 2.2. The complex Ω•
Xm(Y ) is the Berthelot-Lieberman

complex of X →֒ Y (•). The Hodge filtration on Ω•
Xm(Y ) is the filtration

FilkH induced by the m-PD-filtration I
{k}
Xm(Y •) of PXm(Y •).

Definition 2.3.

1. In a category with products, the product simplicial object Xprod(•) of

an object X is defined by Xprod(r) = Xr+1,

di(x1, . . . , xr+2) = (x1, . . . , xi, xi+2, . . . , xr+2) for i = 0, 1, . . . , r + 1

and

si(x1, . . . , xr) = (x1, . . . , xi, xi+1, xi+1, xi+2, . . . , xr+2)

for i = 0, 1, . . . , r.

2. If X(•) is a simplicial object in any category, the shifted simplicial

object is defined by

X+(r) = X(r + 1), d+
i = di+1, s+

i = si+1.
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We can now reformulate some definitions from Section 1 of [10].

Let S be a scheme with p locally nilpotent and X an S-scheme.

Definition 2.4. The Berthelot-Lieberman complex Ω•
X/Sm of the di-

agonal embedding X →֒ (X/S)prod(•), is the de Rham complex of level

m. The Berthelot-Lieberman complex LX(Ω•
X/Sm) of the shifted simplicial

scheme (X/S)prod+(•) is the linearized de Rham complex of level m.

Note that LX(Ω•
X/Sm) is what we called Ω•

P/Sm in [10].

For the rest of this section, we assume that X is a smooth scheme over

S.

Remarks 2.5.

1. Recall from Section 1 of [10] that, if we have local coordinates t1, . . . , tn
on X and, as usual, we set τi := 1 ⊗ ti − ti ⊗ 1, then PX/Sm(r) is a

free OX -module on generators τ{J1}⊗· · ·⊗ τ{Jr} with |Ji| ≥ 0 (we use

the standard multiindex convention). Using Proposition 1.5.3 of [2],

one easily checks that I
{k}
X/Sm(r) is generated by the τ{J1}⊗· · ·⊗ τ{Jr}

with |J1|+ · · ·+ |Jr| ≥ k.

2. Now, if as usual again, dti denotes the image of τi in Ω1
X/Sm, we know

that Ω1
X/Sm is a free OX -module on generators (dt)J with 0 < |J | ≤

pm. As we discussed in Section 1 of [10], for r > 1, even if Ωr
X/Sm

is generated by the (dt)J1 ⊗ · · · ⊗ (dt)Jr with 0 < |Ji| ≤ pm, there

are some relations among these generators. Actually, Ω•
X/Sm is the

quotient of the tensor algebra T •(Ω1
X/Sm) by the relations

(∗)
∑

0<V <J

〈

J

V

〉

(dt)J−V ⊗ (dt)V = 0.

By definition, we see that the Hodge filtration FilkH Ωr
X/Sm is generated

by the

(dt)J1 ⊗ · · · ⊗ (dt)Jr with 0 < |Ji| ≤ pm and |J1|+ · · · + |Jr| ≥ k.

In particular, FilkH = 0 for k > rpm.
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3. Similarly, LX(Ωr
X/Sm) is generated as PX/Sm(1)-module by the

(dτ)J1 ⊗ · · · ⊗ (dτ)Jr with 0 < |Ji| ≤ pm, and FilkH LX(Ωr
X/Sm) is

the OX-submodule generated by the τ{I}(dτ)J1 ⊗ · · · ⊗ (dτ)Jr with

|I|+ |J1|+ · · ·+ |Jr| ≥ k.

4. The Hodge filtration on Ωr
X/Sm is a filtration where, for each k ≥ 0,

both Filk Ωr
X/Sm and Grk Ωr

X/Sm are locally free. To see this, one

proceeds as in the proof of Proposition 1.4 in [10]. First of all, the

question is local. Then, the process consists in writing some of the

(dt)J1 ⊗ · · · ⊗ (dt)Jr with |J1| + · · · + |Jr| = k in term of the others

using the relations (∗) which is possible because |J − V | + |V | = |J |

for all V .

5. Note that when X is smooth, the de Rham complex of level 0 is the

usual de Rham complex with its Hodge filtration. The reason is that

the generators of Ωr
X/S0 are the dti1 ⊗ · · · ⊗ dtir and the relations (∗)

become simply

dti ⊗ dti = 0 and dti ⊗ dtj + dtj ⊗ dti = 0.

Recall that if F is any D
(m)
X/S-module, we can form the de Rham complex

F ⊗OX
Ω•

X/Sm.

of F . In particular, we have the m-connection F → F ⊗OX
Ω1

X/Sm. For

further use, recall also that the relative de Rham cohomology of level m of

F is

Hn
dRm(X,F) := RnpX∗F ⊗OX

Ω•
X/Sm

where pX : X → S is the structural map.

Concerning Griffiths transversality, we refer to Section 2.2 of [9]. Let

us just recall that a filtration Fil• on a D
(m)
X/S-module F is a filtration by

OX-submodules and that it is said Griffiths transversal if we always have

D
(m)
X/Sj Filk F ⊂ Filk−j F .

Proposition 2.6. A filtered D
(m)
X/S-module is Griffiths transversal if

and only if the m-connection is compatible with the filtrations.
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Proof. This is a local question and, if we have local coordinates, the

m-connection on F is given by

s 7−→
∑

0<|J |≤pm

∂[J ]s⊗ (dt)J .

If the filtration is Griffiths transversal and s ∈ Filk F , we have

∂[J ]s⊗ (dt)J ∈ Filk−|J |F ⊗ Fil|J | Ω1
X/Sm.

Since both the filtration and the graded pieces are locally free, we have

Filk−|J |F ⊗ Fil|J | Ω1
X/Sm ⊂ Filk(F ⊗ Ω1

X/Sm).

It follows that the connection preserves the filtrations.

Conversely, if the m-connection is compatible with the filtrations and

s ∈ Filk F , then, necessarily, for all i = 1, . . . , n and j ≤ m, we have

∂
[pj ]
i s⊗ (dt)p

j
∈ Filk(F ⊗ Ω1

X/Sm)

so that, necessarily, ∂
[pj ]
i s ∈ Filk−|pj|F and by Remark 2.2.2 (ii) of [9], this

is sufficient for Griffiths transversality.

Since the differential on a de Rham complex can be described by the

Leibnitz rule, we have the following:

Corollary 2.7. If F is a filtered D
(m)
X/S-module and if, for each r,

F ⊗Ωr
X/Sm is endowed with the tensor product filtration, then F is Griffiths

transversal if and only if the de Rham complex of F is a filtered complex.

Lemma 2.8. For all r, if we endow Ωr
X/Sm and LX(Ωr

X/Sm) with their

Hodge filtration and PX/Sm(1) with its m-PD-filtration, we have an isomor-

phism of filtered modules

LX(Ωr
X/Sm) = PX/Sm(1) ⊗OX

Ωr
X/Sm.

Moreover, the filtration on PX/Sm(1) ⊗OX
Ωr

X/Sm is the saturation with

respect to I
{•}
X/Sm(1) of the inverse image by PX/Sm(1) → OX of the Hodge

filtration on Ωr
X/Sm.



88 B. LE STUM AND A. QUIRÓS

Proof. Since we assume that X is smooth over S, then as mentioned in

Section 1.5 of [10], P+
X/Sm(r) is canonically isomorphic as filtered algebra to

PX/Sm(1)⊗OX
PX/Sm(r). The assertion then follows from the functoriality

of our construction. The second assertion is local in nature and follows

directly from the local description of our filtrations in Remark 2.5.3.

Proposition 2.9. The Hodge filtration on LX(Ω•
X/Sm) is transversal

to I
{•}
X/Sm(1).

Proof. The morphism of filtered rings (PX/Sm(1),I
{•}
X/Sm(1))→ (OX , 0)

obviously satisfies the assumptions of Proposition 1.1.8 of [9]. Since any

filtration is transversal to the 0-ideal, we see that the inverse image of the

Hodge filtration is almost transversal and it follows that its saturation is

transversal. Our assertion now results from Lemma 2.8.

The following is a generalization of Theorem 3.3 of [10].

Proposition 2.10. If OX is endowed with the trivial filtration and

LX(Ω•
X/Sm) with the Hodge filtration, the canonical map

OX −→ LX(Ω•
X/Sm)

is a true filtered quasi-isomorphism. More precisely, locally on X, it is a

filtered homotopy equivalence.

Proof. The proof works exactly as in Theorem 3.3 of [10] once one

notices that the homotopy of 2.1 in [10] is a filtered homotopy.

§3. The filtered Poincaré lemma

We will explain here how the results of [10], Section 4 extend to the

case of transversal m-crystals.

Let (S, a, b) be a m-PD-scheme with p locally nilpotent and p ∈ a.

Let X be an S-scheme to which the m-PD-structure of S extends. We

will consider the crystalline site of level m of X/S that was introduced in

Section 4.1 of [9] and the corresponding topos (X/S)
(m)
cris .

Unless otherwise specified, we will assume in this section that X is

smooth over S.
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Notations 3.1. If Y is any object in a topos T , we will denote by T|Y
the localized category and by jY : T|Y → T the restriction map.

In particular, we will consider here the localization (X/S)
(m)
cris |X at the

trivial immersion of X in itself and the restriction morphism

jX : (X/S)
(m)
cris |X −→ (X/S)

(m)
cris .

By definition, we have (jX∗F)(U,T ) = F(U,T×U) and we see in this case that

jX∗ is exact.

We will also consider the projection

uX : (X/S)
(m)
cris −→ XZar

on the Zariski site, given by Γ(U, uX∗F) = Γ((U/S)
(m)
cris ,F). Note that

this is not a morphism of ringed topoi because there is no natural map

OX → uX∗O
(m)
X/S . However, the composite

u|X := uX ◦ jX : (X/S)
(m)
cris |X −→ XZar

is in a natural way a morphism of ringed topoi because it is nothing but

the realization morphism: u|X∗F = FX . We also see that u|X∗ is an exact

functor.

Details can be found in Chapter 5 of [4] for the m = 0 case. The

generalization is straightforward.

Proposition 3.2. With the above notations,

1. The ideal K
(m)
X/S := jX∗j

−1
X I

(m)
X/S of jX∗j

−1
X O

(m)
X/S is an m-PD-ideal.

2. There is a canonical exact sequence

0 −→ K
(m)
X/S −→ jX∗j

−1
X O

(m)
X/S −→ u−1

X OX −→ 0.

3. For all k ∈ Z, we have K
(m)
X/S

{k}
= jX∗j

−1
X (I

(m)
X/S

{k}
).

Proof. One easily checks that, if F is any OX-module, the adjunction

map

jX∗j
−1
X u−1

X F −→ u−1
X F
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is an isomorphism. In particular, if we apply the exact functor jX∗j
−1
X to

the exact sequence

0 −→ I
(m)
X/S −→ O

(m)
X/S −→ u−1

X OX −→ 0,

we get the expected exact sequence

0 −→ jX∗j
−1
X I

(m)
X/S −→ jX∗j

−1
X O

(m)
X/S −→ u−1

X OX −→ 0.

Thus, we see that if U ⊂ X is any open subset and U →֒ Y an m-PD-

thickening, we have the following exact sequence

0 −→ (K
(m)
X/S)Y −→ OP −→ OU −→ 0

where P := PUm(Y ×S X). Hence, we see that (K
(m)
X/S)Y is the m-PD-ideal

IP of P . It follows that K
(m)
X/S is an m-PD-ideal and that for all k ∈ Z,

(K
(m)
X/S

{k}
)Y = I

{k}
P = (I

(m)
X/S

{k}
)Y .

Definition 3.3. If F is a filtered OX -module, its linearization (of

level m) is L(m)(F) := jX∗u
∗
|XF endowed with the saturation of the filtra-

tion L(m)(FilkF) with respect to the m-PD-ideal K
(m)
X/S

{•}
of L(m)(OX) :=

jX∗j
−1
X O

(m)
X/S .

Lemma 3.4. If F is a filtered OX -module, we have a canonical isomor-

phism of filtered modules

L(m)(F)X = PX/Sm(1) ⊗OX
F .

Proof. Thanks to Proposition 4.3 (1) of [10], only the assertion con-

cerning the filtration has to be checked. Since saturation is just tensor

product with the ideal filtration, it is sufficient to note that, as in the proof

of Lemma 3.2, (K
(m)
X/S)X = IX/Sm(1).

We recall that L(m)(Ω•
X/Sm) has a natural structure of complex of crys-

tals whose realization on X is nothing but the linearized de Rham complex

LX(Ω•
X/Sm). Thanks to the lemma, this is compatible with the filtrations.

We can now state the formal Poincaré lemma in its crystalline form.
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Theorem 3.5. If E is a filtered O
(m)
X/S-module which is saturated with

respect to I
(m)
X/S

{•}
, then the morphism

E −→ E ⊗
O

(m)
X/S

L(m)(Ω•
X/Sm)

is a true filtered quasi-isomorphism. More precisely, locally on Cris(m)(X/S),

it is a filtered homotopy equivalence.

Proof. Since the question is local, we may assume, thanks to Proposi-

tion 2.10, that the canonical map OX → LX(Ω•
X/Sm) is a filtered homotopy

equivalence.

Let’s start with the case E = O
(m)
X/S . We have to check that, for any

any m-PD-thickening U →֒ T , the morphism

OT −→ L(m)(Ω•
X/Sm)T

is locally on T a filtered homotopy equivalence. Thus, we may assume that

U →֒ T has a retraction. Since the pull-back of a filtered homotopy is still

a filtered homotopy, we obtain a filtered homotopy equivalence on T from

the one on X using this retraction.

In general, tensoring with E gives a morphism

E ⊗
O

(m)
X/S

O
(m)
X/S −→ E ⊗

O
(m)
X/S

L(m)(Ω•
X/Sm)

which is locally a filtered homotopy equivalence. Since the filtration on E

is saturated, the canonical identification

E ⊗
O

(m)
X/S

O
(m)
X/S = E

is compatible with the filtrations. The proof is therefore complete.

The definition of a transversal m-crystal is given in [9], Section 4.

Roughly speaking, it is a crystal of transversal modules, but the reader

should consider looking at the above reference if he really wants a precise

definition as well as a description of its relation with Griffiths transversality.

Proposition 3.6. Let E be a transversal m-crystal on X/S. If F is

any filtered OX -module, there is a canonical isomorphism of filtered modules

E ⊗ L(m)(F) ≃ L(m)(EX ⊗F).
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Proof. We already have an isomorphism of crystals thanks to Propo-

sition 4.3 (3) of [10]. More precisely, if If U ⊂ X is any open subset and

U →֒ Y an m-PD-thickening, we have an isomorphism

EY ⊗OP ⊗F ≃ EP ⊗F ≃ OP ⊗ EY ⊗F ,

where P := PUm(Y ×S X) as in the proof of Proposition 3.2, and we need

to show that it is compatible with filtrations. But this follows from the

definition in [9], 4.2.2 of a transversal m-crystal.

Corollary 3.7. If E is a transversal m-crystal on X/S, there is a

canonical true filtered quasi-isomorphism

E −→ L(m)(EX ⊗OX
Ω•

X/Sm).

More precisely, locally on Cris(m)(X/S), it is a filtered homotopy equiva-

lence.

In order to obtain the filtered Poincaré lemma at the cohomological

level, we need the following:

Proposition 3.8. If F is a filtered OX -module, we have a canonical

isomorphism in the filtered derived category RuX∗L
(m)(F) = F .

Proof. We must show that, for all k ∈ Z, we have RiuX∗ Filk L(m)(F) =

0 for i > 0 and uX∗ Filk L(m)(F) = Filk F .

By definition, the filtration of L(m)(F) is the saturation of the filtration

L(m)(FilkF) with respect to the m-PD-ideal K
(m)
X/S

{•}
:

Filk L(m)(F) =
∑

i+j=k, i≥0

K
(m)
X/S

{i}
L(m)(FiljF).

Using Proposition 3.2.3, we obtain

Filk L(m)(F) =
∑

i+j=k, i≥0

(jX∗j
−1
X I

(m)
X/S

{i}
)(jX∗u

∗
|X(Filj F)).

Since jX∗ is exact, it follows that Filk L(m)(F) = jX∗Ek with

Ek :=
∑

i+j=k, i≥0

j−1
X I

(m)
X/S

{i}
u∗
|X(Filj F).
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Regarding the higher direct images, it is sufficient to recall that, since jX∗

and u|X∗ are exact, we have

RiuX∗ Filk L(m)(F) = RiuX∗jX∗Ek = Riu|X∗Ek = 0

for i > 0.

Now, we know from Proposition 4.3 (2) of [10] that, for any OX -module

F , we have uX∗L
(m)(F) = F . Also, u−1

X being fully faithful, uX∗u
−1
X F =

F . Since uX∗ is left exact and K
(m)
X/S is the kernel of the natural map

L(m)(OX)→ u−1
X OX , we see that uX∗K

(m)
X/S = 0. It follows that uX∗ ignores

saturation with respect to K
(m)
X/S and so,

uX∗ Filk L(m)(F) = uX∗L
(m)(Filk F) = Filk F

as asserted.

Theorem 3.9. If E is a transversal m-crystal on X/S, there is a

canonical isomorphism in the filtered derived category

RuX∗E ≃ EX ⊗ Ω•
X/Sm.

Proof. Using Proposition 3.8, this is an direct consequence of 3.7.

Corollary 3.10. Even if we no longer assume X smooth, but if i :

X →֒ Y is an embedding into a smooth S-scheme and if E is a transversal

m-crystal on X, then there is a canonical isomorphism in the filtered derived

category

i∗RuX∗E ≃ (icris ∗E)Y ⊗ Ω•
Y/Sm.

Proof. Works exactly as at the end of Section 4 in [10].

Corollary 3.11. In the situation of the previous corollary, there is a

canonical filtered isomorphism

RΓ((X/S)
(m)
cris , E) ≃ RΓ(Y, (icris,m∗E)Y ⊗Ω•

Y/Sm)).

Therefore, for all i, we have

H i
cris,m(X,Filk E) = H i(Filk((icris,m∗E)Y ⊗ Ω•

Y/Sm)).
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§4. Differentials of higher level on a group scheme

In this section, which is independent of the previous one, we define

the conormal complex of level m of a group scheme and study invariant

differential forms of higher level.

Definition 4.1. The simplicial object Ggr(•) associated to a group G

in a category with products has components Ggr(r) := Gr, differentials

di : Gr+1 → Gr defined by

d0(g1, . . . , gr+1) = (g2, . . . , gr+1)

...

di(g1, . . . , gr+1) = (g1, . . . , gi−1, gigi+1, gi+2, . . . , gr+1)

...

dr+1(g1, . . . , gr+1) = (g1, . . . , gr)

and degeneracy arrows si : Gr−1 → Gr defined by

si(g1, . . . , gr−1) = (g1, . . . , gi, 1, gi+1, . . . , gr−1).

Lemma 4.2. If G is a group in a category with products, the maps

Gr+1 −→ Gr : (g1, . . . , gr+1) 7−→ (g−1
1 g2, g

−1
2 g3, . . . , g

−1
r gr+1)

define a morphism of simplicial objects ν(•) : Gprod(•)→ Ggr(•).

Proof. This is easily checked.

Let G be a group scheme over a scheme S, pG : G → S its structural

morphism, 1G : S →֒ G its unit section and

µ, p1, p2 : G×S G −→ G

the group law and the projections.

Definition 4.3. The conormal complex of level m of G is the

Berthelot-Lieberman filtered complex ω•
Gm associated to the unit embed-

ding of S into Ggr(•).

It will be convenient to write P1m(•) for the m-PD-envelope of the unit

section in Ggr(•) and modify the other notations accordingly.



THE FILTERED POINCARÉ LEMMA IN HIGHER LEVEL 95

Remark 4.4. As in the case of the de Rham complex, for which the

results are recalled in Remark 2.5, we have a very simple local description of

the situation in the case of a smooth group scheme. If s1, . . . , sn is a regular

sequence of local parameters for the unit section, then P1m(r) is a free

module on generators s{J1}⊗· · ·⊗s{Jr} with |Ji| ≥ 0 and I
{k}
1m (r) is generated

by the s{J1} ⊗ · · · ⊗ s{Jr} with |J1|+ · · · + |Jr| ≥ k. Thus, if s̄i denotes the

image of si in ω1
Gm, we see that ω1

Gm is a free module on generators s̄J with

0 < |J | ≤ pm and that, for bigger r, ωr
Gm is generated by the s̄J1 ⊗ · · · ⊗ s̄Jr

with 0 < |Ji| ≤ pm, subject to some relations. Of course, the k-th step of the

Hodge filtration Filk ωr
Gm has the same generators subject to the additional

condition that |J1|+ · · ·+ |Jr| ≥ k. In particular, Filr ωr
Gm = ωr

Gm.

Proposition 4.5. The morphism ν(•) of Lemma 4.2 induces mor-

phisms of filtered complexes

ν(•) : P1m(•) −→ pG∗PGm(•)

and

ν• : ω•
Gm −→ pG∗Ω

•
Gm.

Proof. This follows from the functoriality of the construction of the

Berthelot-Lieberman complex.

Remark 4.6. Of course, we also have for each r morphisms of filtered

modules

ν(r) : p∗GP1m(r) −→ PGm(r)

and

νr : p∗Gωr
Gm −→ Ωr

Gm.

There are also morphisms of filtered complexes

P1m(•) = 1∗Gp∗GP1m(•) −→ 1∗Gp∗GpG∗PGm(•) −→ 1∗GPGm(•)

and in particular

ω•
Gm −→ 1∗GΩ•

Gm.

Without assuming that G is smooth, we cannot really say more.

If g ∈ G(S), we denote by Tg : G → G the left translation map given

by h 7→ gh.
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Definition 4.7. A section ξ of PGm(r), or Pk
Gm(r), is invariant by

translation by g ∈ G(S) if T ∗
g (ξ) = ξ. Moreover, ξ is invariant by translation

if it is invariant by translation by any section of GS′ for any extension S′ → S

of the basis.

We indicate with a superscript •inv the subsheaf of translation invariant

sections.

Proposition 4.8.

1. If G is smooth, then for all r, ν(r) is a canonical isomorphism of

filtered modules

p∗GP1m(r) ≃ PGm(r)

and it follows that

p∗Gωr
Gm ≃ Ωr

Gm.

2. The morphism ν(•) gives also isomorphisms of filtered complexes

P1m(•) ≃ 1∗GPGm(•) ≃ Pinv
Gm(•)

and

ω•
Gm ≃ 1∗GΩ•

Gm ≃ Ω•inv
Gm .

Proof. Note first that the diagram

G ←−−−
−֒−−→ Gr+1

pG





y





y

ν(r)

S ←−−−
−֒−−→ Gr,

where the top (resp. bottom) arrows are the first projection (resp. structural

map pG) and the diagonal embedding (resp. unit section 1G), is cartesian

both ways. Since G is smooth, it follows from the second assertion of Propo-

sition 2.1 that, for all r, ν(r) induces an isomorphism of filtered modules

p∗GP1m(r) ≃ PGm(r).

Since the Berthelot-Lieberman complex is obtained as a quotient of the

Fil1 by the differential ideal generated by the Filp
m+1, we obtain also an

isomorphism

p∗Gωr
Gm ≃ Ωr

Gm

for each r.
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It follows from the first part that the morphism of filtered complexes

P1m(•) −→ 1∗GPGm(•)

of Remark 4.6 is an isomorphism. We also have injective maps

P1m(r) −֒→ pG∗PGm(r).

Moreover, since for g ∈ G(S) we have

ν(r) ◦ (Tg × · · · × Tg) = ν(r) : Gr+1 −→ Gr,

we see that the image of P1m(•) in pG∗PGm(•) is contained in Pinv
Gm(•). We

want to show that the map

P1m(•) −֒→ Pinv
Gm(•)

is bijective. Since

pG∗PGm(r) ≃ pG∗OG ⊗OS
P1m(r)

and G is flat, we are reduced to showing that the canonical map OS → O
inv
G

is bijective. If we consider translation by the the identity

G×G −→ G×G, (g, h) 7−→ (g, gh),

we see that, if f is a section of Oinv
G , then µ∗(f) = p∗1(f). Pulling back by

(1G × IdG)∗, we get f = p∗G1∗G(f) which is what we want.

Proposition 4.9. If G is a smooth abelian group scheme and if we let

δ := p∗2 − µ∗ + p∗1 : pG∗PGm(1) −→ pG2∗PG2m(1),

then the morphism ν(1) induces an isomorphism of filtered modules

pG∗IGm(1) ∩ ker δ = I inv
Gm(1) ∩ ker d

and therefore also

pG∗Ω
1
Gm ∩ ker δ = Ω1inv

Gm ∩ ker d.
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Proof. If g ∈ G(S) and ig : G→ G ×G, h 7→ (g, h), we have p2 ◦ ig =

IdG, µ ◦ ig = Tg and p1 ◦ ig = g ◦ pG. It follows that

i∗g ◦ δ = (Id−T ∗
g ) + p∗G ◦ g∗.

If ξ ∈ pG∗IGm(1) then, trivially, g∗(ξ) = 0 and it follows that i∗g(δ(ξ)) =

ξ − T ∗
g (ξ). Thus, any ξ ∈ pG∗IGm(1) ∩ ker δ is g-invariant. This is true for

any g and after any base change. It follows that

pG∗IGm(1) ∩ ker δ ⊂ I inv
Gm(1).

Since G is a commutative group scheme, the diagrams

G
f

←−−−− G2

νG(1)

x





x





νG2 (1)

G2 f×f
←−−−− G4

are all commutative for f = p1, f = p2 and f = µ. Observe that P1G2m(1) =

P1m(2). By functoriality, the diagram

P1m(1)
d

−−−−→ P1m(2)

νG(1)





y





y

νG2(1)

pG∗PGm(1)
δ

−−−−→ pG2∗PG2m(1)

is also commutative.

Since we assumed that G is smooth, the vertical arrows induce filtered

isomorphisms with the invariant part in the bottom and we obtain

P1m(1)
d

−−−−→ P1m(2)
∥

∥

∥

∥

∥

∥

Pinv
Gm(1)

δ
−−−−→ Pinv

G2m(1)

from which it follows that d = δ on P inv
Gm(1) and the result follows.

Notations 4.10. The sheaf

pG∗Ω
1
Gm ∩ ker δ = Ω1inv

Gm ∩ ker d ≃ ω1
Gm ∩ ker d

of closed invariant forms will be generally written ωGm,0. Notice that, since

the first differential of the complex ω•
Gm is just the zero map, we also have

ωGm,0 ≃ H
1(ω•

Gm).
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When m = 0, in which case we drop m from the notations, the situa-

tion is a lot simpler since invariant forms are automatically closed, and in

particular, the kernel of δ is exactly the sheaf of invariant differential forms.

In general, the group inclusions i1, i2 : G → G × G induce morphisms

i∗k : ω1
G2m → ω1

Gm and the composite maps

ω1
Gm

δ
−→ ω1

G2m

i∗k−→ ω1
Gm

are zero. When m = 0, ω1
G is nothing but the conormal sheaf to the unit

section and we have an isomorphism (i∗1, i
∗
2) : ω1

G2 ≃ ω1
G ⊕ ω1

G. It follows

that δ = 0 on ω1
G. The first example below already shows that this is not

necessarily the case when m > 0.

Examples 4.11.

1. If G = GaS with parameter t, then ω1
Gm is the free OS-module on

t̄, t̄2, . . . , t̄p
m

. The group law is given by t 7→ t⊗1+1⊗ t and it follows

that

δ(tk) = tk ⊗ 1− (t⊗ 1 + 1⊗ t)k + 1⊗ tk = −

k−1
∑

i=1

(

k

i

)

ti ⊗ tk−i.

In particular, we have δ(t) = 0 and therefore, we always have t̄ ∈

ωGm,0.

But we also see that, if char S = p (where we mean pOS = 0), then

t̄p
j
∈ ωGm,0 for all j. Actually, in this case, ωGm,0 is free on the

generators t̄, t̄p, . . . t̄p
m

. In particular, we see that the filtration on

ωGm,0 can have length exactly pm − 1. We also see that when p 6= 2,

then t̄2 is not closed.

In the case S = SpecZ/4 (so that p = 2) and m = 1, we see that

δ(t̄2) = −2t̄ ⊗ t̄ 6= 0 but that 2t̄2 ∈ ωG1,0. Thus, ωGm,0 is not always

locally free.

The opposite map in Ga is given by t 7→ −t and the difference is

therefore given by t 7→ −t ⊗ 1 + 1 ⊗ t. It follows that the canonical

inclusion ω1
Gm →֒ p∗Ω

1
Gm sends t̄ to dt and therefore, dt is a closed

invariant differential of level m on GaS . On the other hand, for m > 0,

(dt)2 is an invariant differential form which is not closed in general.
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2. If G = GmS with parameter t, then ω1
Gm is the free module on

s̄, s̄2, . . . , s̄pm
with s = t− 1. Let us consider log tp

m
:= log(1 + s)p

m
∈

P̂1m(1). Using the fact that the group law is given by t 7→ t ⊗ t, it

is not difficult to check that δ(log tp
m

) = 0. Actually, this is a purely

formal calculation that can be done over C where this is well known.

It follows that
pm
∑

i=1

(−1)i
pm

i
s̄i ∈ ωGm,0.

Note that, unlike the case m = 0, Fil2 ωGm,0 6= 0 in general. For

example, if p = 2, m = 1 and S = SpecZ/4, then we have 2s̄−s̄2 ∈ Fil1

and 2s̄2 ∈ Fil2.

Since the inverse on Gm is given by t 7→ t−1, the difference is given by

t 7→ t−1⊗ t. Thus we see that t− 1 is sent to t−1⊗ t− 1⊗ 1 = t−1(1⊗

t − t ⊗ 1) and it follows that the canonical inclusion ω1
Gm →֒ p∗Ω

1
Gm

sends s̄ to dt/t. Finally, we get that

pm
∑

i=1

(−1)i
pm

i

(dt

t

)i

is a closed invariant differential of level m on GmS .

3. We assume now p 6= 2 and consider the Legendre elliptic curve E given

by the equation

y2 = x(x− 1)(x− λ)

over A1
S\{0, 1}. Since we are interested in the behavior at O which

is the point at infinity, we make the usual change of coordinates z =

−x/y, w = −1/y and the equation becomes

w = z(z − w)(z − λw).

Thus, P1m(1) is the m-th divided power envelope of OA1
S\{0,1}[z] with

respect to z and ω1
Em is the free module on z̄, . . . , z̄pm

. A quick calcu-

lation as explained in Chapter 4 of [12], for example, shows that the

group law is given by

z 7−→ 1⊗ z + z ⊗ 1 + (λ + 1)(z ⊗ z2 + z2 ⊗ z) + · · · .

Assume now that p = 3 and m = 1. Then, ω1
E1 is the free OS-module

on z̄, z̄2, z̄3 and ω2
E1 is generated by the z̄i⊗ z̄j for 1 ≤ i, j ≤ 3 subject
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to the relations

z̄3 ⊗ z̄3 = 0,

z̄2 ⊗ z̄3 + z̄3 ⊗ z̄2 = 0,

2z̄ ⊗ z̄3 + 3z̄2 ⊗ z̄2 + 2z̄3 ⊗ z̄ = 0.

Taking into account the symmetry of the series above due to the com-

mutativity of the group law, one sees that higher powers don’t play

any role and that

δ(z̄) = −(λ + 1)(z̄ ⊗ z̄2 + z̄2 ⊗ z̄),

δ(z̄2) = −2z̄ ⊗ z̄ − (λ + 1)(z̄2 ⊗ z̄2),

δ(z̄3) = −3(z̄ ⊗ z̄2 + z̄2 ⊗ z̄).

It turns out that −3z̄ + (1 + λ)z̄3 is in ωE1,0.

Assume moreover that char S = 3. Then we get (1 + λ)z̄3 which is in

Fil3. It follows from the formulas that ωE1,0 is actually free of rank

1 with generator z̄3 outside λ = −1. However, at the fiber λ = −1,

both z̄ and z̄3 are in ωE1,0. In other words, the supersingular fiber

is characterized by the fact that ωE1,0 is of rank 2 in contrast with

the general case where it has rank 1. This is a phenomenon that is

specific to higher level because in the classical situation, ωE0,0 = ωE

is globally free of rank 1. Note however that in the case m = 1 and

p = 3, then Filp
m

ωEm,0 is also globally free of rank 1.

The next question would be to describe the canonical inclusion ω1
Em →֒

p∗Ω
1
Em. Since taking opposite on E is given by horizontal symmetry,

it sends z to −z, and it follows that the difference in E is given by

z 7−→ 1⊗ z − z ⊗ 1 + (λ + 1)(−z ⊗ z2 + z2 ⊗ z) + · · · .

When m = 0, one can check that z̄ is sent to dx/2y but we have been

too lazy to do the computations in other cases.

Proposition 4.12. If A is an abelian scheme over S, the E2-term of

the Hodge to de Rham spectral sequence of level m of A/S is

Eij
2 = RjpA∗OA ⊗OS

Hi(ω•
Am).
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Proof. Consider the Hodge to de Rham spectral sequence of level m:

Eij
1 = RjpA∗Ω

i
Am ⇒H

n
dRm(A/S).

We know that, for all i, Ωi
Am = p∗Aωi

Am. Since the sheaves ωi
Am are locally

free, the projection formula tells us that

RjpA∗Ω
i
Am = RjpA∗OA ⊗OS

ωi
Am

and we get the spectral sequence

Eij
2 = RjpA∗OA ⊗OS

Hi(ω•
Am)⇒ Hn

dRm(A/S).

Corollary 4.13. The sequence

0 −→ ωAm,0 −→ H
1
dRm(A/S) −→ R1pA∗OA

is (left) exact.

Proof. Just note that ωAm,0 = H1(ω•
Am).

Remark 4.14. When S is smooth, using some results from [13], we can

show that we actually get a short exact sequence. We hope to be able to

prove this in general in a forthcoming article.

§5. Crystalline extension groups

In this section, we generalize to higher level the first results of the second

chapter of [3]. The point is to describe the “mod p filtration on crystalline

Dieudonné modules of level m” (Proposition 5.14). The situation is way

more complicated than in the classical m = 0 case because the filtration has

more than one step and not all invariant forms are closed.

Definitions 5.1. A category I is said very small if Ob(I) is countable

and for each α, β ∈ Ob(I), Hom(α, β) is finite. A decoration on a very small

category I is a pair comprising a degree map d : Ob(I)→ Z with finite fibers

and a sign map ǫ : Arr(I)→ {±}.

Notations 5.2. If Y is any object in a topos T , we will denote by

Z(Y ) the free abelian group on Y in T .
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Let (I, d, ǫ) be a decorated category and Y• := (Yα, fλ) a diagram in-

dexed by I in T . We set

Cn(Y•) :=
⊕

d(α)=n

Z(Yα)

and let δn : Cn → Cn−1 be given by

∑

λ:α→β

ǫ(λ)fλ : Z(Yα) −→ Z(Yβ)

whenever deg(α) = n and deg(β) = n− 1.

Definition 5.3. A diagram Y• indexed by a decorated category

(I, d, ǫ) is nice if C(Y•) is a complex.

Remark 5.4. P. Deligne has shown that any abelian group G in a topos

T has a canonical left resolution C•(G) that fits in the above setting. More

precisely, there exists a decorated category I and a nice diagram ∆(G)• :=

(Gnα , fλ) indexed by I in the subcategory of T generated by the powers of

G, the projections and the group law such that C•(G) = C•(∆(G)•).

To the best of our knowledge, this result of Deligne is unpublished,

and we can offer no better reference than what is said in the remark at

the end of 2.1.5 of [3]. We have taken the option of using this Deligne

construction because we think it is the most elegant and natural way to

state Theorem 5.12. For readers who fill uncomfortable using unpublished

results, we should mention that our main application (Proposition 5.14) can

be deduced from a weaker version of the theorem (Remark 5.13.1) that relies

only on a truncated resolution as in [3], Chapter 2, Section 1. The point

is that Proposition 5.14 involves only the first three terms of the Deligne

resolution that we now describe.

The diagram has only one object G in degree 0. In degree 1, there is

also a unique object G2 and the morphisms G2 → G are

G2 −→ G sign
(g1, g2) 7−→ g1 −
(g1, g2) 7−→ g1 + g2 +
(g1, g2) 7−→ g2 −
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In degree 2, there are two objects, namely G2 and G3. The morphisms

from degree 2 to degree 1 are given by

G2 −→ G2 sign
(g1, g2) −→ (g1, g2) +
(g1, g2) −→ (g2, g1) −

and by
G3 −→ G2 sign

(g1, g2, g3) 7−→ (g2, g3) −
(g1, g2, g3) 7−→ (g1 + g2, g3) +
(g1, g2, g3) 7−→ (g1, g2 + g3) −
(g1, g2, g3) 7−→ (g1, g2) +

Thus we get

Z(G3) ⊕ Z(G2) −→ Z(G2) −→ Z(G)

and the maps are given by

[g1, g2] 7−→ −[g1] + [g1 + g2]− [g2]

from degree 1 to degree 0 and

[g1, g2] 7−→ [g1, g2]− [g2, g1]
[g1, g2, g3] 7−→ −[g2, g3] + [g1 + g2, g3]− [g1, g2 + g3] + [g1, g2]

from degree 2 to degree 1.

Lemma 5.5. Let Y• be a nice diagram indexed by a decorated category

(I, d, ǫ) in some topos T and E an abelian sheaf in T . Then, there is a

spectral sequence

Er,s
1 =

⊕

d(α)=r

RsjYα∗j
−1
Yα

E ⇒ Extr+s(C(Y•), E).

Proof. If Y is any object of T , we have

HomGr(Z
(Y ), E) = Hom(Y,E) = jY ∗j

−1
Y E.

It follows that the complex HomGr(C•(Y•), E) is canonically isomorphic

to a complex whose terms are all of the form
⊕

deg α=n jYα∗j
−1
Yα

E. Since

pulling back by localization is exact and preserves injective sheaves, we get

the spectral sequence by applying this remark to an injective resolution of

E.
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Let (S, a, b) be an m-PD-scheme with p locally nilpotent and p ∈ a.

Let X be an S-scheme to which the m-PD-structure of S extends.

We denote by Sch′
/X the category of X-schemes to which the m-PD-

structure of S extends. The Zariski topology on this category is coarser

than the canonical topology and we obtain an embedding of Sch′
/X into

the corresponding topos XZAR′ . We will now use the big crystalline topos

of level m, (X/S)
(m)
CRIS that was introduced in [7] (but considering only

schemes to which the m-PD structure extends). Composing the embedding

Sch′
/X →֒ XZAR′ with the canonical map

vX/S∗ : XZAR′ −→ (X/S)
(m)
CRIS

from Section 1.10 of [7] gives a functor

Sch′
/X −→ (X/S)

(m)
CRIS

Y 7−→ Y

Remark 5.6. Note that if Y ∈ Sch′
/X with structural morphism fY :

Y → X then the canonical morphism

fY/X : (Y/S)
(m)
CRIS −→ (X/S)

(m)
CRIS

factors as an isomorphism (Y/S)
(m)
CRIS ≃ (X/S)

(m)
CRIS |Y followed by the local-

ization map

jY : (X/S)
(m)
CRIS |Y −→ (X/S)

(m)
CRIS.

Proposition 5.7. Let Y• be a nice diagram in Sch′
/X indexed by a

decorated category (I, d, ǫ). If E is an abelian sheaf on CRIS(m)(X/S), there

is a spectral sequence

Er,s
1 =

⊕

d(α)=r

RsfYα/X∗f
−1
Yα/XE ⇒ Extr+s(C(Y •), E).

Proof. Taking into account the previous remark, this immediately fol-

lows from Lemma 5.5.

Remarks 5.8. Just as in Chapter III, Section 4 of [1], if Y ∈ Sch′
X ,

there is a morphism of topoi

(Y/S)
(m)
cris −→ (X/S)

(m)
CRIS
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whose inverse image functor E 7→ EY might be called restriction. For

any sheaf E on CRIS(m)(X/S) and any morphism g : Y ′ → Y , there is

a canonical transition map g−1EY → EY ′ and these data uniquely deter-

mine E. An m-crystal on the big site can be defined as an O
(m)
X/S -module

E such that all EY are m-crystals and the transition maps induce isomor-

phisms g∗EY ≃ EY ′ . In particular, the functor E 7→ EX is an equiva-

lence of categories between m-crystals on CRIS(m)(X/S) and m-crystals

on Cris(m)(X/S). Finally, note that any filtered (resp. transversal) O
(m)
X/S -

module (E,Fil•) on CRIS(m)(X/S) restricts for each Y to a filtered (resp.

transversal) O
(m)
Y/S-module (EY ,Fil• EY ) on Cris(m)(Y/S).

For future reference, note also that, as for level 0, in which case this is

proved in 1.1.16.4 of [3], we have for any abelian sheaf on CRIS(m)(Y/S),

(RfY/X∗E)(U,T ) = RfU×XY/T∗EU×XY .

Definition 5.9. A big transversal m-crystal on X/S is a crystal E on

CRIS(m)(X/S), endowed with a filtration Fil• such that for each Y ∈ Sch′
/X ,

the filtered m-crystal (EY ,Fil• EY ) is a transversal m-crystal.

Lemma 5.10. Let Y ∈ Sch′
/X and (U →֒ T ) ∈ CRIS(m)(X/S). Let

i : U ×X Y →֒ Z be a closed immersion into a smooth Z in Sch′
/T . If E is

a big transversal m-crystal on X/S, we have a canonical isomorphism

(RsfY/X∗f
−1
Y/X Filk E)(U,T ) = RsfZ∗ Filk[(icris ∗EU×XY )Z ⊗ Ω•

Z/Tm].

Proof. First of all, Corollary 3.10 tells us that

Filk i∗RuY ∗EU×XY ≃ Filk[(icris ∗EU×XY )Z ⊗ Ω•
Z/Tm].

Actually, since we work with filtered derived categories and i∗ is exact, we

have

Filk i∗RuY ∗EU×XY = i∗RuY ∗ Filk EU×XY

and therefore

i∗RuY ∗ Filk EU×XY ≃ Filk[(icris ∗EU×XY )Z ⊗ Ω•
Z/Tm].

Since i∗ is exact, applying RfZ∗ gives

RfU×XY/T∗ Filk EU×XY ≃ RfZ∗ Filk[(icris ∗EU×XY )Z ⊗ Ω•
Z/Tm]
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and, taking cohomology, we obtain

RsfU×XY/T∗ Filk EU×XY ≃ RsfZ∗ Filk[(icris ∗EU×XY )Z ⊗ Ω•
Z/Tm].

Finally, Remark 5.8 tells us that

(RsfY/X∗f
−1
Y/X Filk E)(U,T ) = RsfU×XY/T∗ Filk EU×XY .

Proposition 5.11. Let Y• be a nice diagram in Sch′
/X and (U →֒ T ) ∈

CRIS(m)(X/S). Let Z• be a nice diagram in Sch′
/T with all Zα smooth and

i• : U ×X Y• →֒ Z• a compatible family of closed immersions. If E is a big

transversal m-crystal on X/S, we have a canonical spectral sequence

Er,s
1 =

⊕

d(α)=r

RsfZα∗ Filk[(iα cris ∗EU×XYα)Zα ⊗ Ω•
Zα/Tm]

⇒ Ext r+s(C(Y •),Filk E)(U,T ).

Proof. Since taking value on some object (U, T ) is an exact functor,

we know from Proposition 5.7 that there is a spectral sequence

Er,s
1 =

⊕

d(α)=r

(RsfYα/X∗f
−1
Yα/X Filk E)(U,T ) ⇒ Ext

r+s(C(Y •),Filk E)(U,T ).

It is therefore sufficient to prove that for each α, we have

(RsfYα/X∗f
−1
Yα/X Filk E)(U,T ) = RsfZα∗ Filk[(iα cris ∗EU×XYα)Zα ⊗ Ω•

Zα/Tm]

and this follows from the lemma.

Applying this to the nice diagram ∆(G)• of Remark 5.4, that gives rise

to Deligne resolution, we immediately get

Theorem 5.12. Let G be an abelian group scheme in Sch′
/X and (U →֒

T ) ∈ CRIS(m)(X/S). Let H be a smooth abelian group scheme on T and

i : GU →֒ HU an immersion of groups. If E is a big transversal m-crystal

on X/S, we have a canonical spectral sequence

Er,s
1 =

⊕

d(α)=r

RsfHnα∗ Filk[(iα cris ∗EGnα
U

)Hnα ⊗ Ω•
Hnα/Tm]

⇒ Extr+s(G,Filk E)(U,T ).
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Remarks 5.13.

1. If we use the truncated complex, we obtain a spectral sequence

Er,s
1 =

⊕

d(α)=r

RsfHnα∗ Filk[(iα cris ∗EGnα
U

)Hnα ⊗ Ω•
Hnα/Tm]⇒Hr+s

with

Hi = Ext i(G,Filk E)(U,T ) for i ≤ 1.

2. If E is any m-crystal on X/S, then the trivial transversal filtration

I
{k}
X/SE turns it into a big transversal m-crystal and both Proposi-

tion 5.11 and Theorem 5.12 apply. Also, the theorem is still valid if

we replace G with a complex of abelian groups.

3. When H is affine, if we denote by [K••]sing the simple complex as-

sociated to a bicomplex K••, we have, as in Theorem 2.1.8 of [3], an

isomorphism in the derived category

Filk[
⊕

d(α)=•

fHnα∗[(iα cris ∗EGnα
U

)Hnα ⊗ Ω•
Hnα/Tm]sing]

≃ RHom(G,Filk E)(U,T ).

The proof goes exactly as in [3].

Proposition 5.14. Let G be a smooth abelian group scheme in Sch′
/X

and U ∈ Sch′
/X . If k > 0, we have

Hom(G,I
{k}
X/S)(U,U) = 0

Ext1(G,I
{k}
X/S)(U,U) = Filk ωGUm,0

where ωGUm,0 denotes, as in 4.10, the sheaf of closed invariant forms of level

m on GU . In particular,

Ext1(G,IX/S)(U,U) = ωGUm,0.

Proof. We consider the spectral sequence of Theorem 5.12 (see also

Remark 5.13.1)

Er,s
1 =

⊕

d(α)=r

RsfGnα
U ∗ Filk Ω•

Gnα
U /Um ⇒ Ext

p+q(G,I
{k}
X/S)(U,U).
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Note first that Er,s
1 = 0 for r < 0 or s < 0. Actually, since k > 0, we have

FilkOGnα
U

= 0 and it follows that Er,s
1 = 0 for s = 0 also. Therefore

Hom(G,I
{k}
X/S)(U,U) = 0

and

Ext1(G,I
{k}
X/S)(U,U) = E0,1

2 = ker d0,1
1 : E0,1

1 −→ E1,1
1 .

Recall that if K• is any complex with Ki = 0 for i < s and f a left exact

functor, then

Rsf∗K
• = Rsf∗ ker ds[−s] = f∗ ker ds = ker f∗d

s.

Thus, here, we have for all α,

R1fGnα
U ∗ Filk Ω•

Gnα
U /Um

= ker[d : fGnα
U ∗ Filk Ω1

Gnα
U /Um → fGnα

U ∗ Filk Ω2
Gnα

U /Um].

Since filtration commutes with kernel and direct image, we have

R1fGnα
U ∗ Filk Ω•

Gnα
U /Um = Filk ker[d : fGnα

U ∗Ω
1
Gnα

U /Um → fGnα
U ∗Ω

2
Gnα

U /Um].

It follows from the description of the first terms of the Deligne resolution

that

E0,1
1 = Filk ker[d : fGU∗Ω

1
GU/Um → fGU∗Ω

2
GU/Um],

E1,1
1 = Filk ker[d : fG2

U∗Ω
1
G2

U/Um → fG2
U∗Ω

2
G2

U/Um]

and that

d0,1
1 = −p∗1 + µ∗ − p∗2 = −δ

with the notations of Proposition 4.9. Hence, we obtain

E0,1
2 = Filk ker[d : fGU∗Ω

1
GU/Um → fGU∗Ω

2

G
/
UUm

]

∩ ker[δ : fGU∗Ω
1
GU/Um → fG2

U∗Ω
1
G2

U/Um]

which is exactly FilkωGUm,0.
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Notes in Mathematics, vol. 930, Springer-Verlag, Berlin, 1982.

[4] P. Berthelot and A. Ogus, Notes on crystalline cohomology, Princeton University

Press, 1978.

[5] R. Crew, Crystalline cohomology of singular varieties, Geometric aspects of Dwork

theory. Vol. I, Walter de Gruyter GmbH & Co. KG, Berlin, 2004, pp. 451–462.
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