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RENORMALIZATION OF THE LOCAL TIME

FOR THE d-DIMENSIONAL FRACTIONAL

BROWNIAN MOTION WITH N PARAMETERS

M. EDDAHBI1, R. LACAYO, J. L. SOLÉ2, J. VIVES2 and

C. A. TUDOR

Abstract. We study the asymptotic behavior in Sobolev norm of the local

time of the d-dimensional fractional Brownian motion with N -parameters when

the space variable tends to zero, both for the fixed time case and when simul-

taneously time tends to infinity and space variable to zero.

§1. Introduction

Let BH = {BH
t : t ≥ 0} be a standard fractional Brownian motion (fBm

for brevity) with Hurst parameter H ∈ (0, 1). It is well known that this pro-

cess is a centered Gaussian process which admits an integral representation

of the form

BH
t =

∫ t

0
KH(t, s) dWs,

where W is a standard Wiener process. The kernel KH(t, s) is given, for

s < t, by

(1) KH(t, s) = cH(t − s)µ − µcH

∫ t

s

(r − s)µ−1
(
1 −

(s

r

)−µ)
dr,

with cH being a constant and µ = H − 1
2 .

The covariance function of BH
t can be represented as

RH(s, t) = E(BH
s BH

t ) =

∫ s∧t

0
KH(t, r)KH(s, r) dr,
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and has the explicit form

RH(s, t) =
1

2
(s2H + t2H − |t − s|2H).

A very good survey about the fBm is the paper of Nualart [5].

For H = (H1, . . . ,HN ) the (N, 1)-fBm is defined as

BH
t =

∫

[0,t]
KH(t, s) dWs,

where KH(t, s) =
⊗N

j=1 KHj
(tj , sj), s, t ∈ R

N
+ and W is a standard N -

parameter Brownian motion. Its covariance function is

RH(s, t) = E(BH
s BH

t ) =

N∏

j=1

RHj
(sj , tj).

Finally given the N ×d-matrix H = (H1, . . . ,Hd) where for i = 1, . . . , d

and j = 1, . . . , N , H i = (Hi,1, . . . ,Hi,N ) is a column vector and Hi,j ∈ (0, 1),

the N -parameter, d-dimensional fractional Brownian motion ((N, d)-fBm for

brevity) is defined by BH = (BH1
t , . . . , B

Hd
t )t∈RN

+
where its components are

independent and for every i = 1, . . . , d, BHi is a (N, 1)-fBm with Hurst

parameter H i.

For any t ∈ R
N
+ and x ∈ R

d, the local time L(t, x) of the (N, d)-fBm

can be defined as the density of the occupation measure µt, defined as

µt(A) =

∫

[0,t]
11A(BH

s ) ds, A ∈ B(Rd).

Formally, we can write

L(t, x) =

∫

[0,t]
δx(BH

s ) ds

where δx denotes the Dirac function and δx(BH
s ) is therefore a distribution

in the Watanabe sense (see [6]).

This local time for (N, d)-fBm has been studied by Xiao and Zhang [7],

Hu and Oksendal [2] and Eddahbi et al. [1] between others.

The aim of this paper is to study the asymptotic behavior of L(t, x)

when |x|, the euclidean norm of x in R
d, goes to 0, both for a fixed time and
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when the time goes to infinity, and we renormalize his Sobolev norm. We

generalize the results of [3] from the (N, d)-standard Brownian motion to

the (N, d)-fractional Brownian motion. In the standard Brownian motion

case, the covariance function is simply R 1
2
(s, t) = s∧ t. Here, the control of

the covariance function RH(s, t) for H 6= 1
2 is the main difficulty.

Section 2 is devoted to the presentation of the problem. In particu-

lar we review from [1] the chaotic decomposition of the local time L(t, x)

as a functional of the (N, d)-fBm and its regularity in terms of Sobolev-

Watanabe norms. In Section 3 we present a list of auxiliary lemmas. Sec-

tion 4 is devoted to the presentation and proof of the main result, namely

the asymptotic behavior of this local time, for fixed t, in the case Hi,j = H,

∀ i, j, when |x| goes to 0. In Section 5 we extend the result to the case

t := t1 · · · tN going to infinity.

§2. Preliminaries and statement of the problem

If F is a square integrable Brownian random variable, it can be repre-

sented by its Wiener chaos expansion

F =

∞∑

n=0

In(fn),

where In(fn) denotes the multiple Itô stochastic integral of the symmetric

kernel fn ∈ L2(Rn
+) with respect to the Wiener process W .

If L is the Ornstein-Uhlenbeck operator

LF = −
∞∑

n=0

nIn(fn),

p ∈ (1,∞) and α ∈ R, we define the Sobolev-Watanabe spaces D
α,p as the

closure of the set of polynomial random variables with respect to the norm

‖F‖α,p = ‖(Id − L)
α
2 F‖Lp(Ω),

where Id stands for the identity mapping.

We denote by D the chaotic derivative operator. It acts on multiple Itô

stochastic integrals as

Dt(In(fn)) = nIn−1(fn( · , t)),

and is continuous from D
α,p into D

α−1,p(L2(R+)).
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It is known that a Brownian random variable F belongs to D
α,2 if and

only if its chaotic decomposition
∑∞

n=0 In(fn) satisfies

∞∑

n=0

(1 + n)α‖In(fn)‖2
2 < ∞,

where ‖In(fn)‖2
2 = n!‖fn‖2

2.

Set D
∞,2 =

⋂
α∈R

D
α,2. If F ∈ D

∞,2, we can compute its chaos expan-

sion using the Stroock formula

F =
∞∑

n=0

1

n!
In(E(DnF )).

For a complete survey of this subjects we refer the reader to the book

of Watanabe [6].

Let pε(x) be the centered Gaussian kernel with variance ε > 0. Consider

also, for x ∈ R
d and ε > 0, the Gaussian kernel on R

d given by

pd
ε(x) =

d∏

i=1

pε(xi), x = (x1, . . . , xd).

We denote by Hn the n-th Hermite polynomial, defined for n ≥ 1, by

Hn(x) =
(−1)n

n!
exp
(x2

2

) dn

dxn

(
exp
(
−x2

2

))
, x ∈ R

and H0(x) = 1.

As we proved in [1] the chaotic decomposition of the local time of the

(N, d)-fBm is

L(t, x) =
∑

n1,...,nd≥0

∫

[0,t]

d∏

i=1

p
s2Hi

(xi)

sniHi

Hni

( xi

sHi

)
Ii
ni

(KHi
(s, · )⊗ni) ds,

provided that
∑N

j=1
1

H∗

j
> d, where t ∈ R

N
+ , x ∈ R

d\{0}, s = s1 · · · sN ,

sHi =
∏N

j=1 s
Hi,j

j and H∗
j = max{Hi,j , i = 1, . . . , d}. The integrals I i

ni

denotes the multiple Itô stochastic integrals with respect to the independent

N -parameter Wiener processes W i.

Moreover, in [1] we proved that this functional belongs to the space

D
α,2 if

α <

N∑

j=1

1

2H∗
j

− d

2
.
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If all Hi,j = H, this expression becomes α < N
2H

− d
2 , and then a

sufficient condition for the local time to be in L2(Ω) is N > Hd. Observe

that this sufficient condition is also founded in Xiao and Zhang [7]. From

now on we will suppose always this condition.

Recall that if H = 1
2 ,
∑N

j=1
1

2H∗

j
− d

2 = N− d
2 , which is the same condition

obtained in [3] for the N -parameter Wiener process in R
d.

§3. Auxiliary lemmas

Lemma 1. If 1
4 ≤ β ≤ 1

2 we have

sup
x∈R

∣∣√n!Hn(x)e−βx2 ∣∣ ≤ c(n ∨ 1)−
8β−1

12 .

Proof. This result is proved in [4].

Remark 2. The factor
√

n! appears because we do not use the same

definition of Hermite polynomials as in [4].

Lemma 3. Let d ≥ 1 and ν ∈ (0, 1). We can choose a universal con-

stant c such that for any m ≥ 1,

∑

n1+···+nd=m

d∏

i=1

(ni ∨ 1)−ν ≤ cmd(1−ν)−1.

Proof. This result is proved in [4].

Lemma 4. Let γ and a be positive constants and b ∈ R. Set α = b−1
a

.

Then ∫

[0,1]N
exp
(
− γ

sa

)ds

sb
=

1

(N − 1)!

(1

a

)N

γ−αgN−1(γ, α)

where

gN−1(γ, α) :=

∫ ∞

γ

tα−1e−t
(
log

t

γ

)N−1
dt.

Proof. Using the change of variables u1 = s1 · · · sN , u2 = s2 · · · sN , . . . ,

uN = sN , with Jacobi determinant 1
u2···uN

, we obtain
∫

[0,1]N
exp
(
− γ

sa

)ds

sb
=

∫

{0≤u1≤···≤uN≤1}

1

ub
1

exp
(
− γ

ua
1

)duN · · · du2

uN · · · u2
du1

=
1

(N − 1)!

∫ 1

0

(
log

1

r

)N−1 1

rb
exp
(
− γ

ra

)
dr,

and making the change of variable γr−a = t we get the desired result.
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Lemma 5. The function

QH(z) =





RH(1, z)

zH
if z ∈ (0, 1]

0 if z = 0,

has the following properties:

1. It is strictly increasing and it continuously maps [0, 1] onto [0, 1].

Moreover, QH(1) = 1.

2. For fixed δ ∈ (0, 1) and for any z ∈ [0, 1− δ], it satisfies the inequality

QH(z) ≤ c(H, δ)zG,

where G = H ∧ (1 − H).

3. For fixed δ ∈ (0, 1) and β > 0, it satisfies the inequality

∫ 1

1−δ

QH(z)β dz ≤ c(H, δ)

β
1

2H

.

Proof. The proof of parts 1 and 3 are done in [1].

For the part 2 we have

QH(z) =
1 − (1 − z)2H

2zH
+

zH

2
.

Using Taylor expansion, 1−(1−z)2H = 2H(1−θ)2H−1z with 0 ≤ θ ≤ z.

If H ≥ 1
2 , we have 1 − (1 − z)2H ≤ 2Hz, and therefore QH(z) ≤

Hz1−H + 1
2zH ≤ c1z

1−H , c1 being a positive constant.

If H < 1
2 and z ∈ [0, 1−δ], we have 1−(1−z)2H ≤ 2Hδ2H−1z, and then

QH(z) ≤ Hδ2H−1z1−H + 1
2zH ≤ c2z

H , c2 being another positive constant.

In what follows, for every x > 0 and γ ≥ 0, we denote the complemen-

tary incomplete Gamma function as

Γ(x, γ) =

∫ ∞

γ

e−ttx−1 dt.

In particular Γ(x) := Γ(x, 0) and Γ(x, γ) ≤ Γ(x).
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Lemma 6. The function

gN−1(γ, α) :=

∫ ∞

γ

tα−1e−t
(
log

t

γ

)N−1
dt, N ∈ N

has the following behavior when γ tends to 0:

1. If α > 0 and N ≥ 2, gN−1(γ, α) = (log 1
γ
)N−1Γ(γ, α)+O((log 1

γ
)N−2).

If N = 1, it tends to Γ(α)

2. If α = 0 and N ≥ 2, gN−1(γ, α) = e−γ 1
N

(log 1
γ
)N + O((log 1

γ
)N−1). If

N = 1, it behaves as e−γ ln 1
γ

3. If α < 0 and N ≥ 2, gN−1(γ, α) = γα
(Γ(N)
|α|N

+ o(γ)
)
. If N = 1, its

behavior is as 1
|α|γ

α

Proof. The cases with N = 1 are straightforward. For N ≥ 2, note

that

(2)
(
log

t

γ

)N−1
=

N−1∑

k=0

(
N − 1

k

)(
log

1

γ

)N−1−k

(log t)k.

Then,

• If α > 0, the function

t 7−→ t
α
2
−1e−t(log t)k

is always integrable on [0,∞) for any k ∈ N ∪ {0}. Therefore,

gN−1(γ, α) =
(
log

1

γ

)N−1
Γ(γ, α) + O

((
log

1

γ

)N−2)
.

• If α = 0, we need to estimate the integral

gN−1(γ, 0) =

∫ ∞

γ

t−1e−t
(
log

t

γ

)N−1
dt.

Integrating by parts we obtain

gN−1(γ, 0) =
1

N

∫ ∞

γ

e−t
(
log

t

γ

)N

dt

=
e−γ

N

(
log

1

γ

)N

+ O
((

log
1

γ

)N−1)
.

• If α < 0, making the change of variable s = −α log( t
γ
), the result

follows immediately.
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§4. Renormalization of the local time for fixed t

The main purpose of this section is to study the asymptotic behavior

of L(t, x), for t ∈ R
N
+ and x ∈ R

d\{0}, when |x| → 0. In the case dH ≥ 1 it

has a singularity. An interesting question is to renormalize the local time,

that means, to find a deterministic function f(t, x) such that f(t, x)L(t, x)

converge to 1 in some precise sense. We will do it with respect the norm

‖ · ‖α,2. Then we will obtain a function f(t, x) such that ‖f(t, x)L(t, x)‖α,2

converges to 1 when |x| → 0, both for fixed t and when t = t1 · · · tN → ∞.

Recall the expression of the D
α,2-norm of the local time L(t, x). For the

sake of simplicity we take t = 1̃ := (1, . . . , 1).

We have

(3) ‖L(1̃, x)‖2
α,2 =

∞∑

m=0

(1 + m)αAm(x),

where

Am(x) =
∑

n1+···+nd=m

∥∥∥∥
∫

[0,1]N

d∏

i=1

p
s2Hi

(xi)

sniHi

×Hni

( xi

sHi

)
Ii
ni

(KHi
(s, · )⊗ni) ds

∥∥∥∥
2

L2(Ω)

,

and as

E(I i
ni

(KHi
(u, · )⊗ni)Ij

nj
(KHj

(v, · )⊗nj )) = δijni!
(
RHi

(u, v)
)ni ,

Am(x) =
∑

n1+···+nd=m

∫

[0,1]N
du

∫

[0,1]N
dv

d∏

i=1

( N∏

j=1

RHi,j
(uj , vj)

(ujvj)Hi,j

)ni

× ni!Hni

( xi

uHi

)
Hni

( xi

vHi

)
p

u2Hi
(xi)pv2Hi

(xi),

and in particular

A0(x) =

(∫

[0,1]N
ds

d∏

i=1

1

(2π
∏N

j=1 s
2Hi,j

j )
1
2

exp
(
− x2

i

2
∏N

j=1 s
2Hi,j

j

))2

.

In all this section we confine our attention to the situation where Hi,j =

H for all (i, j) ∈ {1, . . . , d} × {1, . . . , N}, and use the notation BH for BH .



RENORMALIZATION OF THE LOCAL TIME FOR THE (N, d)-FBM 181

Observe that in this particular case

A0(x) =
1

(2π)d

(∫

[0,1]N

1

sdH
exp
(
− |x|2

2s2H

)
ds

)2

,

and

Am(x) =
∑

n1+···+nd=m

∫

[0,1]N

∫

[0,1]N

( N∏

j=1

RH(uj , vj)

(ujvj)H

)m

×
d∏

i=1

ni!Hni

( xi

uH

)
Hni

( xi

vH

)
pu2H (xi)pv2H (xi) dudv.

Our main result is the following:

Theorem 7. Let BH be (N, d)-fBm. Set λ := d − 1
H

. For any α <
N
2H

− d
2 we have:

1) If λ > 0 and N ≥ 2,

lim
|x|→0

‖L(1̃, x)‖α,2

(
2

λ
2 ( 1

2H
)N |x|−λ

(2π)
d
2 (N − 1)!

(
log

2

|x|2
)N−1

Γ
(λ

2

))−1

= 1.

If N = 1, ‖L(1, x)‖α,2 explodes when x tends to 0, and ‖L(1, x)‖α,2 ·
(|x|−λ)−1 is bounded by a positive constant.

2) If λ = 0,

lim
|x|→0

‖L(1̃, x)‖α,2

(
( 1
2H

)N

(2π)
d
2 N !

(
log

2

|x|2
)N
)−1

= 1.

3) If λ < 0,

lim
|x|→0

‖L(1̃, x)‖α,2 = ‖L(1̃, 0)‖α,2 =
1

(2π)
d
2

( 1

1 − Hd

)N
2

×
[

∞∑

r=0

(1 + 2r)α
∑

r1+···+rd=r

d∏

i=1

(2ri)!

(ri!)222ri

(∫ 1

0
QH(z)m

dz

zdH

)N
] 1

2

< ∞.

Remark 8. This theorem shows that for λ ≥ 0 the local time explodes

at the origin and for λ < 0 it does not. Observe that for the N -Brownian

process, that is H = 1
2 , the local time explodes at the origin if and only if

d ≥ 2, and we obtain, with another proof, the same results as Imkeller and

Weisz [3].
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Proof. The idea of the proof is to show that the convergence of Am(x)

for any m ≥ 1 when |x| → 0, is controlled by A0(x) and then the asymptotic

behavior of L(1, x) coincides with the asymptotic behavior of A0(x)
1
2 .

Define now, for γ > 0 and m ≥ 0,

Bm(γ) =

∫

[0,1]N

∫

[0,1]N

(∏N
j=1 RH(uj , vj)

)m

(u · v)H(m+d)
exp
(
− γ

u2H

)
exp
(
− γ

v2H

)
dudv.

Clearly,

A0(x) =
1

(2π)d
B0

(1

2
|x|2
)
.

For m ≥ 1, choosing β ∈ [ 14 , 1
2), we can write

Am(x) =
1

(2π)d

∑

n1+···+nd=m

∫

[0,1]N

∫

[0,1]N

( N∏

j=1

RH(uj , vj)

(ujvj)H

)m 1

(uv)dH

×
d∏

i=1

√
ni!Hni

( xi

uH

)
exp
{
−β

x2
i

u2H

}√
ni!Hni

( xi

vH

)
exp
{
−β

x2
i

v2H

}

× exp
{
−
(1

2
− β

) x2
i

u2H

}
exp
{
−
(1

2
− β

) x2
i

v2H

}
dudv,

and applying Lemmas 1 and 3 we obtain

Am(x) ≤ c
1

(2π)d
md(1− 8β−1

6
)−1Bm

((1

2
− β

)
|x|2
)
.

Then our problem reduces to the study of the asymptotic behavior of

Bm.

As RH(uj , vj) = RH(1,
vj

uj
)u2H

j , we have

Bm(γ) = 2N

∫

[0,1]N

∫ uN

0
· · ·
∫ u1

0

N∏

j=1

RH

(
1,

vj

uj

)m
u2Hm

j

(ujvj)H(m+d)

× exp
(
− γ

u2H

)
exp
(
− γ

v2H

)
dv1 · · · dvNdu.

With the change
vj

uj
= zj , (j = 1, . . . , N) and computing iteratively the
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previous integral, we find

Bm(γ) = 2N

∫

[0,1]N

(∫

[0,1]N
u1−2Hd exp

(−κ(z)γ

u2H

)
du1 · · · duN

)

×
N∏

j=1

RH(1, zj)
m

zj
H(m+d)

dz1 · · · dzN

where κ(r) = 1 + 1
r2H .

By Lemma 4, with a = 2H and b = 2Hd − 1, we have

JN (γ, z) =

∫

[0,1]N
u1−2Hd exp

(−κ(z)γ

u2H

)
du

= c(N, d,H)γ−λ

∫ ∞

γ

e−sκ(z)sλ−1
(
log

s

γ

)N−1
ds,

where λ = d − 1
H

= b−1
a

.

Therefore

Bm(γ) = c(N,H, d)γ−λ

∫ ∞

γ

∫

[0,1]N

N∏

j=1

RH(1, zj)
m

zHm
j

· e
− s

z2H

zHd

× e−ssλ−1
(
log

s

γ

)N−1
dzds.

First we will see that for m > λH
G

, we have

(4) Bm(γ) ≤ c(H, d,N)γ−λgN−1(γ, λ)m− N
2H .

Indeed, controlling the exponential by 1, we obtain

Bm(γ) ≤ c(N,H, d)γ−λ

∫

[0,1]N

N∏

j=1

RH(1, zj)
m

z
H(m+d)
j

∫ ∞

γ

e−ssλ−1
(
log

s

γ

)N−1
dzds

= c(N,H, d)γ−λgN−1(γ, λ)

(∫ 1

0
QH(z)m

1

zdH
dz

)N

,

where the function QH is introduced in Lemma 5.

Now, choosing δ ∈ (0, 1), we have

∫ 1

0
QH(z)m

1

zdH
dz ≤

∫ 1−δ

0
QH(z)m

1

zdH
dz + (1 − δ)−dH

∫ 1

1−δ

QH(z)m dz.
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The second summand on the right, using part 3 of Lemma 5, is con-

trolled by c(H, δ)m− 1
2H .

For the first summand, if m > dH−1
G

= λH
G

, we fix α ∈ (λH
G

,m), and

write
∫ 1−δ

0
QH(z)m

1

zdH
dz =

∫ 1−δ

0
QH(z)m−αQH(z)α

1

zdH
dz.

Using that QH is an increasing function and part 2 of Lemma 5, we control

this by

QH(1 − δ)m−αc(H, δ, α)

∫ 1−δ

0
zαG−dH dz.

As α > λH
G

, the integral that appears in the last expression is a constant

that depends on H, d, α and δ.

Therefore, being QH(1 − δ) < 1, we can estimate this term by

c(H, d, δ, α)m− 1
2H ,

and we get (4).

Note that this result is true only for m > λH
G

. If λ ≤ 0 this covers all

cases. But if λ > 0 the Bm terms with m ≤ λH
G

are not controlled yet. The

following part of the proof will discuss these first terms. From now on in

each expression c will be the suitable constant.

Observe that for any 0 < ε < m, being QH( · ) ≤ 1, we have

Bm(γ) ≤ Bε(γ).

Now we will see that for λ > 0,

Bε(γ) ≤ c(H, d,N)γ−λ(gN−1(γ, λ) + gN−1(γ, α))

where α is some positive constant depending also on ε.

Indeed, putting c = c(N,H, d),

Bε(γ) = cγ−λ

∫ ∞

γ

∫

[0,1]N

N∏

j=1

QH(zj)
ε · e

− s

z2H

zHd
e−ssλ−1

(
log

s

γ

)N−1
dzds

= cγ−λ

∫ ∞

γ

N∑

k=0

(
N

k

)∫ 1−δ

0
· · ·
∫ 1−δ

0︸ ︷︷ ︸
k

∫ 1

1−δ

· · ·
∫ 1

1−δ︸ ︷︷ ︸
N−k

N∏

j=1

QH(zj)
ε · e

− s

z2H

zHd

× e−ssλ−1
(
log

s

γ

)N−1
dz1 · · · dzkds,
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because the function
N∏

j=1

QH(zj)
ε · e

− s

z2H

zHd
,

is symmetric in z.

Now estimating QH and the exponential by 1 in the integrals between

1 − δ and 1, we obtain

Bε(γ) ≤ cγ−λ

∫ ∞

γ

(( δ

(1 − δ)dH

)N

+

N∑

k=1

(
N

k

)∫ 1−δ

0
· · ·
∫ 1−δ

0

δN−k

(1 − δ)dH(N−k)

×
k∏

j=1

QH(zj)
ε · e

− s

(z1···zk)2H

(z1 · · · zk)Hd
dz1 · · · dzk

)
e−ssλ−1

(
log

s

γ

)N−1
ds

≤ cγ−λ

∫ ∞

γ

(( δ

(1 − δ)dH

)N

+

N∑

k=1

(
N

k

)∫ 1−δ

0
· · ·
∫ 1−δ

0

( δ

(1 − δ)dH

)N−k

× c(H, δ)kε
k∏

j=1

zεG−dH
j e

− s

(z1···zk)2H dz1 · · · dzk

)
e−ssλ−1

(
log

s

γ

)N−1
ds,

where we have used part 2 of Lemma 5.

Now, choosing ε < dH
G

, we can use Lemma 4 with a = 2H, b = −εG +

dH, γ = s, N = k and α = dH−εG−1
2H

, to bound the right hand side of the

last inequality by

cγ−λ

{
gN−1(γ, λ) +

∫ ∞

γ

N∑

k=1

∫ ∞

s

(
log

t

s

)k−1
s

λ
2
+ εG

2H
−1 t

λ
2
− εG

2H
−1

× e−te−s
(
log

s

γ

)N−1
dtds

}
,

where c is a constant that depends on H, d, N , ε, δ.

Using the fact that for any n ≥ 1 and for t ≥ s we have

log
t

s
≤ n

( t

s

) 1
n
,

and taking n = M(k − 1) for a big M , we obtain

Bε(γ) ≤ cγ−λ

{
gN−1(γ, λ) +

∫ ∞

γ

∫ ∞

s

s
λ
2
+ εG

2H
−1− 1

M t
λ
2
− εG

2H
−1+ 1

M

× e−te−s
(
log

s

γ

)N−1
dtds

}
,
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where now c depends also on M .

As ε < m < λH
G

, we have λ
2 − εG

2H
+ 1

M
> 0 and

Bε(γ) ≤ cγ−λ

{
gN−1(γ, λ) +

∫ ∞

γ

s
λ
2
+ εG

2H
−1− 1

M e−sΓ
(λ

2
− εG

2H
+

1

M
, s
)

×
(
log

s

γ

)N−1
ds

}
.

Controlling the complementary incomplete Gamma function by the cor-

responding Gamma function we obtain

Bε(γ) ≤ cγ−λ

{
gN−1(γ, λ) +

∫ ∞

γ

s
λ
2
+ εG

2H
−1− 1

M e−s
(
log

s

γ

)N−1
ds

}

= cγ−λ

{
gN−1(γ, λ) + gN−1

(
γ,

λ

2
+

εG

2H
− 1

M

)}
.

Observe that for M sufficiently large

λ

2
+

εG

2H
− 1

M
> 0.

Finally for the m = 0 case, using Lemma 4, we have immediately, as

α = λ
2

B0(γ) =
1

((N − 1)!)2
1

(2H)2N
γ−λgN−1

(
γ,

λ

2

)2
.

Therefore we have to separate the cases λ ≥ 0 and λ < 0.

For λ ≥ 0 we have

‖L(1̃, x)‖2
α,2 =

∞∑

m=0

(1 + m)αAm(x)

• The terms Am(x) with m = 1, . . . , [λH
G

] are controlled by

cγ−λ

{
gN−1(γ, λ) + gN−1

(
γ,

λ

2
+

εG

2H
− 1

M

)}
md(1− 8β−1

6
)−1

where γ = ( 1
2 − β)|x|2, and ε and M satisfy

λ

2
+

εG

2H
− 1

M
> 0.

Then, by Lemma 6, part 1, this behaves asymptotically, when γ ↓ 0,

as cγ−λ
(
log 1

γ

)N−1
if λ > 0, and as c

(
log( 1

γ
)
)N

if λ = 0.
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• The terms Am(x) with m ≥ [λH
G

] + 1 are controlled by

cmd(1− 8β−1
6

)−1γ−λgN−1(γ, λ)m− N
2H .

Then

∑

m> λH
d

(1 + m)αAm(x) ≤ c

[ ∑

m> λH
d

md(1− 8β−1
6

)−1m− N
2H (1 + m)α

]

× γ−λgN−1(γ, λ),

and using the fact that α < N
2H

− d
2 , we have that the series between

keys is convergent and the asymptotic behavior of the last expression

is, by Lemma 6, as cγ−λ
(
log 1

γ

)N−1
if λ > 0, and c

(
log 1

γ

)N
if λ = 0.

Finally,

A0(x) =
1

(2π)d
B0

(1

2
|x|2
)

=
1

(2π)d

1

((N − 1)!)2
1

(2H)2N
γ−λgN−1

(
γ,

λ

2

)2
,

where γ = |x|2

2 .

Summarizing, if N ≥ 2 and λ > 0, A0(x) goes to ∞ when γ ↓ 0, as

cγ−λ
(
log 1

γ

)2N−2
, and this first term dominates the asymptotical be-

havior because all the rest goes to ∞ more slowly than γ−λ
(
log 1

γ

)(N−1)
.

If N = 1 and λ > 0, as the logarithm disappears, the proof only says

that ‖L(1, x)‖α,2(|x|−λ)−1 is bounded by a positive constant.

If λ = 0, A0(x) goes to ∞ when γ ↓ 0, as c
(
log 1

γ

)2N
, and the rest as

c
(
log 1

γ

)N
, so also the first term dominates the asymptotical behavior.

Note that we consider A
1
2
0 in place of A0 to get the functions that

appear in the theorem.

The λ < 0 case follows directly. As we have seen before,

∑

m≥1

(1 + m)αAm(x)

is controlled by γ−λgN−1(γ, λ), and by Lemma 6, part 3, this term goes to

a constant when γ ↓ 0.



188 M. EDDAHBI, R. LACAYO, J. L. SOLÉ, J. VIVES AND C. A. TUDOR

In this case the norm ‖L(t, x)‖α,2 is continuous. Therefore we don’t

have an explosion, and

lim
|x|→0

‖L(1̃, x)‖α,2 = ‖L(1̃, 0)‖α,2 =

( ∞∑

m=0

(1 + m)αAm(0)

) 1
2

,

where

Am(0) =
1

(2π)d

( ∑

n1+···+nd=m

d∏

i=1

ni!Hni
(0)2

)
Bm(0),

and

Bm(0) = 2N

∫

[0,1]N

(∫

[0,1]N
u1−2Hd du1 · · · duN

) N∏

j=1

RH(1, zj)
m

zj
H(m+d)

dz1 · · · dzN

= 2N

(∫ 1

0
u1−2Hd du

)N(∫ 1

0
QH(z)m

dz

zdH

)N

=
( 1

1 − Hd

)N
(∫ 1

0
QH(z)m

dz

zdH

)N

.

Note that as λ < 0, 1 − 2Hd > −1.

Finally,

‖L(1̃, 0)‖2
α,2 =

1

(2π)d

( 1

1 − Hd

)N
∞∑

m=0

(1 + m)α

×
( ∑

n1+···+nd=m

d∏

i=1

ni! ·Hni
(0)2

)(∫ 1

0
QH(z)m

dz

zdH

)N

=
1

(2π)d

( 1

1 − Hd

)N
∞∑

r=0

(1 + 2r)α

×
( ∑

r1+···+rd=r

d∏

i=1

(2ri)!

(ri!)222ri

)(∫ 1

0
QH(z)m

dz

zdH

)N

,

because H2n(0) = 1
2nn! and H2n+1(0) = 0.

By the continuity of the norm, it is not necessary to prove the conver-

gence of this series.

Remark 9. Xiao and Zhang [7] proved that when Hd < 1, that is λ < 0,

BH has a jointly continuous local time.
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§5. Renormalization of the local time when the time tends to

infinity

We can also deduce the behavior of the local time L(t, x) when t =

t1 · · · tN → ∞ and |x| → 0. We also have to distinguish the three cases,

namely λ > 0, λ = 0 and λ < 0.

The precise result is the following:

Theorem 10. Let {L(t, x) : t ∈ [0,∞)N , x ∈ R
d\{0}} be the local time

of the (N, d)-fBm BH . Let λ = d − 1
H

. Then the following limits hold for

any α < N
2H

− d
2 :

1) For λ > 0 and N ≥ 2,

lim
t→∞,|x|→0

‖L(t, x)‖α,2

(
2

λ
2 ( 1

2H
)N |x|−λ

(2π)
d
2 (N − 1)!

(
log

2t2H

|x|2
)N−1

Γ
(λ

2

))−1

= 1.

If N = 1, ‖L(t, x)‖α,2 explodes when x tends to 0 and t to ∞, and in-

dependently of t ∈ R+, ‖L(t, x)‖α,2 · (|x|−λ)−1 is bounded by a positive

constant.

2) For λ = 0,

lim
t→∞,|x|→0

‖L(t, x)‖α,2

(
( 1
2H

)N

(2π)
d
2 N !

(
log

2t2H

|x|2
)N
)−1

= 1.

3) For λ < 0,

lim
t→∞,|x|→0

‖L(t, x)‖α,2

(
t(1−dH)‖L(1̃, 0)‖α,2

)−1
= 1.

Proof. From the Wiener chaos expansion of L(t, x) proved in [1], we

can obtain that

‖L(t, x)‖2
α,2 = t2(1−dH)‖L(1̃, t−Hx)‖2

α,2,

and the conclusion follows from the results of the previous section.
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References
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