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THE FOURTH-ORDER Q-CURVATURE FLOW ON

CLOSED 3-MANIFOLDS

SHU-CHENG CHANG and CHIN-TUNG WU

Abstract. Let the Paneitz operator P0 be strictly positive on a closed 3-

manifold M with a fixed conformal class. It is proved that the solution of a

fourth-order Q-curvature flow exists on M for all time and converges smoothly

to a metric of constant Q-curvature.

§1. Introduction

Let (M, [g0]) be a closed smooth Riemannian n-manifold with a fixed

conformal class [g0]. Let P0 be the conformal Paneitz operator which was

introduced by Paneitz ([P]) in a 4-manifold with fixed conformal class and

was generalized to general dimensions n 6= 4 by Branson ([B]). The operator

is defined by

(1.1) P n
0 = ∆2

0 + div0(anR0g0 + bnRic0)d +
n − 4

2
Qn

0

where

Qn
0 = −

1

2(n − 1)
∆0R0 −

2

(n − 2)2
|Ric0|

2 +
n3 − 4n2 + 16n − 16

8(n − 1)2(n − 2)2
R2

0,

and

an =
(n − 2)2 + 4

2(n − 1)(n − 2)
, bn = −

4

n − 2
.

Here ∆0 = div0 ∇ is the Laplacian w.r.t. g0 and R0, Ric0 are the scalar

curvature and Ricci curvature tensor w.r.t. g0 respectively.

In dimension four,

P 4
0 = ∆2

0 + div0

(2

3
R0g0 − 2Ric0

)

d
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and is conformally invariant in the sense that if g = e2λg0, then

P 4
g = e−4λP 4

0 .

On the other hand, it is well known that in dimension two if g = e2λg0, the

associated Laplacians are related by

∆g = e−2λ∆0

and the associated scalar curvatures R are related by the equation

∆0λ −
1

2
R0 = −

1

2
e2λR,

where R = 2K and K is the Gaussian curvature. If the dimension is four

and g = e2λg0, we get

P 4
0 λ + Q4

0 = e4λQ4
g

where

Q4
0 = −

1

6
∆0R0 −

1

2
|Ric0|

2 +
1

6
R2

0.

Moreover, the fourth order Q-curvature equation is closely related to the

Gauss-Bonnet-Chern formula

8π2χ(M4) =

∫

M

(

Q4
g +

1

4
W

)

dµg

which is the 2-dimensional analogue of Euler-Poincaré characteristic

4πχ(M2) =

∫

M

Rg dµg

where W denotes the Weyl tensor w.r.t. g.

From the previous point of view, we may call attention to the generalized

notion of the Gaussian curvature — the fourth order Q-curvature equation.

More precisely, the well known uniformization theorem on closed surfaces

says that every smooth metric is pointwise conformal to a constant scalar

one. Branson, Chang and Yang studied the problem of prescribed constant

Q-curvature metrics ([BCY]) on 4-manifolds with the positive Paneitz op-

erator. However, it is quite different for the Q-curvature equations between

3-manifolds and 4-manifolds, part of reasons was due to the presence of a

possibly negative term of the Q-curvature in the conformal Paneitz opera-

tor as in (1.1). In this paper, we deal with existence problems of constant

Q-curvature metrics on 3-manifolds.
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From now on we consider a closed smooth Riemannian 3-manifold

(M, [g0]) with a fixed conformal class [g0]. The Paneitz operator with re-

spect to g0 is

P0 = P 3
0 = (−∆0)

2 + div0

(5

4
R0g0 − 4Ric0

)

d −
1

2
Q0,

and

Q0 = Q3
0 = −2|Rc0|

2 +
23

32
R2

0 −
1

4
∆0R0 = −

1

4

(

∆0R0 + 8|Z0|
2 −

5

24
R2

0

)

where Z0 is the traceless Ricci curvature tensor with respect to the metric

g0.

Let g = e2λg0 = u−4g0, for g ∈ [g0]. The Paneitz operator P with

respect to g has the following conformal covariance property:

Pw = u7P0(uw).

Moreover, the Q-curvature is related by the nonlinear equation

(1.2) P0u = −
1

2
Qu−7

where

Q = −
1

4

(

∆R + 8|Z|2 −
5

24
R2

)

.

In the present paper, we consider the functional F on a given conformal

class [g0]:

(1.3) F(g) =
(

∫

M

u−6 dµ0

)
1

3

∫

M

P0u · u dµ0.

Since for g = e2λg0 = u−4g0, we have
∫

M
u−6 dµ0 =

∫

M
e3λ dµ0 =

∫

M
dµ.

Then it reduces to:

F(g) =
1

8

(

∫

M

dµ
)

1

3

[

8

∫

M

|Z|2 dµ −
5

24

∫

M

R2 dµ
]

.

Note that F(g) is neither bounded above nor below on (M 3, [g0]). Fur-

thermore, the critical points of the functional F(g) satisfy the equation (1.2)

with Q given by a constant. Then, for minimizing F(g) in [g0], it is natural

to consider the following fourth order parabolic equation:

(1.4)
∂g

∂t
= −8(Q − Q)g,
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where Q =
R

M
Qdµ

R

M
dµ

=
1

4
[−8

R

M
|Z|2 dµ+ 5

24

R

M
R2 dµ]

R

M
dµ

.

Let λ : M × [0,∞) → R be a smooth function and g(p, t) = e2λ(p,t)g0(p)

= u(p, t)−4g0(p), p ∈ M . Then the equation (1.4) reduce to the following

initial value problem of fourth order parabolic scalar equation:

(1.5)























∂λ

∂t
= −4(Q − Q) = ∆R + 8|Z|2 −

5

24
R2 + 4Q,

g = e2λg0; λ(p, 0) = λ0(p),
∫

M3

e3λ0 dµ0 =

∫

M3

dµ0,

where dµ0 is the volume element of g0. Note that the volume V with respect

to g is fixed under the flow (1.5).

In the paper [Br], the author proved the longtime existence and con-

vergence of solutions of the Q-curvature flow on 4-manifolds with positive

Paneitz operator. In this paper, we prove the same result on 3-manifolds

with positive Paneitz operator. Our approach is inspired by earlier works of

the authors ([CW1], [CW3]). The crucial step is how to obtain the so-called

Bondi-mass loss formula on 3-manifolds.

Let us compare the functional F with the following nonnegative quad-

ratic Riemannian functional E of the scalar curvature on (M, [g0]) with fixed

volume

E(g) =

∫

M

R2 dµ.

A critical point of E is called an extremal metric. On closed surfaces, it is

due to Calabi that the extremal metric always has constant scalar curvature

if it exists ([Ca]). Thus one may consider the following gradient flow of E :

(1.6)



























∂λ

∂t
= 4R −

n − 4

4(n − 1)
R2 +

n − 4

4(n − 1)
r,

g = e2λg0; λ(p, 0) = λ0(p),
∫

Mn

enλ0 dµ0 =

∫

Mn

dµ0, r =

∫

M
R2 dµ

∫

M
dµ

.

For closed surfaces with constant Gaussian curvature background metric

g0, Chruściel ([Chru])1 proved the longtime existence and convergence of

1In fact, Chruściel considered the Robinson-Trautman equation ∂λ
∂t

= 4R, in which
decreases the functional on closed surfaces.
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solutions of (1.6). Later, the first author generalized the results to any

arbitrary background metric on closed surfaces as well as on 3-manifolds

([Ch], [CW1], [CW2], [CW3]) due to Bondi-mass type estimates.

We first show a Harnack-type estimate.

Theorem 1.1. Let P0 be the Paneitz operator on (M, [g0]). Suppose

that under the flow (1.5)

(∗)

∫

M

e−λ dµ0 ≤ H,

for a positive constant H which is independent of t. Then the solution of

(1.5) exists on M × [0,∞) and converges smoothly to a metric of constant

Q-curvature.

Condition (∗) is satisfied if P0 is a strictly positive Paneitz operator on

(M, [g0]). Then we have our main Theorem as follows:

Theorem 1.2. Let the Paneitz operator P0 on (M, [g0]) be strictly pos-

itive. Then the solution of (1.5) exists on M×[0,∞) and converges smoothly

to a metric of constant Q-curvature.

Let A0 = Rc0 −
R0

4 g0 be the Schouten tensor on (M 3, [g0]) and σ2(A0)

denote the second elementary symmetric function of the eigenvalues of the

Schouten tensor A0. A simple calculation gives

σ2(A0) = −
1

2
|Z0|

2 +
1

48
R2

0.

Then

Q0 = 4σ2(A0) −
1

32
R2

0 −
1

4
∆0R0

and
∫

M

Q0 dµ0 = 4

∫

M

σ2(A0) dµ0 −
1

32

∫

M

R2
0 dµ0.

Suppose that R0 > 0, σ2(A0) > 0 and Q0 ≤ 0. Then based on the

Bochner type estimates, the Paneitz operator P0 is strictly positive if Q0

is not identically zero ([HY]). As a consequence of Theorem 1.2, it follows

that
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Theorem 1.3. Let (M, [g0]) be a closed 3-manifold with R0 > 0,

σ2(A0) > 0, Q0 ≤ 0 and suppose Q0 is not identically zero. Then the

solution of (1.5) exists on M × [0,∞) and converges smoothly to a metric

of constant Q-curvature.

Remark 1.1. (i) The method of [Br] does not apply to 4-manifolds

for which the Paneitz operator has negative first eigenvalue. By using the

Bondi-mass type estimate, it is our goal in a forthcoming paper to prove

the longtime existence and convergence of solutions of (1.5) on 3-manifolds

for which the Paneitz operator has negative first eigenvalue. Moreover, we

would like to find further geometric aspects of condition (∗) when Q0 > 0.

In fact, we conjecture that (∗) holds if under the flow (1.5)

(∗∗)

∫

M

Qdµ > 0

for t = 0. Moreover when M is a CR 3-manifold, the Q-curvature is defined

as in [H] and [FH]. However condition (∗∗) fails on a CR 3-manifold. We

will discuss it elsewhere ([CCC], see Remark 4.1 in Section 4).

(ii) In the papers [XY], [YZ] and [HY], the existence of minimizers for

a variational functional was proved for more general situations.

Due to the lack of a maximum principle for the fourth order parabolic

equation (1.5), we will apply the integral method as in [CW3] to obtain

the C0-estimate. However, we point out that the Bondi-mass type estimate

(Theorem 2.2) is the starting point for applying the integral method.

We briefly describe the methods used in our proofs. In Section 2, we

will derive the key estimate of equation (1.5) which is based on the energy

bound (Lemma 2.1).

In Section 3, we are able to control the L2-norm of curvatures and W2,2-

estimates for the conformal factor λ under the flow (1.5) with condition (∗).

Finally based on our previous work ([Chru], [CW3]), we obtain higher-order

Wk,2-estimates. Then the long-time existence and asymptotic convergence

of solutions of (1.5) follows easily.

In view of previous sections, we reduce the proof of Theorem 1.2 to find

a uniformly bound (∗) under the flow (1.5) as in Section 4.

Acknowledgments. The first author would like to express his thanks

to Ben Chow for his inspirations from the Ricci flow, and to the referee for

pointing out a mistake and giving valuable comments on an earlier version

of this paper.
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§2. The Bondi-mass type estimate

In this section, we will prove a kind of the Bondi-mass type estimate of

equation (1.5) as in [CW3].

For g = e2λg0, R0 = Rg0
, we have the following formulae for (1.5):

R = Rg = e−2λ(R0 − 4∆0λ − 2|∇0λ|
2),(2.1)

∆R = e−2λ(∆0R + 〈∇0R,∇0λ〉), where ∆0 = ∆g0
, ∆ = ∆g,(2.2)

Z = Z0 − e−λ(∇2eλ) +
1

3
(e−λ∆eλ)g,(2.3)

Z = Z0 + eλ(∇2
0e

−λ) −
1

3
(eλ∆0e

−λ)g0,(2.4)

∂R

∂t
= −8R(−Q + Q) − 16∆(−Q),(2.5)

∫

M

dµ =

∫

M

e3λ dµ0 =

∫

M

e3λ0 dµ0 =

∫

M

dµ0 = V0.(2.6)

From now on, C denotes a generic constant which may vary from line

to line. Then we have

Lemma 2.1. Under the flow (1.5), there exists a positive constant β =

β(R0, λ0) such that

(2.7) F(g) =
[

8

∫

M

|Z|2 dµ −
5

24

∫

M

R2 dµ
]

≤ β2,

for 0 ≤ t ≤ T ≤ ∞.

Proof. This is because (1.5) is the negative gradient flow of F(g). That

is

d

dt

[

8

∫

M

|Z|2 dµ −
5

24

∫

M

R2 dµ
]

= −

∫

M

(

∆R + 8|Z|2 −
5

24
R2 + 4Q

)2
dµ.

Theorem 2.2. Let P0 be the Paneitz operator on (M, [g0]). Suppose

that condition (∗) is satisfied under the flow (1.5). Then there exist a positive

constant C(H,β, α) such that

λ ≥ −C(H,β, α),
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for 0 ≤ t ≤ T . Furthermore for all α > 0
∫

M

eαλ dµ0 ≤ C(H,β, α).

In particular we have

(2.8)

∫

M

e6λ dµ0 ≤ C(H,β),

for 0 ≤ t ≤ T .

Remark 2.1. In Theorem 3.1, we obtain the C0-estimate for λ which

is based on the so called Bondi-mass type estimate as in (2.8). We refer to

our previous works [CW1], [CW2] and [CW3].

Proof. From (∗) we have
∫

M

P0u · u dµ0(2.9)

=

∫

M

(∆0u)2 dµ0 −
5

4

∫

M

R0|∇0u|
2 dµ0

+ 4

∫

M

Rc0(∇0u,∇0u) dµ0 −
1

2

∫

M

Q0u
2 dµ0

≥

∫

M

(∆0u)2 dµ0 − C(Rc0)

∫

M

|∇0u|
2 dµ0 − C(Q0)

∫

M

u2 dµ0

≥
1

2

∫

M

(∆0u)2 dµ0 − C(Q0)

∫

M

u2 dµ0 − C(Rc0, Q0)

≥
1

2

∫

M

(∆0u)2 dµ0 − C(Rc0, Q0,H).

Then from (2.7) and (2.9), we have

(2.10)

∫

M

(∆0u)2 dµ0 ≤ C(β).

Furthermore from (2.10), one obtains

‖u‖W2,2(dµ0) ≤ C(H,β)

and then

(2.11) ‖u‖W1,6(dµ0) ≤ C(H,β) and λ ≥ −C(H,β).
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On the other hand from (2.11) one can compute
∫

M

|∇0λ|
3 dµ0 = 8

∫

M

e
3

2
λ|∇0e

− 1

2
λ|3 dµ0(2.12)

≤ C

∫

M

e3λ dµ0 + C

∫

M

|∇0e
− 1

2
λ|6 dµ0

= C

∫

M

e3λ dµ0 + C

∫

M

|∇0u|
6 dµ0

≤ C.

Now since
∫

M
e3λ dµ0 is fixed and λ ≥ −C(H,β), one has

|λ| ≤ C,

for λ =
R

M
λ dµ0

R

M
dµ0

. Then from (2.12), it follows that

‖λ − λ‖W1,3
≤ C.

Also it follows from Moser’s inequality ([A]) that
∫

M

eα(λ−λ) dµ0 ≤ C(α)

and
∫

M

eαλ dµ0 ≤ C(H,β, α),

for all α > 0.

§3. Harnack-type estimates and asymptotic convergence

In this section, we will prove a kind of the Harnack-type estimate of

equation (1.5) as in [CW3].

Theorem 3.1. Let P0 be any Paneitz operator on (M, [g0]). Suppose

that condition (∗) is satisfied under the flow (1.5). Then there exist positive

constants C0 = C0(H,β), C1 = C1(H,β) such that

‖λ‖W2,2
≤ C0

and

‖λ‖L∞ ≤ C1

for all 0 ≤ t ≤ T .
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Remark 3.1. We will show later that condition (∗) is satisfied if P0 is

a positive Paneitz operator on (M, [g0]).

Proof. From (2.11) and (2.8), we have

∫

M

|∇0λ|
4 dµ0 =

1

8

∫

M

e2λ|∇0e
− 1

2
λ|4 dµ0

≤ C
(

∫

M

e6λ dµ0

)
1

3

+ C
(

∫

M

|∇0e
− 1

2
λ|6 dµ0

)
2

3

= C
(

∫

M

e6λ dµ0

)
1

3

+ C
(

∫

M

|∇0u|
6 dµ0

)
2

3

≤ C.

Then

(3.1) λ ∈ W1,4(dµ0) and ‖λ‖L∞ ≤ C1(H,β).

Moreover, since

∫

M

e−λ
(

−
1

2
∆0λ +

1

4
|∇0λ|

2
)2

dµ0 =

∫

M

(∆0u)2 dµ0 ≤ C(β),

it follows from (3.1) that

∫

M

(∆0λ)2 dµ0 ≤ C0.

This completes the proof.

For higher order estimates ([Chru], [CW3]), we have

Theorem 3.2. Suppose the same assumptions of the previous Theo-

rem 3.1 hold. There exists a constant C = C(‖λ− λ‖W2,2
,H, β), l ≥ 2 such

that

‖∇l
0λ(p, t)‖L2

≤ C,

for 0 ≤ t ≤ T .

Proof. First it follows easily from Theorem 3.1 that

∫

M

R2 dµ =

∫

M

e−λ(R0 − 4∆0λ − 2|∇0λ|
2)2 dµ0 ≤ β

2
.
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This implies that
∫

M

|Z|2 dµ ≤ C(β) + C

∫

M

R2 dµ ≤ C(β, β).

Then it is straightforward that

d

dt
‖e−4λ∇0

lλ(p, t)‖2
L2

≤ −C‖∇0
l+2λ(p, t)‖2

L2
+ C‖λ − λ‖2

W2,2
.

Therefore the Theorem follows easily. We refer to [Chru] and [CW3]

for details.

Theorem 3.3. Suppose the same assumptions of the previous Theo-

rem 3.1 hold. Then

R
C∞
−→ R∞; Z

C∞
−→ Z∞; Q

C∞
−→ Q∞

where

∆∞R∞ + 8|Z∞|2 −
5

24
R2

∞ + 4Q∞ = 0

over M .

Proof. Since

−C ≤ 8

∫

M

|Z|2 dµ −
5

24

∫

M

R2 dµ ≤ β2

and

−
d

dt

[

8

∫

M

|Z|2 dµ −
5

24

∫

M

R2 dµ
]

=

∫

M

(

∆R + 8|Z|2 −
5

24
R2 + 4Q

)2
dµ,

it follows that
∫ ∞

0

∫

M

(

∆R + 8|Z|2 −
5

24
R2 + 4Q

)2
dµdt < ∞.

On the other hand from Theorem 3.1 and Theorem 3.2, it follows that

‖λ‖Wk,2(dµ0) ≤ C,

for all 0 ≤ t < T ≤ ∞. Then based on the work [S]
∫

M

(

∆R + 8|Z|2 −
5

24
R2 + 4Q

)2
dµ0 → 0 as t → ∞.
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Furthermore from elliptic estimates and interpolation inequalities

R
C∞
−→ R∞; Z

C∞
−→ Z∞; Q

C∞
−→ Q∞

where

∆∞R∞ + 8|Z∞|2 −
5

24
R2

∞ + 4Q∞ = 0

over M .

§4. The positive Paneitz operator

In this section, we prove that condition (∗) is satisfied if P0 is a strictly

positive Paneitz operator on (M, [g0]) and then the main Theorem 1.2 fol-

lows easily.

Lemma 4.1. Let the Paneitz operator P0 on (M, [g0]) be strictly posi-

tive. Then under the flow (1.5), there exists a positive constant H = H(β)

such that
∫

M

e−λ dµ0 ≤ H,

for 0 ≤ t ≤ T ≤ ∞.

Proof. Since P0 is a positive operator, there exists a positive constant

λ1 > 0 such that

(4.1) F(g) =
(

∫

M

u−6 dµ0

)
1

3

∫

M

P0u · u dµ0 ≥ V0λ1

∫

M

u2 dµ0.

But from Lemma 2.1, one has

F(g) ≤ β2,

for all 0 ≤ t ≤ T ≤ ∞. It follows from (4.1) that

∫

M

e−λ dµ0 =

∫

M

u2 dµ0 ≤ H,

for 0 ≤ t ≤ T ≤ ∞.

Combining Theorem 3.3 and Lemma 4.1, we have convergence of solu-

tions of the Q-curvature flow (1.5) on (M, [g0]) as follows:
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Theorem 4.2. Let the Paneitz operator P0 on (M, [g0]) be strictly pos-

itive. Then the solution of (1.5) exists on M×[0,∞) and converges smoothly

to a metric of constant Q-curvature

Q∞ = Q∞.

Now if R0 > 0, σ2(A0) > 0, Q0 ≤ 0 and Q0 is not identically zero. Then

P0 is strictly positive. As a consequence of Theorem 1.2, it follows that

Theorem 4.3. Let (M, [g0]) be a closed 3-manifold with R0 > 0,

σ2(A0) > 0, Q0 ≤ 0 and Q0 is not identically zero. Then the solution of

(1.5) exists on M × [0,∞) and converges smoothly to a metric of constant

Q-curvature.

Remark 4.1. Next we consider Paneitz operator P0 with negative first

eigenvalue, for example when Q0 > 0. Following the methods as in [CW2]

or [CW3], one can compute (from (1.2))

d

dt

∫

M

e−λ dµ0 = 4

∫

M

e−λQdµ0 − 4Q

∫

M

e−λ dµ0

= −8

∫

M

e−
9

2
λP0e

− 1

2
λ dµ0 − 4Q

∫

M

e−λ dµ0.

Then
d

dt

∫

M

e−λ dµ0 ≤ C − 4Q

∫

M

e−λ dµ0

provided we have

(4.2) −8

∫

M

e−
9

2
λP0e

− 1

2
λ dµ0 ≤ C.

Moreover, if we assume that
∫

M

Qdµ > 0

for t = 0. Thus

−4Q < 0

for all t > 0 and

d

dt

∫

M

e−λ dµ0 ≤ C − C

∫

M

e−λ dµ0.

It follows that condition (∗) holds if we can have the estimate (4.2) when

the operator P0 has negative first eigenvalue. We will deal this case in a

forthcoming paper.



14 S.-C. CHANG AND C.-T. WU

References

[A] T. Aubin, Nonlinear analysis on manifolds, Monge-Ampère Equations, Die

Grundlehren der Math. Wissenschaften, Vol. 252, Springer-Verlag, New York,

1982.

[B] T. Branson, Differential operators canonically associated to a conformal structure,

Math. Scand., 57 (1985), 293–345.

[BCY] T. Branson, S.-Y. A. Chang and P. Yang, Estimates and extremals for zeta func-

tions determinants on four-manifolds, Comm. Math. Phys., 149 (1992), 241–262.

[Br] S. Brendle, Global existence and convergence for a higher-order flow in conformal

geometry, Ann. of Math. (2), 158 (2003), no. 1, 323–343.

[Ca] E. Calabi, Extremal Kähler metrics, Seminars on Differential Geometry (S. T. Yau,

ed.), Princeton Univ. Press and Univ. of Tokyo Press, Princeton, New York (1982),

pp. 259–290.

[CCC] S.-C. Chang, J.-H. Cheng and H.-L. Chiu, The Q-curvature flow on CR 3-

manifolds, preprint.

[Ch] S.-C. Chang, Recent developments on the Calabi flow, Contemporary Mathemat-

ics, Vol. 367, AMS (2005), pp. 17–42.
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