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Abstract. Let G be a finite reflection group acting in a complex vector space
V = Cr, whose coordinate ring will be denoted by S. Any element γ ∈ GL(V )
which normalises G acts on the ring SG of G-invariants. We attach invariants
of the coset Gγ to this action, and show that if G′ is a parabolic subgroup of G,
also normalised by γ, the invariants attaching to G′γ are essentially the same
as those of Gγ. Four applications are given. First, we give a generalisation
of a result of Springer-Stembridge which relates the module structures of the
coinvariant algebras of G and G′ and secondly, we give a general criterion for an
element of Gγ to be regular (in Springer’s sense) in invariant-theoretic terms,
and use it to prove that up to a central element, all reflection cosets contain a
regular element. Third, we prove the existence in any well-generated group, of
analogues of Coxeter elements of the real reflection groups. Finally, we apply
the analysis to quotients of G which are themselves reflection groups.

§1. Introduction

Let G be a finite group generated by (pseudo)reflections in a vector

space of dimension r < ∞ over the algebraically closed field K of charac-

teristic zero. The purpose of this work is to discuss the “twisted case” of

various phenomena associated with the structure and invariant theory of G.

That is, we take an element γ ∈ GL(V ) which normalises G, and consider

how it acts on the invariants and covariants (for various representations) of

G, and properties of its eigenspaces. In particular we study generalisations

of the results of [LS1] and [LM], and the action of 〈G, γ〉 on covariants. Our

basic method is a variation on the theme of [L], which enables us to relate

various sets of constants associated to G with the corresponding ones for
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parabolic subgroups. In many cases, we identify the relevant constants as

eigenvalues of certain transformations.

Specifically, to any finite dimensional 〈G, γ〉-module M we associate

a (multi)set of m = dimM constants ει(M), which depend only on the

coset Gγ. Various algebraic and geometric properties of Gγ may then be

expressed in terms of the constants ει. For example the condition that

ζ ∈ K× be regular for Gγ may be expressed in terms of the ει(V ) and

ει(V
∗) (see Section 5 below). A theme of this work is that if G′ is a parabolic

subgroup of G which is normalised by γ, then the constants ει(M) are the

same whether M is regarded as a module for 〈G, γ〉 or 〈G′, γ〉 (see (4.4)

below. This idea is behind many of the results and their proofs.

One set of applications of our results is to the question of regular el-

ements and regular eigenvalues for reflection cosets. The vector v ∈ V is

(G-)regular if v does not lie on any reflecting hyperplane of G. The element

γ ∈ γG is regular if it has a regular eigenvector; if γv = ζv, then ζ is called

a regular eigenvalue and its order (when γ has finite order) is a regular

number. In this work we give precise criteria for an eigenvalue to be regular

for a coset, and apply these to various questions. When γ ∈ G, it is triv-

ial that the identity element of G is a regular element, with corresponding

eigenvalue 1. In general, it is not even obvious that any regular elements

exist. We show that, with obviously necessary qualifications, they do1.

In the case of “well-generated groups” we use our criterion for regularity

which is couched in terms of the ει to produce a twisted analogue of Coxeter

elements of a real reflection group, and a twisted analogue for a reflection

coset of the Coxeter number of a real reflection group.

Another significant application of our results concerning parabolic sub-

groups is to the module structure of the coinvariant algebra for the group

〈G,Γ〉, where Γ is a finite subgroup of the normaliser of G in GL(V ). Our

result, Theorem 4.6, generalises one of Stembridge (in the untwisted regular

case), whose proof goes back to Springer’s computation of the eigenvalues

of a regular element in any representation. One interpretation of Stem-

bridge’s result is that it gives an expression for the G-module structure

of the sum of certain graded components of the coinvariant algebra. Our

result generalises this in two ways; first, by considering a larger class of

sums by removing the restriction of regularity, and second, by considering

1We have recently discovered that this result also appears in the work [Ma] of G. Malle,
whom we thank for a preprint. Our proof involves less case by case checking.
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the twisted structure of the coinvariant algebra. The statement in (4.6)

expresses the sum of certain graded components of the coinvariant algebra

of G as a representation induced from the coinvariant algebra of a parabolic

subgroup.

In the final section, we explore the relationship between our twisted

invariants and the reflection quotients of reflection groups studied in [BBR].

These are quotients G/L of G which act as reflection groups on the tangent

space at 0 of V/L, where L is a normal subgroup of G. Here we are able

to relate the constants and other invariants of G with those of its reflection

quotients in the above sense.

§2. Background and notation

Let K be an algebraically closed field of characteristic 0, and V be a

K-vector space of dimension r. Let G ⊂ GL(V ) be a finite subgroup gen-

erated by (pseudo)reflections. Denote by A (or A(G) when appropriate)

the corresponding set of reflecting hyperplanes, and for each H ∈ A choose

a linear form LH ∈ V ∗ with kernel H. Let S be the algebra of polyno-

mial functions on V ; it may be identified with the symmetric algebra of

the dual vector space V ∗. The subalgebra SG of G-invariant functions is a

polynomial algebra. Let N be the normaliser of G in GL(V ); this is a (not

necessarily connected) reductive group. Denote by I the ideal of S gener-

ated by elements of SG with no constant term, and let H be the space of

G-harmonic polynomials, i.e., the polynomials which are annihilated by all

G-invariant polynomial differential operators on S with no constant term.

Then H is N -stable and I⊕H = S. So, by Chevalley’s theorem, the natural

map SG ⊗H → S is an isomorphism of N -modules. The algebra SG = S/I

is called the algebra of coinvariants. Again by a result of Chevalley, it is

isomorphic as a G-module to K[G], so that H is also a G-submodule of S,

isomorphic to the regular representation of G, which is stable under N .

Let M be any finite dimensional G-module; then (S⊗M ∗)G ' SG⊗(H⊗
M∗)G is free as SG-module, and since H realises the regular representation

of G, it is of rank m = dimM . Notice that S ⊗ M ∗ is graded: we declare

deg F ⊗ y = deg F , for F a homogeneous element of S and y ∈ M ∗. If

u1, . . . , um is a homogeneous linear basis of (H⊗M ∗)G, it is clearly an SG-

basis of (S ⊗ M ∗)G. The numbers mi(M) := deg ui are the M -exponents

of G.

The following observations concerning G and N are useful, and will

often be used without comment.
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Remark 2.1. Since G is generated by reflections, there is a unique de-
composition V = V G ⊕ V1 ⊕ · · · ⊕ Vk, where the Vi are irreducible, pair-
wise non-isomorphic, non-trivial G-submodules of V , and correspondingly
G = G1 × · · · × Gk, where Gi acts as an irreducible reflection group on Vi,
and acts trivially on the other summands. Of course distinct pairs (Gi, Vi)
may be isomorphic as reflection groups.

Clearly CGL(V )(G) ' GL(V G)×K××· · ·×K× (k copies of K×), while

N = GL(V G) × NGL(V1⊕···⊕Vk)(G1 × · · · × Gk). Moreover N/CGL(V )(G) is
evidently a finite group, since it acts faithfully as a group of automorphisms
of G. Thus if γ ∈ N , there exists n ≥ 1 such that γn centralises G.

Now any element γ ∈ N is of the form xγ ′, where x ∈ GL(V G) ≤
CGL(V )(G) and γ′ ∈ NGL(V1⊕···⊕Vk)(G1 × · · · × Gk). Since γ ′ permutes
the subspaces Vi and HomG(Vi, Vj) has dimension at most 1, there exists
z′ ∈ K× × · · · × K× such that γ ′z′ has finite order, and taking z = xz ′,
we see that for any γ ∈ N there is an element z ∈ CGL(V )(G) such that

zγ is of finite order. If G is essential, i.e. if V G = 0, then x = 1 above,
so z is semisimple, and N is a finite extension of a torus which centralises
G; in this case, every element of N is semisimple. In general, since every
unipotent element of N centralises G, the action of any element γ ∈ N on
G coincides with the action of its semisimple part on G.

Remark 2.1 shows that the action on G of an arbitrary element γ of

GL(V ) is induced by a semisimple element of finite order, and so no gener-

ality is lost by making the

Hypothesis. Henceforth we take γ to be a fixed semisimple element

of GL(V ), which normalises G.

The coset Gγ will be referred to as a reflection coset. Let M be a

〈G, γ〉-module on which γ acts semisimply. We shall define some important

constants associated with the coset Gγ.

Since γ acts semisimply on (H⊗M ∗)G, the basis elements ui above may

be taken to be eigenvectors for γ. For each such M , denote by B(M,γ) a

fixed homogeneous basis of (H ⊗ M ∗)G which consists of eigenvectors of

γ. Given ι ∈ B(M,γ), denote by ει(M), or ει when unambiguous, the

corresponding eigenvalue of γ, and by mι(M) = mι the degree of ι. Thus

γι = ειι for ι ∈ B(M,γ), and for any g ∈ G, gγι = ειι, whence the multiset

of pairs {(ει,mι) | ι ∈ B(M,γ)} depends only on (the isomorphism class

of) M and the coset Gγ, and not on the choice of γ ∈ Gγ or on the basis

B(M,γ).
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Definition 2.2. For any 〈G, γ〉-module M , the multiset {ει(M) = ει |
ι ∈ B(M,γ)} will be referred to as the multiset of M -factors of Gγ.

Remark 2.3. Let ζ ∈ K× and let M be a 〈G, γ, ζ IdV 〉-module on
which ζ IdV acts as multiplication by a scalar, say ζM . Then we may
take B(M, ζ−1γ) = B(M,γ) and we have ει(ζ

−1γ) = ζMζmιει(γ) for ev-
ery ι ∈ B(M,γ).

The cases M = V and M = V ∗ will figure prominently below. In these

cases, for simplicity, we write B(γ) = B(V, γ), B∗(γ) = B(V ∗, γ). When

γ = IdV , we write B(M) = B(M, IdV ).

Example 2.4. Let d : S → S ⊗ V ∗ be the unique derivation of S-
modules such that dX = 1⊗X for every element X ∈ V ∗. If (X1, . . . , Xr) is
a basis of V ∗, then for P ∈ S, dP =

∑r
i=1

∂P
∂Xi

⊗Xi. Evidently d commutes
with the action of GL(V ). Let S+ denote the ideal of S comprising the
functions vanishing at 0. Since N is reductive, there exists an N -stable
graded subspace Y of SG such that SG

+ = (SG
+)2 ⊕ Y . Let (P1, . . . , Pr)

be a homogeneous basis of Y . Then it is well-known that the natural
map S(Y ) → SG is an N -equivariant isomorphism of algebras (here S(Y )
denotes the symmetric algebra on Y ), i.e. that SG ∼= K[P1, . . . , Pr], and
that (dP1, . . . , dPr) is an SG-basis of (S⊗V ∗)G. Denote by d̄ the composite

map d̄ : Y
d→ (S ⊗ V ∗)G

η→ (H ⊗ V ∗)G where η : S ⊗ V ∗ → H ⊗ V ∗

is the extension to S ⊗ V ∗ of the natural map S → S/I ' H. Then d̄
is an isomorphism of degree −1 of N -modules. For each ι ∈ B(γ), let
Pι = d̄−1(ι). Then {Pι | ι ∈ B(γ)} is another basis of Y , which consists of
γ-eigenfunctions. The Pι form a set of homogeneous basic G-invariants in
S, and since d̄ has degree −1,

(2.5) deg Pι = mι + 1

where mι are the usual exponents of G. Further, since d̄ respects the action
of N , we have

(2.6) γ(Pι) = ειPι.

Definition 2.7. For ι ∈ B(γ), write dι = mι + 1. The multiset of
degrees of G is {dι = deg Pι | ι ∈ B(γ)}.

Correspondingly, for ι ∈ B∗(γ), write d∗ι = mι − 1. In this case the
mι are called the coexponents of G, and the multiset of codegrees of G is
{d∗ι | ι ∈ B∗(γ)}.
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We shall be making use of the following result of Gutkin. In dis-

cussing it, we take γ = 1 above, i.e. the theorem will be stated in the

“untwisted” context. For any G-module M of finite dimension m, let

N(M) =
∑

ι∈B(M) mι. Given H ∈ A, denote by GH the cyclic (reflec-

tion) subgroup of G comprising the elements which fix H pointwise, and

set NH(M) = N(ResG
GH

M). If ξH is the unique non-trivial component

character of the representation of GH on V , then any character ξ of GH

is uniquely expressible as ξ = ξe
H , where 0 ≤ e ≤ eH − 1. Accordingly,

if we write ResG
GH

M∗ =
⊕m

i=1 ξei

H with 0 ≤ ei ≤ eH − 1, then clearly

NH(M) =
∑m

i=1 ei. Observe that for any G-module M , S ⊗ ΛM ∗ is a bi-

graded associative algebra, where deg(F ⊗ x1 ∧ · · · ∧ xj) = (i, j) for F ∈ S

homogeneous of degree i and x1, . . . , xj ∈ M∗. The following theorem is

due to Gutkin (cf. [OS, 2.10]):

Theorem 2.8. (Gutkin) Let y1, . . . , ym be a basis of M ∗. Then the

product
∏

ι∈B(M) ι in S ⊗ ΛM ∗ lies in (S ⊗ ΛmM∗)G and satisfies

∏

ι∈B(M)

ι =̇
∏

H∈A
L

NH(M)
H ⊗ y1 ∧ y2 ∧ · · · ∧ ym,

where =̇ denotes equality up to multiplication by some λ ∈ K×. In partic-

ular by comparing degrees, we have N(M) =
∑

H∈A NH(M).

The polynomial
∏

H∈A L
NH(M)
H will be denoted by ΨM .

Example 2.9. If H ∈ A, let eH = |GH |. Then since NH(V ) = eH − 1
and NH(V ∗) = 1, we get

ΨV =
∏

H∈A
LeH−1

H and ΨV ∗ =
∏

H∈A
LH .

We shall also require the next result, which is due to Orlik and Solomon

(cf. [OS, 3.1]).

Theorem 2.10. (Orlik and Solomon) Let M be a G-module of dimen-

sion m. If N(Λm(M)) = N(M), then

(S ⊗ Λ(M ∗))G ' SG ⊗ Λ
(
(H⊗ M∗)G

)
.

Equivalently, in the above notation,

(H⊗ ΛM∗)G ' Λ
(
(H⊗ M∗)G

)
.
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The next lemma (cf. [OS, pp. 79–82]) shows that Theorem 2.10 can be

applied to a certain class of representations of G which include the Galois

conjugates of V .

Lemma 2.11. Suppose M is any G-module in which the reflections of

G act as reflections. Then N(ΛmM) = N(M), where m = dimM .

Since the Galois conjugates of V clearly satisfy the conditions of (2.11),

an immediate consequence is

Corollary 2.12. If σ ∈ Gal(K/Q), then N(Λr(V σ)) = N(V σ).

For the convenience of the reader, and also since our proofs may be

slightly more straightforward than those in the literature, we provide proofs

of Theorem 2.8 and Lemma 2.11 in Appendix 2 below.

Some bilinear forms

We complete this section by defining some bilinear forms which will be

used extensively below. If Γ is a subgroup of N and M is a 〈G,Γ〉-module,

the S-bilinear form (S ⊗ M) × (S ⊗ M ∗) → S, given by (f ⊗ x, f ′ ⊗ ϕ) 7→
ϕ(x)ff ′ is 〈G,Γ〉-equivariant. Therefore it induces by restriction an SG-

bilinear form 〈 , 〉M : (S ⊗M)G × (S ⊗M∗)G → SG which is Γ-equivariant.

Take an element γ ∈ Γ. For ι ∈ B(M,γ) and  ∈ B(M ∗, γ), we set

MM
ι = 〈ι, 〉M .

Evidently the matrix MM = (MM
ι )(ι,)∈B(M,γ)×B(M∗,γ) has entries in SG,

and we have

(2.13) γ(MM
ι ) = ειεMM

ι .

Let ∆M ∈ SG denote the determinant of MM .

Lemma 2.14. We have

(2.15) ∆M = ∆M∗ =̇ ΨMΨM∗ .

Proof. Let (v1, . . . , vm) be a basis of M and (v∗1 , . . . , v
∗
m) the dual basis

of M∗. For ι ∈ B(M) write ι =
∑m

k=1 q∗ιk ⊗ v∗k and for  ∈ B(M ∗) write
 =

∑m
k=1 qk ⊗vk where qk, q∗ιk ∈ H ⊂ S. Let Q = (qk)∈B(M∗), 1≤k≤m and

Q∗ = (q∗ιk)ι∈B(M), 1≤k≤m. Then ΨM =̇ detQ∗ and ΨM∗ =̇ det Q. There-
fore, ΨMΨM∗ =̇ (detQ)(det Q∗). Now 〈ι, 〉M =

∑m
k=1 qkq

∗
ιk := rι, where

Q tQ∗ = (rι)∈B(M∗), ι∈B(M). Therefore ∆M =̇ det(Q tQ∗), as stated.
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Example 2.16. Write M = MV and ∆ = ∆V . Then M is called the
discriminant matrix of G and its determinant ∆ is the discriminant of G.
From the above, we see

∆ =̇
∏

H∈A
LeH

H

(see (2.15) and Example 2.9).

§3. A twisted polynomial identity

We start with the following “twisted” version of a result of Orlik and

Solomon (cf. [OS, 3.3]).

Theorem 3.1. Let M be a 〈G, γ〉-module of dimension m such that

N(Λm(M)) = N(M). Then

|G|−1
∑

g∈G

det(1 − ygγ | M ∗)
det(1 − xgγ | V ∗)

=

∏
ι∈B(M,γ)(1 − yειx

mι)
∏

ι∈B(γ)(1 − ειxdι)
.

Proof. We have seen that S⊗ΛM ∗ is a bigraded K-vector space. Thus
we may define the bi-graded trace Tr(α;x, y) ∈ K[[x, y]] of a bi-graded
endomorphism α by

Tr(S⊗ΛM∗)G(α;x, y) =
∞∑

i,j≥0

Tr
(
α, (S ⊗ ΛM ∗)Gi,j

)
xiyj.

We now compute Tr(S⊗ΛM∗)G(γ;x, y) in two different ways using (2.10).
On the left side we use a variant of Molien’s formula, while on the right, we
use well-known methods for computing graded traces in tensor and exterior
algebras (cf. e.g., [LM]).

For ζ ∈ K× and g ∈ GL(V ) denote by V (g, ζ) the ζ-eigenspace of g.

Clearly V (g, ζ) coincides with the subspace V ζ−1g of points of V fixed by

ζ−1g.

For any finite dimensional 〈G, γ〉-module M , write U(M,γ) for the

set {ι ∈ B(M,γ) | ει = 1} and U#(M,γ) = B(M,γ) \ U(M,γ). Then

U(M,γ) is a homogeneous basis of (H⊗M ∗)〈G,γ〉. In particular, |U(M,γ)| =

dim(H⊗ M ∗)〈G,γ〉.
Since G is finite, as a G-module, V ∗ is a Galois conjugate of V . However

this is not the case for V ∗ regarded as a GL(V )-module. Since we include
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elements γ in our discussion, the inverses of whose eigenvalues may not be

Galois conjugate (setwise) to those of γ, we need to distinguish between

the Galois conjugates of V and those of V ∗. For σ ∈ Gal(K, Q), write

B(σ, γ), U(σ, γ) and U#(σ, γ) for B(V σ, γ), U(V σ, γ) and U#(V σ, γ) re-

spectively. Similarly, write B∗(σ, γ), U ∗(σ, γ) and U ∗
#(σ, γ) for B((V ∗)σ, γ),

U((V ∗)σ , γ) and U#((V ∗)σ, γ) respectively. Finally, write U(γ), U#(γ),

U∗(γ) and U ∗
#(γ) for U(V, γ), U#(V, γ), U(V ∗, γ) and U#(V ∗, γ). Thus,

for example, U ∗(γ) = U(V ∗, γ), which is a basis of (H ⊗ V )〈G,γ〉, and

U(γ) = U(V, γ), which is a basis of (H⊗ V ∗)〈G,γ〉.

Proposition 3.2. For any γ ∈ N and any σ ∈ Gal(K/Q), we have:

(i) If V 6= V G, then |U ∗(γ)| ≥ 1.

(ii) |U(γ)| ≤ |U(σ, γ)| and |U(γ)| ≤ |U ∗(σ, γ)|.

Proof. (i) If (v1, . . . , vr) and (X1, . . . , Xr) are dual bases of V and
V ∗ respectively, the element

∑
i Xi ⊗ vi ∈ S ⊗ V is invariant under the

whole of GL(V ), and hence a fortiori under 〈G, γ〉. Moreover if V G = 0,
this element lies in H ⊗ V , and so dim(H ⊗ V )〈G,γ〉 ≥ 1. More generally,
whenever V 6= V G, it represents a non-zero invariant element of degree 1 of
SG ⊗ V , whence the statement.

(ii) follows from the same argument as in [LM, Proof of Theorem 2.3],
applied to Theorem 3.1 taking M = V σ and M = (V ∗)σ respectively. Note
that both these choices of M satisfy the condition of (3.1) by Lemma 2.11.

The following result is deduced from Theorem 3.1 as in [LM, Theo-

rem 2.3]. Note that (3.4) is obtained by applying Theorem 3.1 with M = V σ

while (3.5) is obtained by applying Theorem 3.1 with M = (V ∗)σ. Theo-

rem 3.1 applies to both cases by Lemma 2.11.

Theorem 3.3. If h : V → V is a linear transformation, denote by

det′(h) the product of the non-zero eigenvalues of h. Then we have the

following polynomial identities in K[T ] for any σ ∈ Gal(K/Q). In the
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formulae below det always refers to the determinant on V .

∑

g∈G

T dimV gγ

det′(1 − gγ)σ−1 =(3.4)





0 if |U(γ)| 6= |U(σ, γ)|,
∏

ι∈U(σ,γ)

(T + mι)
∏

ι∈U#(σ,γ)

(1 − ε−1
ι )

∏

ι∈U#(γ)

dι

1 − ε−1
ι

otherwise.

(−1)r
∑

g∈G

(−T )dimV gγ

det′(1 − gγ)σ−1 det(gγ)−σ =(3.5)





0 if |U(γ)| 6= |U ∗(σ, γ)|,
∏

ι∈U∗(σ,γ)

(T + mι)
∏

ι∈U∗
#(σ,γ)

(1 − ε−1
ι )

∏

ι∈U#(γ)

dι

1 − ε−1
ι

otherwise.

We record two special cases of this theorem. They are obtained by

taking σ = IdK in (3.4) and (3.5) respectively. Note that (3.7) shall be

reinterpreted in (5.8) below.

(3.6)
∑

g∈G

T dimV gγ

=
∏

ι∈U(γ)

(T + dι − 1)
∏

ι∈U#(γ)

dι.

(−1)r
∑

g∈G

det(gγ)−1(−T )dimV gγ

=(3.7)





0 if |U(γ)| 6= |U ∗(γ)|,
∏

ι∈U∗(γ)

(T + d∗ι + 1)
∏

ι∈U∗
#(γ)

(1 − ε−1
ι )

∏

ι∈U#(γ)

dι

1 − ε−1
ι

otherwise.

We refer to the elements of V −⋃
H∈A H as (G-)regular, and call ζ ∈ C×

regular for the coset Gγ if there is an element of Gγ which has a regular

eigenvector with corresponding eigenvalue ζ. In complete analogy with

[LM], we deduce the next statement from (3.7).

Proposition 3.8. The eigenvalue 1 ∈ K× is regular for Gγ if and

only if |U(γ)| = |U ∗(γ)|, or equivalently dim(H ⊗ V ∗)〈G,γ〉 = dim(H ⊗
V )〈G,γ〉.
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Remark 3.9. The element γ ∈ N may be replaced by ζ−1γ, where ζ is
any element of K×, and the formulae of Theorem 3.3 are then correspond-
ingly modified, in a way we shall now describe. Recall that as pointed out
above, V ζ−1gγ = V (gγ, ζ). Further, it follows from Remark 2.3 that for
any element σ ∈ Gal(K/Q), ει(ζ

−1γ) = ζmι+σει(γ) for each basis element
ι ∈ B(σ, γ). Similarly, ει(ζ

−1γ) = ζmι−σει(γ) for every ι ∈ B∗(σ, γ). There-
fore, from Definition 2.7, we have ει(ζ

−1γ) = ει(γ)ζdι for every ι ∈ B(γ)
and we have ει(ζ

−1γ) = ει(γ)ζd∗ι for every ι ∈ B∗(γ).

Remark 3.9 immediately yields the following general form of the crite-

rion (3.8) for regularity, which is the twisted generalisation of the one given

in [LS2], [LM].

Corollary 3.10. The element ζ ∈ K× is regular for Gγ if and only

if |{ι ∈ B(γ) | ειζ
dι = 1}| = |{ ∈ B∗(γ) | εζ

d∗ = 1}|.

§4. Parabolic subgroups

Let v be any point in V and let CG(v) = {g ∈ G | g(v) = v}; this is a

parabolic subgroup of G, and contains as a normal subgroup the group Gv

defined as the subgroup of CG(v) which is generated by reflections which

fix v. Of course by Steinberg’s Theorem (cf. e.g. [L]), the groups Gv and

CG(v) coincide, but we shall not assume this for the moment, since as a

special case of the results of this section we recover the proof of Steinberg’s

theorem, given in op. cit.

Now Gv is a reflection group and A(Gv) = {H ∈ A(G) | v ∈ H}. Let

N〈v〉 = {g ∈ N | g(v) ∈ Kv}. Then N〈v〉 contains the reflection group Gv

as a normal subgroup.

Let Iv be the ideal of S generated by the homogeneous elements of

positive degree of SGv and write Hv for the space of Gv-harmonic poly-

nomials, i.e. polynomials which are annihilated by all Gv-invariant poly-

nomial differential operators with no constant term. Evidently Hv ⊆ H,

and N〈v〉 stabilises the decomposition S = Iv ⊕ Hv; further, the natural

map SGv ⊗Hv → S is an isomorphism of N〈v〉-modules. Notice that if v is

G-regular, Gv = {1}, and Hv = K.

Notation 4.1. Let N be any group and M =
⊕

i∈Z
Mi a Z-graded

K[N ]-module. For any linear character θ : N → K× define M
gr
⊗ θ to be

the graded N -module
⊕

i Mi ⊗ θi.
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Consider the linear map ηv : S → Hv given by f ⊗h ∈ S ' SGv ⊗Hv 7→
f(v)h. We also denote by ηv : H → Hv its restriction to H. Then ηv clearly

respects the action of Gv on both sides; we investigate how the action of

N〈v〉 is transformed. Let θv : N〈v〉 → K× be the linear character defined by

g(v) = θv(g)v for every g ∈ N〈v〉.

Lemma 4.2. With the above notation, ηv induces an epimorphism of

N〈v〉-modules from H
gr
⊗ θv to Hv

gr
⊗ θv.

Proof. Clearly ηv is linear, and since H ⊇ Hv, it is also evident that
ηv : H → Hv is an epimorphism. It therefore remains only to show that ηv

respects the indicated actions of N〈v〉 on the two spaces.
For n ∈ N〈v〉, we denote simply by n its action on S, and by ρ(n)

(resp. ρv(n)) its action on H
gr
⊗ θv (resp. Hv

gr
⊗ θv). Then for any element

F = f ⊗ h ∈ (SGv ⊗Hv) ∩H, with f and h homogeneous, we have

ηv(ρ(n)(f ⊗ h)) = ηv(θv(n)deg f+deg hn(f) ⊗ n(h))

= θv(n)deg f+deg hn(f)(v)n(h)

= θv(n)deg f+deg hf(n−1(v))n(h)

= θv(n)deg f+deg hf(θv(n)−1v)n(h)

= θv(n)deg hf(v)n(h)

= ρv(n)(f(v)h)

= ρv(n)(ηv(f ⊗ h)).

Now let Γ be any subgroup of N〈v〉 and let M be a finite dimensional

〈G,Γ〉-module. Consider H⊗M as a graded module by having regard only

to the degree in H of its elements. Then the Γ-modules (H
gr
⊗ θv) ⊗ M =

(H⊗M)
gr
⊗ θv are canonically isomorphic. Observe that by Lemma 4.2, the

map ηM
v := ηv⊗Id : (H

gr
⊗ θv)⊗M → (Hv

gr
⊗ θv)⊗M respects the action of Γ

on both sides. Moreover ηM
v clearly maps the Γ-submodule (H⊗M)G

gr
⊗ θv

into (Hv ⊗ M)Gv
gr
⊗ θv.

Theorem 4.3. Let Γ be any subgroup of N〈v〉 and let M be a finite

dimensional 〈G,Γ〉-module. Then the map ηM
v introduced above induces an

isomorphism of Γ-modules from (H⊗ M)G
gr
⊗ θv to (Hv ⊗ M)Gv

gr
⊗ θv.
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Proof. Since ηM
v is Γ-equivariant by (4.2), it suffices to check that it

is an isomorphism of vector spaces. Let m = dimM and let y1, . . . , ym be
a basis of M . Let u1, . . . , um (resp. uv

1, . . . , u
v
m) be homogeneous bases of

(H ⊗ M)G (resp. (Hv ⊗ M)Gv ). Since (H ⊗ M)G ⊂ (SGv ⊗Hv ⊗ M)Gv =
SGv ⊗ (Hv ⊗ M)Gv , we may write ui =

∑
j qjiu

v
j for some qji ∈ SGv .

We now apply Gutkin’s Theorem (see (2.8)) in turn to G and Gv ; since
u1 · · · um = det(qij)i,ju

v
1 · · · uv

m we obtain

det(qij)i,j =
∏

H∈A(G)−A(Gv)

L
NH(M)
H .

But for every H ∈ A(G) −A(Gv), LH(v) 6= 0. Hence det(qij)i,j(v) 6= 0.
Finally, recall that ηM

v (ui) =
∑m

j=1 qji(v)uv
j by definition, whence ηM

v

is invertible.

We may apply this result using a similar argument to that given in [L],

to relate the M -factors of G and its parabolic subgroups. Let ζ ∈ K× and

let v ∈ V be a ζ-eigenvector of γ, so that γ(v) = ζv. Let M be a 〈G, γ〉-
module. Let Gv be the stabiliser of v in G; since γ ∈ NGL(V )(Gv), M is also

a 〈Gv, γ〉-module, and we may consider the basis Bv(M,γ) of (Hv ⊗M∗)Gv

consisting of homogeneous γ-eigenvectors. We also define U v(M,γ) and

Uv
#(M,γ) as analogues for the pair (Gv , γ) of the sets defined earlier for

(G, γ).

Corollary 4.4. Let γ ∈ N〈v〉, let ζ = θv(γ) and let M be a 〈G, γ〉-
module. Then the multisets {ειζ

mι | ι ∈ B(M,γ)} and {ειζ
mι | ι ∈

Bv(M,γ)} are equal.

Proof. Since θv(γ) = ζ, {ειζ
mι | ι ∈ B(M,γ)} is the multiset of eigen-

values of γ on (H ⊗ M ∗)G
gr
⊗ θv and {ειζ

mι | ι ∈ Bv(M,γ)} is the multiset

of eigenvalues of γ on (Hv ⊗ M∗)Gv
gr
⊗ θv. Applying Theorem 4.3, with

M replaced by M ∗ and Γ by 〈γ〉, we obtain that these two multisets are
equal.

Corollary 4.5. (Proof of Steinberg’s theorem, cf. [L]) In the notation

of the first paragraph of this section, we have CG(v) = Gv.

Proof. Take γ ∈ CG(v). It remains to show γ ∈ Gv. Since γv = v we
take ζ = 1 and M = V in (4.4), to obtain, taking into account (2.6), that
the multiset {ει | ι ∈ Bv(M,γ)} consists entirely of 1’s, since evidently γ
acts trivially on SG. Hence γ acts trivially on SGv , whence γ ∈ Gv .
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The coinvariant algebra as 〈G, γ〉-module

We shall apply the above considerations to prove a result which gener-

alises that of Stembridge [Ste, 2.3] in two ways. Given a regular number d

for G, the result in loc. cit. expresses the sum of the graded components of

SG (or H) of degree congruent to k modulo d as an induced representation.

Here we prove an analogous result without the restriction that d be regu-

lar; we further extend the statement to the action of 〈G,Γ〉, where Γ is any

finite subgroup of N〈v〉.

Fix such a subgroup Γ of N〈v〉. Note that since θv is trivial on Gv ∩Γ, it

defines a linear character of 〈Gv,Γ〉 through the isomorphism Γ/(Gv ∩Γ) '
〈Gv,Γ〉/Gv . This will also be referred to as θv. It thus makes sense to

consider the 〈Gv ,Γ〉-module Hv

gr
⊗ θv, and more generally for any k ∈ Z,

the 〈Gv,Γ〉-modules (Hv

gr
⊗ θv) ⊗ θk

v . However, θk
v defines a character of

〈G,Γ〉 only when G ∩ Γ ⊂ Ker θk
v .

Theorem 4.6. Let Hi denote the homogeneous component of degree

i of the space H of G-harmonic polynomials. Then maintaining the above

notation, for any integer k ∈ Z there is an isomorphism of 〈G,Γ〉-modules

(4.7)
⊕

{i≥0 |G∩Γ⊂Ker θk+i
v }

Hi ⊗ θk+i
v

∼= Ind
〈G,Γ〉
〈Gv ,Γ〉

(
(Hv

gr
⊗ θv) ⊗ θk

v

)
.

Proof. It suffices to show that both sides have the same inner product
with any irreducible 〈G,Γ〉-module M . Let X denote the 〈G,Γ〉-module on
the left hand-side of the above equation. Then 〈X,M〉〈G,Γ〉 = dim

(
(X ⊗

M∗)G
)Γ

. Therefore,

〈X,M〉〈G,Γ〉 =
1

|Γ|
∑

γ∈Γ

Tr
(
γ, (X ⊗ M ∗)G

)

=
1

|Γ|
∑

γ∈Γ

∑

ι∈B(M,γ)k

ει(γ)θv(γ)mι+k,

where B(M,γ)k = {ι ∈ B(M,γ) | G ∩ Γ ⊂ Ker θmι+k
v }. Let [Γ/(G ∩ Γ)] be

a set of representatives of Γ/(G ∩ Γ). If γ ∈ [Γ/(G ∩ Γ)] and g ∈ G ∩ Γ,
we can take B(M,γ) = B(M,γg). We then have ει(γg) = ει(γ) for every
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ι ∈ B(M,γ). Therefore

1

|Γ|
∑

γ∈Γ

∑

ι∈B(M,γ)

ει(γ)θv(γ)mι+k

=
1

|Γ|
∑

γ∈[Γ/(G∩Γ)]

∑

ι∈B(M,γ)

(
ει(γ)θv(γ)mι+k

∑

g∈G∩Γ

θmι+k
v (g)

)

=
1

|Γ|
∑

γ∈Γ

∑

ι∈B(M,γ)k

ει(γ)θv(γ)mι+k.

It follows that

(a) 〈X,M〉〈G,Γ〉 =
1

|Γ|
∑

γ∈Γ

(
θv(γ)k

∑

ι∈B(M,γ)

ει(γ)θv(γ)mι

)
.

Now, let X ′ be the 〈G,Γ〉-module on the right side of (4.7). By Frobenius
reciprocity, we have

〈X ′,M〉〈G,Γ〉 = dim
(
(Hv

gr
⊗ θv) ⊗ θk

v ⊗ M∗)〈G,Γ〉
.

Therefore,

(b) 〈X ′,M〉〈G,Γ〉 =
1

|Γ|
∑

γ∈Γ

(
θv(γ)k

∑

ι∈Bv(M,γ)

ει(γ)θv(γ)mι

)
.

The result now follows from (a) and (b), given Corollary 4.4.

Remark 4.8. The special case when Γ = 〈γ〉 with γ ∈ G and v is reg-
ular is in [Ste, 2.3]. In this case (4.4) essentially amounts to Springer’s
description of the eigenvalues of a regular element. The general version
above could in principle be used to determine the individual graded com-
ponents of H as 〈G,Γ〉-modules.

Remark 4.9. Maintain the notation of the previous theorem and as-
sume further that γ ∈ G; write ζ = θv(γ), and let d be the order of ζ.
Then of course 〈Gv , γ〉 is contained in G and Theorem 4.6 can be written
as follows. ⊕

i≡−k mod d

Hi
∼= IndG

〈Gv ,γ〉
(
(Hv

gr
⊗ θv) ⊗ θk

v

)
.
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In the special case where G ' Sn is the symmetric group of degree n, d ≤ n,
γ is the product of [n/d] disjoint cycles of length d and Gv ' Sn−[n/d]d, we
retrieve a result of Morita and Nakajima [MN].

As a consequence of the previous equation, one obtains (for any G) that

(4.10) dim
( ⊕

i≡−k mod d

Hi

)
= dim

( ⊕

i≡−l mod d

Hi

)

for every k and l in Z and any natural number d which is the order of
an eigenvalue of some element of G (i.e. which divides some degree di of

G). This implies that 1−tdi

1−t divides the Poincaré polynomial of H, which of
course is well known.

§5. Regularity

In this section we shall refine and provide a different approach to the

regularity result (3.10) above. As usual, we refer to the elements of Vreg =

V − ⋃
H∈A H as (G-)regular, and call ζ ∈ K× regular for the coset Gγ if

there is an element of Gγ which has a regular eigenvector with corresponding

eigenvalue ζ. An element of Gγ which has a regular eigenvector is called

(Gγ-)regular. Note that ζ is regular for the coset Gγ if and only if 1

is regular for the coset G(ζ−1γ), so that in the context of regularity for

cosets, it suffices to consider 1-regularity. In this section we shall give

several criteria for the coset Gγ to contain a regular element.

We start with properties of the quotient variety V/G and the action of

γ on it. The ring of regular functions on V/G is K[V/G] = SG. If J is a

subset of SG, we denote by V(J) the closed subvariety of V/G it defines. Let

I(γ) be the ideal of SG generated by (Pι)ι∈U#(γ) (recall that the Pι, ι ∈ B(γ)

form a set of basic homogeneous invariants for G, (cf. (2.4)), γPι = ειPι,

and ι ∈ U#(γ) ⇐⇒ ει 6= 1).

Lemma 5.1. We have V(I(γ)) = (V/G)γ .

Proof. Let KB(γ) ' Ar be the K-vector space of sequences (xι)ι∈B(γ)

of elements of K indexed by B(γ). Then the map π : V → KB(γ), v 7→
(Pι(v))ι∈B(γ) is a morphism of varieties (corresponding to the inclusion

SG ↪→ S) which induces an isomorphism V/G ' KB(γ). If we endow KB(γ)

with the linear action of γ given by

γ.(xι)ι∈B(γ) = (ειxι)ι∈B(γ),
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then, by (2.6), the morphism π is γ-equivariant. But using obvious nota-
tion, the space (KB(γ))γ is naturally identified with KU(γ), and the lemma
follows.

The variety Vreg/G has a convenient description in these terms. Recall

from Example 2.16, that if ∆ is the discriminant polynomial of G, we have

(5.2) Vreg/G = V/G −V(∆).

We next point out twisted generalisations of the results of [B]. The

following result has the same proof as [B, 1.4, 1.6]; we include it here for

the reader’s convenience.

Proposition 5.3. Let Gγ be a reflection coset and let ζ ∈ K×. Then

(i) ζ is regular for Gγ if and only if ∆ /∈ I(ζ−1γ).

(ii) If ζ is regular for Gγ and U(ζ−1γ) = {ι0}, then ∆ is monic in Pι0 .

Proof. (i) Clearly ζ is regular for Gγ if and only if 1 is regular for
Gζ−1γ. Hence we may assume without loss, that ζ = 1. But 1 is regular
for Gγ if and only if (Vreg/G)γ is non-empty. By Lemma 5.1 and (5.2), this
is the case if and only if V(I(γ)) is not contained in V(∆), that is, if and
only if ∆ is not in the radical of I(γ). The result follows because I(γ) is
clearly a radical ideal of SG.

(ii) Given that ζ is regular for Gγ and that U(ζ−1γ) = {ι0}, it follows
from (i) that ∆ is non-zero modulo I(ζ−1γ), which is generated by {Pι |
ι 6= ι0}. So modulo I(ζ−1γ), ∆ ≡ λP k

ι0 for some λ ∈ K× and some k ≥ 1.
Since ∆ is homogeneous, ∆ is monic in Pι0 .

Proposition 5.5 below generalises [LM, Theorem 3.1 (ii)] and is a more

precise version of (3.10) above. We shall require some preliminaries before

proving it. Let Nv = {n ∈ N | n(v) = v}. This is a normal subgroup

of N〈v〉 and N〈v〉/Nv ' K×. Let Γ be a subgroup of Nv. Let M be a

〈G,Γ〉-module. Consider the bilinear form

〈 , 〉vM : (H⊗ M)G × (H⊗ M∗)G −→ K
(f, g) 7−→ (〈f, g〉M )(v).

This is simply the evaluation at v of the element 〈f, g〉M ∈ SG (see Sec-

tion 2). Clearly, 〈 , 〉vM is Γ-invariant.
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Lemma 5.4. If v is regular and Γ ⊂ Nv, then 〈 , 〉Mv is a Γ-invariant

perfect pairing.

Proof. Observe that the discriminant of the bilinear form 〈 , 〉v
M is

equal to ∆M(v). But by (2.15), ∆M (v) 6= 0 if v is regular.

Proposition 5.5. Let γ ∈ N . Then the following are equivalent :

(1) 1 is regular for Gγ.

(2) The multisets {ε−1
ι | ι ∈ B(γ)} and {ει | ι ∈ B∗(γ)} are equal.

(3) |U(γ)| = |U ∗(γ)|.

Remark 5.6. The equivalence of (1) and (3) follows from an argument
similar to [LM, Theorem 3.1 (ii)] (cf. (3.10) above). However the proof
we provide here will not make use of the polynomial identities stated in
Section 3.

Proof. (1) ⇒ (2) Assume that 1 is regular for Gγ. Let v ∈ V be G-
regular and such that gγ(v) = v for some g ∈ G. Then, by Corollary 5.4,(
(H⊗ V )G

)∗
and (H⊗ V ∗)G are isomorphic 〈gγ〉-modules, via the perfect

pairing 〈 , 〉v. Therefore, they are isomorphic as 〈γ〉-modules. But {ε−1
ι | ι ∈

B(γ)} is the multiset of eigenvalues of γ on
(
(H⊗V )G

)∗
and {ει | ι ∈ B∗(γ)}

is the multiset of eigenvalues of γ on (H⊗ V ∗)G. The statement follows.

(2) ⇒ (3) is trivial.

(3) ⇒ (1) Assume that |U(γ)| = |U ∗(γ)|. By replacing γ by g0γ for
some g0 ∈ G, we may assume that dimV gγ ≤ dimV γ for every g ∈ G. We
choose v ∈ V γ in “general position”, i.e. such that Gv acts trivially on V γ .
By Corollary 4.4, the multisets {ει | ι ∈ B(γ)} and {ει | ι ∈ Bv(γ)} are
equal, so |U(γ)| = |U v(γ)|. Similarly, |U ∗(γ)| = |U v∗(γ)|. This shows that
|Uv(γ)| = |U v∗(γ)|. We now have:

(a) V γ ⊂ V Gv ;

(b) dimV gγ ≤ dimV γ for every g ∈ Gv;

(c) |U v(γ)| = |U v∗(γ)|.

We shall show that this implies that Gv = 1. Note that (b) implies that
dimV γ = |U v(γ)|. Let V ′ be the unique Gv-stable subspace of V such that
V = V Gv ⊕ V ′. It is γ-stable, and the homogeneous component of degree 1
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of Hv is V ′∗. By (a), (K⊗V γ)⊕(V ′∗⊗V )〈Gv ,γ〉 is contained in (H⊗V )〈Gv ,γ〉.
Therefore,

|Uv∗(γ)| ≥ dimV γ + dimHom〈Gv ,γ〉(V
′, V )

= |U v(γ)| + dimHom〈Gv ,γ〉(V
′, V ).

It follows from (c) that dimHom〈Gv ,γ〉(V
′, V ) = 0. Thus V ′ = 0, and Gv = 1

as required.

Remark 5.7. The right-hand side of (3.7) vanishes unless 1 is regular
for Gγ. Hence it may be simplified as follows. All gγ which contribute to
the highest power of T on the left side of (3.7) are conjugate, and by [Sp,
6.4(v)] have the same determinant, which is equal to

∏
ι∈B(γ) ε−1

ι . This in

turns yields a formula for

Q
ι∈U∗

#
(ζ)(1−ε−1

ι )
Q

ι∈U#(ζ)(1−ε−1
ι )

, which may be substituted into

(3.7). The result is
∑

g∈G

det(gγ)T dim V gγ

=(5.8)





0 if |U(γ)| 6= |U ∗(γ)|,
∏

ι∈B(γ)

ε−1
ι

∏

ι∈U∗
#(γ)

(T − d∗ι − 1)
∏

ι∈U#(γ)

dι otherwise.

Our final observation in this section is that if ∆ is monic in some basic

invariant, then there is a natural regular number.

Corollary 5.9. Suppose that the discriminant ∆ is monic in Pι0 for

some ι0 ∈ B(γ). Let ζ ∈ K× be such that ζdι0 = ε−1
ι0 . Then ζ is regular

for Gγ. In particular, the multisets {ειζ
dι | ι ∈ B(γ)} and {(ειζ

d∗ι )−1 | ι ∈
B∗(γ)} are equal.

Proof. Note that ι0 ∈ U(ζ−1γ) by Remark 2.3. Therefore, by assump-
tion, ∆ does not belong to the ideal I(ζ−1γ). So, by Proposition 5.3 (i), ζ
is regular for Gγ. Now, the last assertion follows from Proposition 5.5 and
from Remark 2.3.

§6. A twisted generalisation of Coxeter elements

In this section we focus attention on “well-generated” reflection groups.

These include the finite Coxeter groups, the Shephard groups, i.e. symmetry

groups of regular polytopes, and some others. To define them, we have the
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Observation 6.1. (Orlik and Solomon) Let G be an irreducible reflec-

tion group in V . Suppose the degrees and codegrees of G are ordered so

that d1 ≤ d2 ≤ · · · ≤ dr and d∗1 ≥ d∗2 ≥ · · · ≥ d∗r. Then the following two

statements are equivalent.

(i) G is generated by r = dimV reflections.

(ii) We have di + d∗i = dr for i = 1, 2, . . . , r.

The only (currently) known proof of (6.1) is empirical. A reflection

group satisfying the equivalent conditions of (6.1) is called well-generated.

Henceforth, we shall consistently write B(γ) = (ι1, . . . , ιr) and B∗(γ) =

(ι∗1, . . . , ι
∗
r) and we set dιi = di and d∗ι∗i

= d∗i . Write Pi = Pιi , so that

deg Pi = di. We also assume that this numbering satisfies d1 ≤ · · · ≤ dr

and d∗1 ≥ · · · ≥ d∗r . We also set ειi = εi and ει∗i
= ε∗i . The next result is

part of Bessis’ [B2, Theorem 2.2]. Again for convenience, we sketch a proof.

Proposition 6.2. Suppose G is any irreducible reflection group which

satisfies di + d∗i ≤ dr for all i. Then

(i) Any primitive dth
r root of unity is regular for G.

(ii) We have 0 < di + d∗j < 2dr for any pair (i, j).

(iii) Let I0 be the ideal of SG generated by {Pi | i 6= r}. Then modulo

I0, the discriminant matrix M ≡ PrC, where C = (cij)i,j is a non-

singular matrix with entries in K.

(iv) If di + d∗j 6= dr, cij = 0.

(v) We have rdr = N + N∗ and di + d∗i = dr for every i.

(vi) Partition {1, . . . , r} into subsets, where i, j are in the same subset if

di = dj. Then C is diagonal by block for this decomposition and each

block is non-singular.

(vii) G is well-generated.

Proof. Since G is irreducible, we have d∗
i ≥ 1 for every i ≤ r − 1.

Therefore, by assumption 1 ≤ di ≤ dr − 1 and 1 ≤ d∗i ≤ dr − 1 if
i 6= r. So, if ζ0 is a primitive dth

r root of unity, then U(ζ−1
0 IdV ) = {ιr}

and U∗(ζ−1
0 IdV ) = {ι∗r}, whence ζ0 is regular for G by the criterion (5.5),

proving (i); (ii) is a simple consequence of our assumption on the degrees.
By (5.3), ∆ ≡ cP k

r mod I(ζ−1
0 IdV ), with c ∈ K× by regularity, and by

degree, k = (N(V ) + N(V ∗))/dr. Now the entries of M are homogeneous
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polynomials in SG, and by (ii), when written as polynomials in Pr with
coefficients in K[{Pi | i 6= r}], have degree (in Pr) 0 or 1. The state-
ments (iii), (iv) and the first statement of (v) follow immediately. But,
N(V ) + N(V ∗) =

∑r
i=1(di + d∗i ) ≤ rdr = N(V ) + N(V ∗). So di + d∗i = dr

for every i. This proves (v). (vi) now follows from (iv) and (v) while (vii)
follows from (6.1).

The next result refines (5.9) in the case of well-generated groups. It

may be regarded as a generalisation of the fact that when G is real and

crystallographic, the Coxeter number h (which is the highest degree dr),

and any primitive hth root of unity is regular, with corresponding regular

conjugacy class the Coxeter class of G.

Proposition 6.3. Suppose that G is irreducible and well-generated.

Let ζ ∈ K×. Then:

(i) there is a permutation σ of {1, . . . , r} such that for each i, di = dσ(i)

and ε∗σ(i) = ε−1
i εr.

(ii) If ζ ∈ K× is such that ζdr = ε−1
r , then ζ is regular for the coset Gγ.

Proof. By Proposition 6.2 (vi), there is a permutation σ of {1, . . . , r}
such that dσ(i) = di and ci,σ(i) 6= 0 for all i. Hence Mi,σ(i) = ci,σ(i)Pr +
other terms, from which it follows that γ(Mi,σ(i)) = εrMi,σ(i). But by
(2.13), γ(Mi,σ(i)) = εiε

∗
σ(i)Mi,σ(i).

Since G is well-generated, we have di + d∗i = dr. Therefore, by (i),

ε∗σ(i)ζ
d∗

σ(i) = ε−1
i ζ−di . In view of the criterion (5.5), (ii) follows from this

observation (see also Remark 3.9).

Finally, observe that when G is real (and hence is a finite Coxeter

group) we have, using our orderings, d∗
i = dr+1−i − 2 and ε∗i = εr+1−i.

Thus, applying (i), we deduce that there is a degree-preserving permutation

σ such that εiεr+1−σ(i) = εr.

§7. Existence of regular elements in cosets

We shall prove2

2As mentioned in the footnote to the Introduction, Theorem 7.1 also appears, with a
different proof, in [Ma].



156 C. BONNAFÉ, G. I. LEHRER AND J. MICHEL

Theorem 7.1. There is a semisimple element z ∈ GL(V ) which cen-

tralises 〈G, γ〉 such that the reflection coset zγG has a regular eigenvalue

(or element).

As an easy consequence, we have

Corollary 7.2. If V is irreducible as 〈G, γ〉-module, then Gγ has a

regular eigenvalue.

In particular,

Corollary 7.3. If V is irreducible as G-module, then Gγ has a reg-

ular eigenvalue.

We begin with a reduction to the case (7.3), which involves arguments

similar to those in [BL, Prop. 6.9].

Lemma 7.4. We have the implications (7.3) ⇒ (7.2) ⇒ (7.1).

Proof. To see that (7.2) ⇒ (7.1), suppose that V =
⊕

i Vi is a decom-
position of V into irreducible 〈G, γ〉-submodules. Then correspondingly
G = G1 × G2 × · · · , and γ =

⊕
i γi, where Gi acts as a reflection group

in Vi and trivially on Vj for j 6= i, and γi ∈ GL(Vi) normalises Gi. The
set A of reflecting hyperplanes of G is the union of the sets Ai of reflecting
hyperplanes of the Gi. By (7.2) there are elements gi ∈ Gi and vi ∈ Vi

such that γigivi = ζivi, and vi is Gi-regular in Vi. Take z =
⊕

i ζ
−1
i IdVi

,
g = (g1, g2, . . . ), and v =

⊕
i vi. Then v is G-regular and zγgv = v, proving

(7.1).
Now assume (7.3), and suppose that V is irreducible as 〈G, γ〉-module.

Then as in Remark 2.1, V = V1 ⊕ · · · ⊕ Vk and correspondingly G = G1 ×
· · · × Gk. Then all (Gi, Vi) are isomorphic, and are permuted cyclically by
γ. Thus γk fixes all the Vi, and in particular normalises G1 on V1, so that
by (7.3), there are elements g1 ∈ G1 and v1 regular in V1 such that γkg1v1 =
ζ1v1. Let ζ ∈ C satisfy ζ−k = ζ1, let g = (1, 1, . . . , 1, γk−1g1γ

−(k−1)) ∈ G,
and v = v1 ⊕ ζγv1 ⊕ (ζγ)2v1 ⊕ · · · ⊕ (ζγ)k−1v1 ∈ V . Then v is G-regular,
and γgv = ζ−1v. Hence (7.3) ⇒ (7.2).

It follows from Lemma 7.4, that it suffices to prove (7.3), and hence

we take V to be an irreducible G-module. The next lemma deals with an

obvious case.
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Lemma 7.5. If G is irreducible and γ induces an inner automorphism

of G, then (7.3) holds.

Proof. By hypothesis, there exists g ∈ G such that gγ is central in
〈G, γ〉 so is scalar. The result is then obvious.

At this point, it would be sufficient to inspect the list of cosets Gγ such

that G is irreducible and γ induces a non-inner automorphism of G which

is given in [BMM, 3.13]. The table of regular eigenvalues are then given in

the table at the end of this paper. However, we will provide some further

reductions which cover all the cases to be checked. First, we reduce the

proof further to the case of “minimal groups”, which are defined as follows.

For any integer d, let ζd be a primitive dth root of unity. Then (cf.

[LS1], [LS2]) all maximal ζd eigenspaces E of elements of G are conjugate

under G, and the group G(d) := NG(E)/CG(E) is a reflection group in E;

the subquotient G(d) is unique up to conjugacy in G, and is irreducible

if G is [LS2]. The regular case is when CG(E) = 1, in which case G(d)

is a subgroup of G. Say that G is minimal if dimV > 1 and there is no

non-trivial subgroup G(d) < G with d regular. Equivalently, if a(d), b(d)

respectively denote the number of degrees and codegrees divisible by d, then

a(d) = b(d) implies that a(d) = 0 or r (= dimV ). Note that if dimV = 1,

(7.3) is trivially true.

Lemma 7.6. Theorem 7.1 is true for irreducible G if it is true for ir-

reducible minimal G.

Proof. If γ normalises G and E = V (g, ζd) is a maximal ζd eigenspace,
then γE = V (γgγ−1, ζd) is also a maximal ζd eigenspace, whence there is
an element x ∈ G such that γE = xE, so that x−1γ normalises G(d), which
is irreducible by [LS2, Theorem A]. If v ∈ E is a G(d)-regular eigenvector
for γy ∈ x−1γG(d), then since the reflecting hyperplanes of G(d) are the
intersections with E of those of G, and E is not contained in any hyperplane
of G, it follows that v is G-regular. Thus Theorem 7.1 holds for G if it
holds for G(d). Repeating this argument, we arrive at a case where G(d) is
minimal.

Our final lemma treats a case which arises frequently.

Lemma 7.7. Assume that G is irreducible and that there exists γ0 ∈ N
such that 〈G, γ〉 ⊂ 〈G, γ0〉 and 〈G, γ0〉 is a well-generated finite reflection

subgroup of GL(V ). Then Gγ has a regular eigenvalue.
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Proof. If G is well-generated, the conclusion follows from Proposi-
tion 6.3 (ii). Hence we assume that G is not well-generated. By hypothesis,
there exists k ∈ Z such that Gγk

0 = Gγ. So if ζ is a regular eigenvalue for
Gγ0, then ζk is a regular eigenvalue for Gγ. Hence we are reduced to the
case γ = γ0. Now let Y be as in Example 2.4. Then S(V ∗)〈G,γ〉 ' S(Y )γ is
a polynomial algebra, so γ acts on Y as a reflection. Let i0 be the unique
element of {1, 2, . . . , r} such that εi0 6= 1 and let e be the order of εi0 . Write
G̃ = 〈G, γ〉. Let d̃1 ≤ · · · ≤ d̃r be the degrees of G̃ and let d̃∗1 ≤ · · · ≤ d̃∗r
be its codegrees. Since |U(γ)| = r − 1, two cases may occur (see Proposi-
tion 3.2 (ii)).

If |U∗(γ)| = r − 1, then γ is 1-regular.
If |U∗(γ)| = r, this means that γ acts trivially on (H ⊗ V )G. In par-

ticular, d̃∗i = d∗i for every i. Also, S(Y )γ ' S(V ∗)
eG is a polynomial alge-

bra generated P1, . . . , Pi0−1, P
e
i0

, Pi0+1, . . . , Pr. Therefore, since G̃ is well-
generated and G is not well-generated, it follows from Proposition 6.2 that
(d̃1, . . . , d̃r) = (d1, . . . , di0−1, di0+1, . . . , dr, edi0). Now, let ζ be such that
ζdi0 = ε−1

i0
. Then, since d̃i + d̃∗i = edi0 and ζedi0 = 1, εi = 1 if i 6= i0, and

that ε∗i = 1 for every i and since we have:

• If 1 ≤ i ≤ i0 − 1, then di + d∗i = edi0 and (εiζ
di)−1 = ε∗i ζ

d∗i .

• εi0ζ
di0 = 1 = εrζ

d∗r .

• If i0 + 1 ≤ i ≤ r, then di + d∗i−1 = edi0 and (εiζ
di)−1 = ε∗i−1ζ

d∗i−1 .

Therefore, the multisets {εiζ
di | 1 ≤ i ≤ r} and {(ε∗i ζd∗i )−1 | 1 ≤ i ≤ r}

are equal. So ζ is a regular eigenvalue for Gγ by Proposition 5.5.

We are now able to give the

Proof of Theorem 7.1. The list of cosets Gγ such that G is irreducible
and γ induces a non-inner automorphism of G is given in [BMM, 3.13].
Among them, the minimal ones are (up to multiplication by a scalar):

1. G(de, e, r)γ when r|e, d > 1 and e > 1 where γ ∈ G(de, 1, r).

2. G(4, 2, 2)γ where 〈G(4, 2, 2), γ〉 = G6.

3. G7γ where 〈G7, γ〉 = G15.

Since G(de, 1, r), G6 and G15 are well-generated, these cases are disposed
of by Lemma 7.7. The proof of the theorem is now completed by invoking
Lemmas 7.4, 7.5, and 7.6.
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§8. Reflection quotients of reflection groups

Let L be a normal subgroup of G and denote by Ḡ = G/L the corre-

sponding quotient. Let E∗ be a graded complement of (SL
+)2 in SL

+, so that

SL
+ = E∗ ⊕ (SL

+)2. Evidently E∗ has basis a set of homogeneous generators

of the invariant ring SL. Let NL be the normalizer of L in GL(V ). For this

section only, we denote the normalizer of G in GL(V ) by NG. Since NL

is a reductive group, we may assume that E∗ is chosen to be stable under

the action of NL. Let E be the (graded) dual of E∗, and denote by S̄ the

symmetric algebra of E∗.
Then E is isomorphic to the tangent space of the variety V/L at 0. The

quotient Ḡ acts on E, and we shall be interested in this section in the case

where this is a reflection group action, a situation which has been studied

in [BBR]. In that case NG ∩NL also acts on E, normalising the Ḡ-action,

and we shall relate the various twisted invariants of reflection cosets of G

and Ḡ.

The algebra homomorphism τ : S(E∗) → SL which extends the in-

clusion E∗ ↪→ SL is easily seen to be surjective (see for instance [BBR,

Lemma 2.1]) and NL-equivariant. Denote by I its (NL-stable) kernel. Then

we have a commutative diagram

S

0 // I // S̄
τ

// SL
?�

OO

// 0

0 // IḠ //

?�

OO

S̄Ḡ
τG

//

?�

OO

SG
?�

OO

// 0

in which the rows are exact.

Note that the surjective morphisms τ and τ G induce closed immersions

(8.1) V/L ↪→ E and V/G ↪→ E/Ḡ.

We assume henceforth that Ḡ acts on E as a reflection group. By [BBR,

Theorem 3.2], this is equivalent to requiring that

(1) V/L is a complete intersection variety, and

(2) I is generated by I Ḡ (as an ideal of S̄).
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Example 8.2. The classification of all such pairs (G,L) is given in
[BBR, §4]. If L is generated by reflections, then it is straightforward that
G/L is always generated by reflections. We give here another example (for
more details, see [BBR, §4.8]). Assume that G = G31 and that L is its
maximal normal 2-subgroup. Then L ⊂ SL(V ), |L| = 64, |G/L| = 720, E
is of dimension 5 and concentrated in degree 4, since SL is generated by 5
polynomials of degree 4. Here G/L acts faithfully on E as a group gener-
ated by reflections, isomorphic to the symmetric group S6 in its irreducible
reflection representation. Note that G/L is well-generated while G = G31

is not.

8.1. Coinvariants

Denote by S̄Ḡ the algebra of coinvariants of Ḡ. We shall relate this

algebra to the algebra SG of coinvariants of G.

Proposition 8.3. The homomorphism τ : S̄ → SL introduced above

induces an isomorphism of graded algebras

τ̄ : S̄Ḡ −→ (SG)L

which commutes with the action of NG ∩NL (⊇ G).

Proof. The composite of τ with the inclusion SL ↪→ S maps S̄ to S,
and S̄Ḡ

+ to SG
+ . Hence it induces a homomorphism τ̄ : S̄Ḡ → SG, whose

image is evidently in (SG)L. The equivariance with respect to NG ∩ NL is
clear.

To prove that τ̄ is an isomorphism, first note that τ̄ is surjective since τ
is, because L acts semisimply on S. But dim S̄Ḡ = |Ḡ| = dim(SG)L, whence
τ̄ is also injective.

Let H̄ be the space of Ḡ-harmonic polynomial functions on E, and as

above, H be the corresponding space for G on V .

Corollary 8.4. The isomorphism τ̄ of (8.3) induces an isomorphism

of NG ∩NL-spaces : H̄ → HL, which we shall also denote by τ̄ .

Proof. Each coset of the ideal S.SG
+ of S contains a unique G-harmonic

polynomial. This provides a canonical NG-equivariant isomorphism of vec-
tor spaces : SG → H. Similarly we have a canonical NG ∩ NL-equivariant
canonical isomorphism : H̄ → SḠ. If we compose τ̄ with these isomor-
phisms, taking (8.3) into account, we obtain the desired isomorphism.
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8.2. Comparison of M -factors

Let Γ be a subgroup of NG ∩ NL, and write Γ̄ ∼= Γ/(Γ ∩ L) for its

image in GL(E). Then Γ̄ normalizes Ḡ and 〈G,Γ〉/L ' 〈Ḡ, Γ̄〉. Let M be

a 〈Ḡ, Γ̄〉-module, or equivalently, a 〈G,Γ〉-module on which L acts trivially.

Then (SG ⊗ M)G = ((SG)L ⊗ M)Ḡ. Hence in view of (8.3) we have an

isomorphism of Γ-modules (on which Γ ∩ L acts trivially)

(8.5) (S̄Ḡ ⊗ M)Ḡ
τ̄⊗IdM−−−−−−→ (SG ⊗ M)G.

In (8.5), we use the G-equivariance of τ̄ to restrict to the G-fixed points,

noting that on the left, G acts via Ḡ, since L acts trivially. We denote the

map of (8.5) by τM . Similarly, τM will also denote the isomorphism of

Γ-modules (H̄ ⊗ M)Ḡ → (H⊗ M)G (cf. Corollary 8.4).

Next assume that the element γ ∈ Γ acts semisimply on M . Let γ̄ be

its image in Γ̄. Then γ̄ is semisimple, and the next statement follows easily

from the above remarks.

Lemma 8.6. Let B(M, γ̄) be a basis of (H̄ ⊗ M)Ḡ consisting of γ̄-

eigenvectors. Then (τM (ι))ι∈B(M,γ̄) is a basis of (H ⊗ M)G consisting of

γ-eigenvectors.

As an immediate consequence, we have

Corollary 8.7. The M -factors of Ḡ coincide with those of G.

A further easy consequence of (8.6) is

Corollary 8.8. Let ΨM ∈ S be the polynomial defined after Theo-

rem 2.8, and let Ψ̄M be the element of S̄ defined in analogous fashion for

M as Ḡ-module. Then τ(Ψ̄M ) =̇ ΨM .

8.3. Decomposition of Ḡ into graded components

The vector space E is graded, and Ḡ preserves degrees. Therefore there

is a natural decomposition of Ḡ into components Ḡi. In this subsection we

relate the various invariants and constants we have discussed for Ḡ to those

of the Ḡi.

Accordingly, write E = E1 ⊕ E2 ⊕ · · · for the decomposition of E into

its graded components, with Ei having degree i (so that Ei = 0 for all but

finitely many i). Let Ḡi be the image of Ḡ in GL(Ei). Since Ḡ is generated
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by reflections in E, the groups Ḡi are generated by reflections in Ei and

we have Ḡ = Ḡ1 × Ḡ2 × · · · . Let S̄Ḡi
be the algebra of coinvariants of Ḡi

acting on Ei. If Ei = 0 we take Ḡi = 1 and S̄Ḡi
= K. Then

S̄Ḡ ' S̄Ḡ1
⊗ S̄Ḡ2

⊗ · · · .
We begin this subsection with the following observation which relates

eigenvectors for cosets of G to those for Ḡ and the Ḡi. Take γ ∈ Γ and

denote by γ̄i its image in GL(Ei), so that γ̄ = (γ̄1, γ̄2, . . . ).

Proposition 8.9. Suppose γ has an eigenvector v such that γv = ζv
for some ζ ∈ K×. Let v̄ denote the image of v in V/L and write v̄ =
v̄1 ⊕ v̄2 ⊕ · · · with v̄i ∈ Ei (recall that τ defines an embedding of V/L into

E). Then for each i, γ̄i(v̄i) = ζ iv̄i.

Proof. Let (Q1, . . . , Qs) be a homogeneous basis of E∗ and suppose
that Qi has degree mi. Let (e1, . . . , es) be the basis of E which is dual to
(Q1, . . . , Qs) and let π : V → V/L ↪→ E be the natural morphism. Then,
by definition,

v̄ = π(v) =
s∑

i=1

Qi(v)ei.

Then γ̄(π(v)) = π(γ(v)) = π(ζv). So

γ̄(π(v)) =

s∑

i=1

ζmiQi(v)ei,

as required.

The next statement deals with the question of regularity.

Proposition 8.10. Assume further in (8.9), that v is G-regular. Then

v̄ is regular for Ḡ, and a fortiori v̄i is regular for Ḡi, for each i. Thus if

ζ ∈ K× is regular for γG, ζ i is regular for γ̄iḠi

Proof. For any polynomial Q ∈ S̄ = S(E∗) and element w ∈ V , we
have

τ(Q)(w) = Q(w̄),

where w̄ denotes the image in E of the L-orbit of w. Applying (8.8), it
follows that for any Ḡ-module M , Ψ̄M(v̄) = ΨM (v) 6= 0, since ΨM is always
a product of linear forms corresponding to the hyperplanes of G, and v is
G-regular. In particular, this applies to the representation E, which proves
that v̄ is regular. The other statements are clear.
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Remark 8.11. The untwisted part of (8.10) is easily deduced from
[BBR, Theorem 3.12 (iii)], while an untwisted analogue of (8.9) was stated
without proof in [BBR, note added in proof].

We finish by relating the M -degrees and constants of Ḡ and those of

the Ḡi. Let Γ̄i denote the image of Γ in GL(Ei). Then 〈Ḡ, Γ̄〉 is a subgroup

of 〈Ḡ1, Γ̄1〉 × 〈Ḡ2, Γ̄2〉 × · · · . For each i, let M̄i be a 〈Ḡi, Γ̄i〉-module and

take the 〈Ḡ, Γ̄〉-module M to be M = M̄1 ⊗ M̄2 ⊗ · · · . Then, by (8.5), we

have an isomorphism of Γ-modules

(8.12) (SG ⊗ M)G ' (S̄Ḡ1
⊗ M̄1)

Ḡ1 ⊗ (S̄Ḡ2
⊗ M̄2)

Ḡ2 ⊗ · · · .

Now define the fake γ-degree FM,γ(t) of M as the polynomial

FM,γ(t) =
∑

i≥0

Trace
(
γ, ((SG)i ⊗ M∗)G

)
ti =

∑

ι∈B(M,γ)

ει(M,γ)tmι .

Proposition 8.13. We have

FM,γ(t) =
∏

i≥0

FM̄i,γ̄i
(ti).

Proof. It is clear from (8.12) that we may take B(M,γ) = B(M̄1, γ̄1)×
B(M̄2, γ̄2)× · · · . If βi ∈ B(M̄i, γ̄i) (i = 1, 2, . . . ) and ι = β1 ⊗ β2 ⊗ · · · , then

ει(M,γ)tmι =
∏

i

εβi
(M̄i, γ̄i)t

imβi ,

from which the statement is clear.

This last result is a twisted version of the assertion made without proof

in [BBR, note added in proof], which corresponds to the case γ = Id.

Appendix 1; A list of reflection cosets

In this section, we shall classify the reflection cosets Gγ where G is

irreducible and γ induces a non-inner automorphism of G (up to multipli-

cation by scalars) and regular eigenvalues for our choices of γ. The list of

reflection cosets as above is given in [BMM, 3.13]. The result is given in the

table concluding this article. The table in [BMM] gives the image of Gγ in

the group of outer automorphisms of G, which describes the coset up to a
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scalar. In each case we choose a specific representative. First, for each nat-

ural number d, we choose a primitive dth-root of unity ζd. We also assume

that ζe
de = ζd for every d, e. Before giving the table, we explain our con-

ventions and explain how we get the numerical results. First, o(ζ) denotes

the order of ζ. Except for the first two examples in the table, the degrees

and codegrees are given in increasing and decreasing order respectively.

A product formula. (cf. [CHEVIE]) The formula

∏

g∈G

det(1 − Tgγ) =
∏

i

(1 − εiT
di)|G|/di

is deduced from the case M = V of (3.1) in the same way that (1.9) is

deduced from (1.8) in [Br]. It is used in the CHEVIE package to compute

the εi’s.

The imprimitive groups. Let d and e be two natural numbers. Let

µd denote the group of d-th roots of unity in K. We choose a basis vi

of V such that the group G(de, e, r) is realized as the group of monomial

matrices with non-zero entries in µed of which the product of the non-zero

entries lies in µd. The automorphism γ is induced by the diagonal matrix

with diagonal entries (ζe′d, 1, . . . , 1), where e′ divides e.

If {Xi} is the basis of V ∗ dual to {vi}, the invariants of G(de, e, r) are

Pk =
∑

j1<···<jk
Xde

j1
· · ·Xde

jk
for k = 1, . . . , r−1 and Pr = (X1 · · ·Xr)

d. The

corresponding degrees are ed, 2ed, . . . , (r−1)ed and rd and the correspond-

ing εi are 1, . . . , 1 and ζ−1
e′ .

The case d > 1. Let us determine the ε∗i when G = G(de, e, r) with

d > 1 and e > 1. The codegrees are 0, de, . . . , (r − 1)de. According to

[OT, B.1 (2′)] one may choose as a basis of (S ⊗ V )G the vectors θi =∑r
j=1 X

(i−1)de+1
j ⊗ vj. This basis is γ-invariant for our choice of γ, so we

get ε∗i = 1. We find that ζ is regular when ζrd = ζe′ .

The case d = 1. The group G(e, e, r) is well-generated. Its codegrees

are 0, e, . . . , (r − 2)e and (r − 1)e − r. We may exclude the cases e = 1

where γ is inner and e = r = 2 which is a non-irreducible group, so we have

r < (r−1)e thus the largest degree is (r−1)e. We may thus use the relation

εiε
∗
σ(i) = εr = 1 to determine the ε∗i which are, ordering the codegrees as

above, 1, . . . , 1 and ζe′ . We find that ζ is regular whenever ζ (r−1)e = 1 or

ζr = ζe′ . Note that γ is 1-regular.
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The case 3G(4, 2, 2). Let γ be a reflection in G6 of order 3 and

assume here that G = G(4, 2, 2) embedded in G6 as a normal subgroup of

index 3. We have d1 = d2 = 4 and, since γ acts as a reflection on Y (see

the proof of Proposition 7.7), we have (ε1, ε2) = (1, ζ3) or (1, ζ2
3 ). If we take

γ =
ζ4 + 1

2ζ3

(
−1 1
ζ4 ζ4

)
.

Then det γ = ζ3, γ stabilises the vector space SG
4 which is generated

by P1 = X4
1 + X4

2 and P2 = X2
1X2

2 . An easy computation shows that

(ε1, ε2) = (1, ζ3). Note that γ permutes cyclically the generators

(
−1 0
0 1

)
,

(
0 −ζ4

ζ4 0

)
and

(
0 1
1 0

)
of G.

On the other hand, (d∗1, d
∗
2) = (0, 4) and, since γ is 1-regular (by direct

check), we find that ε∗1 = 1 and ε∗2 = ζ−1
3 . Now, ζ is a regular eigenvalue

for Gγ if and only if ζ4 = 1.

The case 2G7. Note that γ comes from the normal embedding G7 ⊂
G15. We choose γ to be a reflection of order 2. It acts as a reflection on

Y . So, the pairs (di, εi) are (12, 1), (12,−1). A direct check shows that

the chosen γ is 1-regular, whence the (d∗
i , ε

∗
i ) must be (0, 1), (12,−1). An

eigenvalue ζ is regular if and only if ζ12 = 1.

The cases 2F4 and 3D4. These are Coxeter groups. One may choose

γ as a diagram automorphism which is 1-regular, then the εi are determined

from γ’s eigenvalues on V . The ε∗i are equal to the εi if we order the

codegrees in increasing order as well as the degrees.

For 3D4 the pairs (di, εi) are (2, 1), (4, ζ3), (4, ζ2
3 ), (6, 1) where ζ3 is a

primitive cubic root of unity, and the pairs (d∗
i , ε

∗
i ) are (0, 1), (2, ζ3), (2, ζ2

3 ),

(4, 1). An eigenvalue ζ is regular if and only if it has order 1, 2, 3, 6 or 12.

For 2F4 the pairs (di, εi) are (2, 1), (6,−1), (8, 1), (12,−1) and the pairs

(d∗i , ε
∗
i ) are (0, 1), (4,−1), (6, 1), (10,−1). An eigenvalue ζ is regular if and

only if it has order 1, 2, 4, 8, 12 or 24.

The case 4G(3, 3, 3). In the basis as above for the imprimitive groups,

we may choose γ = −1√
−3




ζ3 1 ζ2
3

1 1 1
ζ2
3 1 ζ3


. It is of order 4, and does not

stabilize any set of generators of G = G(3, 3, 3) of cardinality 3. We find
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that the pairs (di, εi) are (3, ζ4), (3,−ζ4), (6, 1). Since the group is well-

generated we deduce that the pairs (d∗
i , ε

∗
i ) are (0, 1), (3, ζ4), (3,−ζ4). An

eigenvalue ζ is regular if and only if ζ6 = 1.

The case 2G(3, 3, 3). Take for γ the square of the above matrix.

Then the new εi are the squares of the previous ones and similarly for the

ε∗i . Again, ζ is regular if and only if ζ6 = 1.

The case 2G5. Let γ be a reflection of order 2 in G14 which does not

lie in G5 (which is a normal subgroup of G14 of index 2). Again, γ acts as

a reflection of order 2 on Y . Since the degrees of G5 are (6, 12) and those

of G14 are (6, 24), we get that ε1 = 1 and ε2 = −1. As G is well-generated,

we may deduce that the pairs (d∗
i , ε

∗
i ) are (0, 1), (6,−1). We find that ζ is

regular if and only if it is of order 1, 2, 3, 6, 8 or 24.

To obtain the above statement, one may choose as generators of G5

the elements s+ and s−, where sε = 1
2

(
(−1 +

√
−2)ζ3 εζ12

εζ12 (−1 −
√
−2)ζ3

)

for ε ∈ {+,−}. Then, one may take γ =

(
1 0
0 −1

)
. With these choices, γ

interchanges s+ and s−.

Appendix 2; Proofs of (2.8) and (2.11)

Proof of Theorem 2.8. Let ΨM =
∏

H∈A L
NH(M)
H and let Ψ′

M be the
element of S defined by

∏
ι∈B(M) ι = Ψ′

M ⊗ (y1 ∧ · · · ∧ ym). Observe that

(8.14) ΨM⊕M ′ = ΨMΨM ′ and Ψ′
M⊕M ′ = Ψ′

MΨ′
M ′ .

Now, let us first assume that A(G) = {H}, so that G = GH . By (8.14),
the Theorem need only be checked when M is irreducible, i.e. affords the
character deti for some i ∈ {0, 1, . . . , e − 1}, where e = |G|. Since here H
has basis the set of Li

H , this case is clear.
Now, consider the general case. Let (u1, . . . , um) be a basis of (H ⊗

M∗)G. Write ui =
∑m

j=1 qji ⊗ yj, with qji ∈ S. Then u1 · · · um = det(qij) ·
(y1 ∧ · · · ∧ ym), so that Ψ′

M = det qij. Now for every H ∈ A(G), ui ∈
(S ⊗ M∗)G ⊂ (S ⊗ M∗)GH . Hence if we express ui as a linear combination
of elements of an SGH -basis of (S ⊗ M ∗)GH with coefficients in SGH , we

see that Ψ′
M is divisible by its analogue for GH , which =̇ L

NH(M)
H by the

previous discussion. Since the distinct LH are pairwise coprime, it follows
that ΨM divides Ψ′

M . It therefore suffices to show that Ψ′
M is non-zero,

and has degree
∑

H∈A(G) NH(M).
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Table 1: A table of cosets

(G, γ)
d1, . . . , dr

ε1, . . . , εr

d∗1, . . . , d
∗
r

ε∗1, . . . , ε
∗
r

ζ regular

e′G(de, e, r)
d > 1

ed,2ed, . . . , (r − 1)ed, rd

1, 1, . . . , 1, ζ−1
e′

0, ed,2ed, . . . , (r − 1)ed
1, 1, 1, . . . , 1

ζrd = ζe′

e′G(e, e, r)
e, 2e, . . . , (r − 1)e, r

1, 1, . . . , 1, ζ−1
e′

0, e, . . . , (r − 2)e, (r − 1)e − r
1, 1, . . . , 1, ζe′

ζrd = ζe′

or ζ(r−1)e = 1

4G(3, 3, 3)
4, 4, 6

ζ4, ζ−1
4 , 1

0, 3, 3

1, ζ4, ζ−1
4

ζ6 = 1

2G(3, 3, 3)
4, 4, 6

−1, −1, 1
0, 3, 3
1, −1, −1

ζ6 = 1

3G(4, 2, 2)
4, 4

ζ3, ζ2
3

0, 4
1, 1

ζ4 = 1

3D4
2, 4, 4, 6
1, ζ3, ζ2

3 , 1
0, 2, 2, 4
1, ζ3, ζ2

3 , 1
o(ζ) ∈ {1, 2, 3, 6, 12}

2G5
6, 12
1, −1

0, 6
1, −1

o(ζ) ∈ {1, 2, 3, 6, 8, 24}

2G7
12, 12
1, −1

0, 12
1, −1

ζ12 = 1

2F4
2, 6, 8, 12
1, −1, 1, −1

0, 4, 6, 10
1, −1, 1, −1

o(ζ) ∈ {1, 2, 4, 8, 12, 24}
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For the first statement, we prove that if v ∈ V is such that CG(v) = 1,
where CG(v) = {x ∈ G | x(v) = v}, then Ψ′

M(v) 6= 0. Note that for any
non-trivial element x ∈ G, Vx := {v ∈ V | x(v) = v} is a subspace of positive
codimension in V , whence V \ ⋃

x∈G,x6=IdV
Vx 6= ∅, so that such elements v

exist. Given one, if Gv is its G-orbit, then the map G → Gv defined by g 7→
g(v) is bijective. Let F be the space of functions Gv → K, endowed with
its natural G-module structure. The restriction map S → F is evidently
surjective. Since elements of SG are constant on Gv, the restriction map
H → F is also surjective, and by dimension, is an isomorphism of G-
modules. Let f ∈ H be such that f(v) = 1 and f(g(v)) = 0 if g 6= IdV .
Consider the map ν : H ⊗ M ∗ → M∗, given by h ⊗ x 7→ h(v)x. The
restriction of ν : (H ⊗ M ∗)G → M∗ is an isomorphism of K-vector spaces,
since by dimension, it suffices to show that it is surjective, which easily
follows from the fact that ν

(∑
g∈G

gf ⊗ gx
)

= x for every x ∈ M ∗. But
the matrix of ν with respect to the bases (u1, . . . , um) and (y1, . . . , ym) is
exactly qji(v), whose determinant is Ψ′

M (v); it follows that Ψ′
M is non-zero.

It remains to show that N(M) =
∑

H∈A(G) NH(M). Define the fake

degree FM (t) of M as the Poincaré polynomial
∑

ι∈B(M) tmι of (H⊗M ∗)G,

where t is an indeterminate. It is then clear that N(M) = ∂FM

∂t |t=1. How-
ever from Molien’s formula, if χ is the character of the G-module M ,

we have FM (t) =
Q

ι∈B(V )(1−tdι )

|G|
∑

g∈G
χ(g)

detV (1−gt) . Taking derivatives, we
see that the terms where g is not 1 or a reflection do not contribute to
N(M). To sum the remaining terms, we use the fact that the number
|Ref(G)| of reflections of G is equal to

∑
ι(dι − 1) to obtain N(M) =

χ(1)|Ref(G)|/2 +
∑

s∈Ref(G)
χ(s)

det(s|V )−1 . This expression is exactly the sum

of the corresponding expressions for GH , over all H ∈ A(G), whence the
result.

Proof of Lemma 2.11. Let M be a G-module of dimension m such that
any reflection of G acts as a reflection in M . Then for H ∈ A, we have
in the notation preceding the statement of Theorem 2.8, the GH -module
decomposition M ∗ =

⊕m
i=1 ξei

H , where e1 6= 0 and ei = 0 for i > 1. Then
ΛmM∗ = ξe1

H , and NH(M) = NH(ΛmM) = e1. Since this holds for any
H ∈ A, and N(M) =

∑
H∈A NH(M) for any M , the Lemma follows.
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