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A REMARK ON PARTIAL RESOLUTIONS OF

3-DIMENSIONAL TERMINAL SINGULARITIES

TAKAYUKI HAYAKAWA

Abstract. Let X be a 3-dimensional terminal singularity of index ≥ 2. We
study projective birational morphisms ϕ : Y → X such that the exceptional
divisor of ϕ consists of all prime divisors with discrepancies < 1 (resp. ≤ 1)
over X.

§1. Introduction

In this note, we shall study a problem on birational morphisms of 3-

folds which is proposed by [Reid87, (6.5)]. It asks the existence of economic

resolutions of 3-dimensional terminal singularities.

Let P ∈ X be a germ of a 3-dimensional terminal singularity. Then

[Reid87, (6.5)] asks if there is a partial resolution f : Y → X such that all

exceptional prime divisors have discrepancies < 1 and Y has only isolated

cDV points. However the condition on singularities of Y seems to be too

strong. In fact if such a partial resolution f : Y → X exists and if the

exceptional set of f is a divisor, then every prime divisor with discrepancy

≤ 1 over P (∈ X) appears as a divisor on Y . On the other hand, we

saw in [Hay05] that there are prime divisors with discrepancies 1 over P in

many cases. Thus we change the condition on singularities of Y and define

variants of economic resolutions as follows:

Definition 1.1. A projective birational morphism f : Y → X is
called a terminal economic (resp. terminal ∗-economic) resolution if the
following conditions (i) and (ii) are satisfied:

(i) The set of all exceptional prime divisors of f is exactly the set of all
prime divisors with discrepancies < 1 (resp. ≤ 1) over P (∈ X).

(ii) Y has only Q-factorial terminal singularities.
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By using results in [Hay05], we can show that P ∈ X has terminal

economic and terminal ∗-economic resolutions in many cases, e.g., P ∈ X

is of type (cA/m). However there are examples of P ∈ X which have no

such resolutions if P ∈ X is of type (cE/2). The main purpose of this note

is to give such examples and prove that there are no terminal economic or

terminal ∗-economic resolutions. Our examples of P ∈ X are Q-factorial so

that the exceptional set of each birational morphism to P ∈ X is a divisor.

These will be done in Sections 3 and 4 respectively.

Thus we again have to change the condition on singularities of Y , and

get to the following:

Definition 1.2. A projective birational morphism f : Y → X is
called a canonical economic (resp. canonical ∗-economic) resolution if the
conditions (i) and (ii)’ are satisfied:

(ii)’ Y has only Q-factorial canonical singularities.

We can show that such resolutions always exist and proofs will be given

in Section 5. We remark that we need not assume P ∈ X is Q-factorial.

These will be done by an application of the Minimal Model Program.

The author would like to thank Professor S. Mori for his invaluable

suggestions and encouragement.

§2. Notation and preliminaries

2.1. Let P ∈ X be a germ of a 3-dimensional terminal singularity.
Let ∆X be a Q-Cartier Q-divisor on X and let HX be a linear system on
X which consists of Q-Cartier divisors.

Let µ : X̃ → X be a resolution of singularities of X. We denote the
birational transform of ∆X (resp. HX) by ∆X̃ (resp. HX̃), and write

KX̃ + ∆X̃ = µ∗(KX + ∆X) +
∑

a(E,X,∆X )E,

KX̃ + HX̃ = µ∗(KX + HX) +
∑

a(E,X,HX )E,

where the sum in the right hand side runs over all exceptional prime divisors
E of µ and a(E,X,∆X ), a(E,X,HX ) ∈ Q. The coefficient a(E,X,∆X )
(resp. a(E,X,HX )) of E is called the discrepancy of E over X with respect
to ∆X (resp. HX). This depends only on the discrete valuation on the
function field C(X) of X determined by E, and does not depend on the
particular resolution µ. Thus a(E,X,∆X ) and a(E,X,HX ) are defined for
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all exceptional prime divisors E over X. When ∆X = 0, we denote a(E,X)
instead of a(E,X,∆X ) and call it the discrepancy of E over X. We often
identify exceptional prime divisors over X with the corresponding discrete
valuations.

In this note, we are interested in prime divisors E with a(E,X) < 1
and a(E,X) ≤ 1.

In order to calculate discrepancies, we frequently use the following:

Lemma 2.2. Let P ∈ X and ∆X be as in (2.1). Let f : Y → X be a

projective birational morphism such that Y has only terminal singularities.

We write KY = f∗KX +
∑

aiEi, where
∑

Ei is the exceptional divisor of

f and ai ∈ Q. Then for each exceptional prime divisor F over Y , we have

a(F,X,∆X ) = a(F, Y, f ∗∆X −
∑

aiEi).

Proof. Let g : Z → Y be a resolution and let h = f ◦ g. Then we
have h∗(KX + ∆X) = g∗(KY + f∗∆X −

∑

aiEi). The result is an easy
consequence of this equality.

The following two lemmas will also be used in Sections 3 and 4. The first

one is taken from [FA92, 6.2] and the second one from [Kaw84, 5.9].

Lemma 2.3. Let P ∈ X be as in (2.1) and let fi : Yi → X (i = 1, 2)
be projective birational morphisms such that the exceptional set of fi is an

irreducible divisor Ei. If E1 and E2 define the same valuation on C(X),
then Y1 and Y2 are isomorphic over X.

Lemma 2.4. Let f : Y → X be a projective birational morphism (not

an isomorphism) of 3-folds with only Q-factorial terminal singularities.

Then KY is not f -nef.

§3. Terminal economic resolutions

In this section, we shall give an example of a 3-dimensional terminal

singularity which does not have terminal economic resolutions.

3.1. Let P ∈ X be a germ of a 3-dimensional Q-factorial terminal
singularity, and assume that this is of type (cE/2). Then there is an analytic
embedding X ↪→ (x, y, z, u)/Z2(0, 1, 1, 1) such that

(3.1.1) X = {u2 + x3 + g(y, z)x + h(y, z) = 0}/Z2(0, 1, 1, 1),
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where g(y, z), h(y, z) ∈ (y, z)4C{y, z} are Z2-invariants and the degree 4
part hdeg 4(y, z) of h(y, z) is nonzero.

In (3.2) and (3.3), we shall construct birational morphisms f : Y → X
and g1 : Z1 → Y using this embedding, hence in the analytic category.
However, using the algebraization theorems by Artin ([Art68], [Art69]), we
have the corresponding morphisms in the algebraic category.

Here we assume that hdeg 4(y, z) = y4 and that τ -wt(g(y, z)) ≥ 4,
τ -wt(h(y, z)) ≥ 6 when we set τ -wt(y) = 3/2, τ -wt(z) = 1/2. We also
assume that the blow up f : Y → X with weight (x, y, z, u) = 1

2(4, 3, 1, 7)
is divisorial with discrepancy 1/2. Thus we are in the situation of [Hay99,
10.59–10.64]. We also remark that prime divisors with discrepancies < 1
over X always have discrepancies 1/2, and that the center of these divisors
is P .

Proposition 3.2. Let P ∈ X be as in (3.1). Then there are exactly

two prime divisors with discrepancies 1/2 over P (∈ X) and f : Y → X in

(3.1) is the unique divisorial blow up of P ∈ X with discrepancy 1/2.

Proof. This follows from [Hay99, 10.61, 10.62].

3.3. Let P ∈ X and f : Y → X be as in (3.1) and let E be the
exceptional divisor of f . By [Hay99, 10.6, 10.61], Y is Gorenstein outside
one point Q, and there is an open neighborhood Q ∈ U ⊆ Y such that U '
(x, y, z)/Z7(4, 3, 1) with E|U = divU (x3+(g(y, z))τ -wt=4 ·x+(h(y, z))τ -wt=6).

Let g1 : Z1 → Y be the blow up at Q with weight (x, y, z) = 1
7 (1, 6, 2)

in (x, y, z)/Z7(4, 3, 1) (' U ⊆ Y ). The exceptional divisor F1 of g1 is
irreducible and we have

a(F1, X) = a(F1, Y,−
1
2E) = a(F1, U,−

1
2E|U ) = 2/7 + 1/2 · 3/7 = 1/2

by using (2.2). Let ϕ1 = f ◦ g1 : Z1 → X be the composition. Then
the exceptional set of ϕ1 consists of two prime divisors g−1

1∗ E and F1, which
have both discrepancies 1/2 over X. However ϕ1 is not a terminal economic
resolution, since Z1 has singularities which are not terminal. In fact Z1 has
1-dimensional singular locus which are canonical.

Theorem 3.4. Let P ∈ X be as in (3.1). Then P ∈ X has no terminal

economic resolutions.

Proof. Assuming that there is a terminal economic resolution ϕ : Z →
X, we shall derive a contradiction. The exceptional set of ϕ consists of
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two prime divisors, both of which have discrepancies 1/2 over X, hence we
know that ρ(Z/X) = 2. By (2.4), KZ is not ϕ-nef, so there is an extremal
ray R on Z such that (KZ ·R) < 0. We apply the Minimal Model Program
over X starting with the contraction of R. Then, after a finite number of
flips Z 99K Z ′, we get to a divisorial contraction g ′ : Z ′ → Y ′. We know
that both Z ′ and Y ′ have only terminal singularities. Since ρ(Y ′/X) = 1,
the exceptional set of f ′ : Y ′ → X is a prime divisor which has discrepancy
1/2 over X. Since Y ′ has only terminal singularities, it follows from (2.3)
and (3.2) that f ′ : Y ′ → X is isomorphic to f : Y → X in (3.1). By using
(2.3) again for g′ : Z ′ → Y ′ and g1 : Z1 → Y in (3.3), we see that Z ′ and
Z1 are isomorphic over Y (' Y ′). This is a contradiction, since Z ′ has only
terminal singularities and Z1 has singularities worse than terminal.

§4. Terminal ∗-economic resolutions

In this section, we shall give an example of a 3-dimensional terminal

singularities which does not have terminal ∗-economic resolutions. The

discussion below are almost the same as in Section 3. We have to work a

little more because we shall treat three exceptional prime divisors.

4.1. Let P ∈ X be a germ of a 3-dimensional Q-factorial terminal
singularity, and assume again that this is of type (cE/2). Then X has
an analytic embedding as in (3.1.1). We write g(y, z) =

∑

p,q apqy
pzq and

h(y, z) =
∑

p,q bpqy
pzq as power series. We again remark that, though our

construction of birational morphisms will be done in the analytic category,
there are corresponding morphisms also in the algebraic category.

We shall assume that hdeg 4(y, z) = y4 and that the system of equations

(4.1.1) t3 + a04t+ b06 = 0, 3t2 + a04 = 0, a13t+ b15 = 0

has no solutions in t. Then, by [Hay05, 7.8], we see that the blow up f :
Y → X with weight (x, y, z, u) = 1

2(2, 3, 1, 3) is divisorial with discrepancy
1/2. Thus we are in the situation of [Hay05, 7.8(A)].

Proposition 4.2. Let P ∈ X be as in (4.1). Then there are exactly

three prime divisors with discrepancies ≤ 1 over P (∈ X). Among these

three divisors, one of these has discrepancy 1/2 and others have discrepan-

cies 1. Furthermore, f : Y → X in (4.1) is the unique divisorial blow up at

P with discrepancy ≤ 1.
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Proof. We know the number of prime divisors with discrepancies ≤ 1
by [Hay05, 7.9]. Thus it suffices to show that there are no divisorial blow
ups of X with discrepancies 1. We start with finding two prime divisors
with discrepancies 1 over P (∈ X).

Let f1 : Y1 → X be the blow up with weight (x, y, z, u) = (2, 2, 1, 3).
Then Y1 has an open subset U1 (which is the z-chart of Y1) such that

U1 ' {u2 + x3 + g(yz2, z)/z4 · x+ h(yz2, z)/z6 = 0}/Z2(0, 1, 1, 0),

hence Y1 has singularities which are not terminal. The exceptional set E1

of f1 is an irreducible divisor over P and satisfies a(E1, X) = 1. Similarly,
let f2 : Y2 → X be the blow up with weight (x, y, z, u) = (2, 1, 1, 2). Then
the exceptional set E2 of f2 is an irreducible divisor over P which satisfies
a(E2, X) = 1. By studying singularities of Y2, we again see that Y2 has non
terminal singularities. We also remark that f1 and f2 are not isomorphic
over X and that E1 and E2 are the prime divisors with discrepancies 1 over
P (∈ X).

Now assume that there is a divisorial blow up f ′ : Y ′ → X with dis-
crepancy 1. Then it follows from (2.3) that Y ′ is isomorphic to either Y1 or
Y2. This is a contradiction by comparing singularities of Y ′ with those of
Y1 (or Y2). Thus we know that there are no divisorial blow ups of X with
discrepancies 1.

4.3. Let P ∈ X and f : Y → X be as in (4.1) and let E be the
exceptional divisor of f . By [Hay05, 7.2], Y is Gorenstein outside one point
Q, and there is an open neighborhood Q ∈ U ⊆ Y such that

U ' {u2 + x3 + g(y3/2, y1/2z)/y2 · x+ h(y3/2, y1/2z)/y3 = 0}/Z3(2, 1, 1, 0).

This is terminal of type (cD/3). We also see that E|U = divU (y).

Let g : Z → Y be the blow up at Q with weight (x, y, z, u) = 1
3(2, 4, 1, 3)

in U (⊆ Y ). Since (4.1.1) has no solutions in t, we know that g is divisorial
with discrepancy 1/3. Let F be the exceptional divisor of g. By using (2.2),
we have

a(F,X) = a(F, Y,− 1
2E) = a(F,U,− 1

2 divU (y)) = 1/3 + 1/2 · 4/3 = 1.

Thus the composition ϕ = f ◦g : Z → X is a projective birational morphism
such that the exceptional set consists of two prime divisors F and g−1

∗ E.
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We see that Z is Gorenstein outside one point Q′, and there is an open
neighborhood Q′ ∈ U ′ ⊆ Z such that

U ′ ' {u2 + x3 + g(y2, yz)/y4 · x+ h(y2, yz)/y6 = 0}/Z4(2, 1, 1, 3).

This is terminal of type (cAx/4). We also see that (− 1
3F − 1

2g
∗E)|U ′ =

−divU ′(y).

Lemma 4.4. Let Y , U , Q be as in (4.3). Let g1 : Z1 → Y be the

blow up at Q with weight (x, y, z, u) = 1
3(4, 2, 2, 3) in U (⊆ Y ). Then the

exceptional set F1 of g1 is an irreducible divisor with a(F1, X) = 1, and Z1

has non terminal singularities.

Proof. There is an open subset V1 ⊆ Z1 (which is the z-chart of Z1)
such that

V1 '

{

u2 + x3z2 +
(

g(y3/2z, y1/2z)/y2z2
)

· x

+ h(y3/2z, y1/2z)/y3z4 = 0

}

/

Z2(0, 0, 1, 1).

Thus Z1 has non terminal singularities. Since F1 ' {u2 + y3 = 0} ⊆
P(4, 2, 2, 3), we know that F1 is an irreducible divisor. We also see that
a(F1, V ) = 2/3. Thus, by (2.2), we have

a(F1, X) = a(F1, U,−
1
2 divU (y)) = 2/3 + 1/2 · 2/3 = 1.

Lemma 4.5. Let Z, U ′, Q′ be as in (4.3). Let h1 : W1 → Z be the

blow up at Q′ with weight (x, y, z, u) = 1
2(2, 1, 1, 1) in U ′ (⊆ Z). Then the

exceptional set G1 of h1 is an irreducible divisor with a(G1, X) = 1, and

W1 has non terminal singularities.

Proof. By a computation of the blow up, we see that there is an open
subset U ′′ ⊆W1 (which is the z-chart of W1) such that

U ′′ '

{

u2 + x3z2 +
(

g(y2z, yz)/y4z2
)

· x

+ h(y2z, yz)/y6z4 = 0

}

/

Z2(1, 0, 0, 1),

which shows that W1 has non terminal singularities. We know that G1|U ′′ =
divU ′′(u2 + y2) and that G1 is an irreducible divisor by considering the Z2-
action on G1. We also see that a(G1, Z) = 1/2. By using (2.2), we get

a(G1, X) = a(G1, Z,−
1
3F − 1

2g
−1
∗ E) = a(G1, U

′,−divU ′(y))

= 1/2 + 1/2 = 1,

which completes the proof.
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4.6. Thus we obtain a projective birational morphism ψ1 = h1 ◦g ◦f :
W1 → X such that the exceptional set of ψ1 consists of three prime divisors
(h1 ◦ g)−1

∗ E, h−1
1∗ F and G1. We also know that a((h1 ◦ g)−1

∗ E,X) = 1/2
and a(h−1

1∗ F,X) = a(G1, X) = 1. However ψ1 : W1 → X is not a terminal
∗-economic resolution since W1 has non terminal singularities.

Proposition 4.7. Let P ∈ X, Z, ϕ : Z → X be in (4.1) and (4.3).
Then −KZ is ϕ-nef.

Proof. Let DX = divX(z). Then DX ∈ |−KX | and has a unique
singular point which is a rational double point of type E7. LetDZ = ϕ−1

∗ DX

be the birational transform of DX . Then ϕ|DZ
: DZ → DX is a crepant

morphism and DZ ∈ |−KZ |. Let C1 = g−1
∗ E|DZ

and C2 = F|DZ
. These are

irreducible curves on Z, and we see that C1 is a nonsingular rational curve
such that (C2

1 )DZ
= −2 and (C1 · C2)DZ

= 1. (There is a rational double
point of type D5 on DZ . This point lies on C2 and not on C1.)

Let C be an irreducible curve on Z such that ϕ(C) is a point. Then
either C ⊂ F or C ⊂ g−1

∗ E. If C ⊂ F , then (−KZ · C) > 0 since −KZ is
g-ample. If C ⊂ g−1

∗ E and C 6= C1, then C and DZ meets properly, hence
(−KZ · C) = (DZ · C) ≥ 0. If C = C1, then

(−KZ · C) = (−KZ|DZ
· C1) = (1

2C1 + C2 · C1)DZ
= 1/2 · (−2) + 1 = 0.

Thus we have (−KZ · C) ≥ 0 in any cases.

Theorem 4.8. Let P ∈ X be as in (4.1). Then P ∈ X has no terminal

∗-economic resolutions.

Proof. Assuming that there is a terminal ∗-economic resolution ψ :
W → X, we shall derive a contradiction. The exceptional set of ψ consists
of three prime divisors, two of them have discrepancies 1 and one of them
has discrepancy 1/2 over P (∈ X). We also know that ρ(W/X) = 3. By
(2.4), KW is not ψ-nef, hence there is an extremal ray R on W such that
(KW ·R) < 0. We apply the Minimal Model Program over X starting with
the contraction of R. Then, after a finite number of flips W 99K W ′, we
get to a divisorial contraction h′ : W ′ → Z ′. Since ρ(Z ′/X) = 2, we can
continue the Minimal Model Program. There are several flips Z ′

99K Z ′′ and
a divisorial contraction g′′ : Z ′′ → Y ′′. Since ρ(Y ′′/X) = 1, the morphism
f ′′ : Y ′′ → X is a divisorial contraction which contracts one of the prime
divisors with discrepancies ≤ 1 to a point P , hence it is isomorphic to
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f : Y → X in (4.1) by using (2.3) and (4.2). Since g ′′ : Z ′′ → Y ′′ contracts
a prime divisor which has discrepancy 1, it follows from (2.3) and (4.4) that
g′′ : Z ′′ → Y ′′ is isomorphic to g : Z → Y in (4.3). Since −KZ is ϕ-nef,
there are no flipped curves on Z. Therefore Z ′ and Z ′′ (' Z) are isomorphic.
Thus, by (2.3), we see that h′ : W ′ → Z ′ is isomorphic to h1 : W1 → Z
in (4.5). This is a contradiction by comparing the singularities of W ′ with
those of W1.

§5. Canonical economic and canonical ∗-economic resolutions

In this section, we shall study canonical economic and canonical ∗-

economic resolutions, and prove that every 3-dimensional terminal singu-

larity has such resolutions. The proof here is an easy application of [FA92,

17.10].

Theorem 5.1. Let P ∈ X be a germ of a 3-dimensional terminal

singularity. Then P ∈ X admits a canonical economic and a canonical

∗-economic resolutions.

Proof. By [Reid87, (6.4)], a general member DX ∈ |−KX | has only
rational double point at P . Let HX ⊆ |−KX | be a movable linear system
on X such that a general member of HX has a rational double point at
P . Then, by [Alex94, 1.21], we have a(E,X,HX ) ≥ 0 for all prime divisors
E over X, which means that KX + HX is canonical. Let f : Y → X
be a resolution of singularities of X such that the exceptional locus of f
is a divisor and that the birational transform HY = f−1

∗ HX is free. Then
a(F, Y,HY ) > 0 for all prime divisors F over Y , hence KY +HY is terminal.
Let E(f) be the set of all exceptional prime divisors of f .

Claim 5.2. For a prime divisor E over P (∈ X), we have the follow-

ing :

(1) If a(E,X) ≤ 1, then a(E,X,HX ) = 0.

(2) If a(E,X,HX ) = 0, then E ∈ E(f).

Proof. SinceKY +HY is terminal, we see that a(E,X,HX ) = 0 implies
E ∈ E(f). Since KX + HX is canonical and HX ⊆ |−KX |, we see that
a(E,X,HX ) 6= 0 implies a(E,X,HX ) ≥ 1. We know that P is in the
base locus of HX , hence we have a(E,X) > a(E,X,HX ) ≥ 1. Therefore
a(E,X) ≤ 1 implies a(E,X,HX ) = 0.
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Now we return to the proof of (5.1). Let E1 = {E ∈ E(f) | a(E,X) < 1}
and let E2 = {E ∈ E(f) | a(E,X) ≤ 1}. By (5.2), E1 (resp. E2) is the set of
all exceptional prime divisors E with a(E,X) < 1 (resp. a(E,X) ≤ 1), and
each element E ∈ Ei (i = 1, 2) satisfies a(E,X,HX ) = 0. Hence we can
apply [FA92, 17.10] and get a normal Q-factorial 3-fold X(Ei), a birational
map hi : Y 99K X(Ei) and a birational morphism gi : X(Ei) → X (i = 1, 2)
such that

(i) f = gi ◦ hi,

(ii) KX(Ei) + g−1
i∗ HX = g∗i (KX + HX), and

(iii) hi is isomorphic at each generic point of E ∈ Ei, and contracts each
E′ ∈ E(f) \ Ei.

By (ii), we know that KX(Ei) + g−1
i∗ HX is canonical, in particular X(Ei) has

only canonical singularities. We also see that E(gi) = Ei by (iii). Therefore
g1 : X(E1) → X and g2 : X(E2) → X are a canonical economic and a
canonical ∗-economic resolutions respectively.
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