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A space ring R is defined as a domain whose complement in the Moebius

space consists of two components. The modulus of R can be defined in variously

different but essentially equivalent ways (see e.g. Gehring [3] and Krivov [5]),

which is denoted by mod R. Following Gehring [2], we refer to a homeomor-

phism y(x) of a space domain D as a ϋΓ-quasiconformal mapping, if the modulus

condition

(*) •— mod R&mod y(R) ^ K mod R

is satisfied for all bounded rings R with their closure # c £), where y(R) denotes

the image of R by y = y(x). Then, it is evident that the inverse of a Zf-quasi-

conformal mapping is itself iΓ-quasiconformal and that a ϋίrquasiconformal

mapping followed by a Jζrquasiconformal one is l£i i£>-quasiconformal. It is

also well known that the restriction of a Moebius transformation to a space

domain is equivalent to a 1-quasiconformal mapping of its domain.

The purpose of this paper is to prove Theorem 2 in the previous paper

[4] (see also corrections to it added after the list of references in this paper)

without the additional condition "y(x) maps each radius of | * | < 1 onto a curve

which is normal to the image of each surface \χ\ = r" and without the use of

any isoperimetric inequality such as A{r)z- 36πV(rY^0 used in its former

proof, and to give the various space forms derived from there. All our argu-

ments can be similarly carried over to higher dimensions, but we shall restrict

ourselves for brebity sake to the Moebius 3-dimensional space.

1. First we enunciate the theorem.

T H E O R E M . Let y=y(x) be a K-quasiconformal mapping of \χ\<l such that
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\y\ < 1 and y{0) = 0. Then it holds that

where the equality holds if and only if y(x) = /I/K(#(Λ θu 02)) :

(1) { y2 = rυκ sin (0i + Ci) cos (02 + c2),

3̂3 = rυκsin(0i -f cL) sin (02 + c2),

arbitrary real constants, which are uniquely determined except for

rotations about the origin of \y\<\.

Hence, if two points given on | # | = 1 correspond to two points given on

\y\ = 1, for instance, the points (1, 0, 0), (0, 1, 0) are carried into themselves

respectively, the mapping obtained by putting Ci = Ci = 0 in (1) is the only ex-

tremal one.

2. In proving this theorem, we use the following two lemmas.

LEMMA 1. The modulus of a spherical ring bounded by two spherical surfaces

with radii a and b(>a) is not greater than log—- Further, its modulus attains

the maximum value log— if and only if the spherical ring is concentric.

This is Lemma 3 proved in C4l

LEMMA 2. Let y-y(x) be a K-quasiconformal mapping of I x\ < 1 onto \y | < 1.

If y=y(x) maps \x\~q for almost all 0<q<l onto \y\- qυκ

f then it is nothing

but the mapping y=f/κ(x{r, 0i, 02)) in the above Theorem.

Proof. First, we fix a system of cartesian coordinates xu x2, xs to which

corresponds polar coordinates r, βu θ2 such that xx ^ r cos 0u x* = rsin0icos fi2, x% =

fsin0isin02 in the #-space. Similarly, introduce arbitrary systems of cartesian

coordinates yit y i, yz and the corresponding polar coordinates p, φι9 φ2 into the y-

space. Then, the required mappings.y = y(x); can be represented by the form

yι = pcos (0i + cί),

y% = psin (φ\ ¥c[) cos(0 2 + ^ ) ,

yz = p sin (^i •+• c[) sin {φ2 -h cθ,

where each of p, <ρu φ2 is a function of three variables ry θu 02 and cί, c[ are

arbitrary real constants. From the assumption, there holds p = rllκ for almost
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all r such that 0 O < l .

Next, let q be an arbitrary number satisfying the assumption and denote

by R the spherical ring qυκ < \y \ < 1. For the function f(y) = (\y |~ log —

in i?, if we put

and

where da, dτ denote the surface, volume element on \y\ = rυκ, in R, respectively,

then some simple calculations yield that

(2.1) 4

Further, let J(x) be the Jacobian of y(x), and let M j ) be the directional

derivative of the inverse mapping x = x(y) in the radial direction: N(y) =

lim{x(y-hky) - x(y)}/ky, k being real. Let dω be the surface element on \x\ - r,

and denote by 0x the angle between the radial ray and the inverse image vector

dx corresponding to the infinitesimal vector dy in the radial direction. Then,

through some geometric considerations, we obtain

da^\J{x)\\N(y)\cosdxdω.

Hence it holds that

S(R) = ίf

Applying Holder's inequality, we have

(2.2)

Since \Niy)\ ^ 1/min ^ j and (lj(x)\/min\^} ) ^K almost everywhere (cf.

Theorem 6.13 in VaisalS [6] or Theorem 4 in [2]), it follows from (2.2) that

S(R)m S. s/ϊ~πrκ\{ ( r ϊ / κ ^ log l-

so that
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By integrating with respect to r on the interval Zq, 1], we have

(2.3) î -

However, the relation (2.1) implies that the equality holds in (2.3). Hence,

the equality holds also in Holder's inequality (2.2). Therefore, we have

I/U)11 My)I cosθx = ̂  = constant

for each fixed r and almost all θu 02. From the equality in (2.2), we have in

fact

so that

It is written in the form

since -•— = r2/x sin (ψi 4- c{) d (0i + c[) dφz/r2 sin ̂ i dβi dθ2. Hence it follows that

s ! n .^ i_ + c[) di0i + c\)dφ2 = .
sinddθdfa

for almost all 0

This implies that for almost all 0 < r < l , the surf ace element at P(r, θu θ%)

on \x\ = r is equal to the one at the corresponding point Q(r, 0i + cί, ^H-c!) on

\y\ = r. As is easily seen, the set on \x\ = r(resρ. |^ | - r) such that the surface

element at each point of its set equals to the one at P (resp. Q) is the circle

on \x\ = r (resp. \y\ = r) with the same βι (resp. φι-\-c[) as in P (resp. Q).

Therefore, we have dφ2/dU2 = ̂  (constant). Integrating it over [0, 27r], we have
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k=l, and so φ2 = do-τc2, where c2 is any real constant. Then, it follows from

sin(0i-j-cj)d{φx-\-c[) =sinθ1dθ1 that ψι-hcΊ = d1 or φi=θι + clf where cx= -c[.

That is to say, we have found that for almost all 0 < r < l , β = rιlκ, ψi = 0i + ci

and 02 — 02-+c2i clf c2 being arbitrary real constants. Since y — yix) is a homeo-

morphism, it must be the mapping in (1). Conversely, it is quite clear that

di, 02)) satisfies the assumption in Lemma 2.

3. Proof of Theorem. Let Vir) be the volume bounded by the image

y(\x\ = r)oί \x\ = r (<1) under y = y(χ), and denote by y(r<\x\ <r') the image

of r<\x\<r' under y=y(x). Then, by an extension of Golusin's theorem (see

Theorem 3 in Gehring [1]), we have

Together with the inequality

4 log-r- ί mod y (r<\x\<r')
A Y

followed from the one sided modulus condition in (.*), we get

Since this shows that V{r)/rfi/κ is a non-decreasing function in r, we have

(3.1) -γfκ-^VK\)=-jπ.

Put min \y(x)\ = m{r). Then it is obvious from y(Q) =* 0 that

1*1 =r

(3.2)

Thus we obtain

(3.3) hm mf Y -TUJΓ = lim inf --, π<- ^ lim mf

Now, suppose that y^y(x) satisfying the assumption of the theorem induces

the signs of equality in (3.3). Then, the signs of equality hold for almost all

r ( 0 < r < l ) in (3.2) and (3.1). Since V{ r)/r*lκ was a non-decreasing function

in r, it is easy to see that the sign of equality for all r holds in (3.1), i.e.
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From this and the equality in (3.2), we have

for almost all r. Hence it follows that the image y(\x\ = r) for almost all r is

a spherical surface with radius r1/κ. Here, by making r-+l9 it follows also that

y = y(x) maps ! # | < 1 onto ljy|<l. Accordingly, as is seen by Lemma 1, the

modulus of the spherical ring y(r<\x\<l) for almost all r is not greater than

log--, while its modulus is not less than JL-log— in view of the modulus

condition (*). Therefore it follows that its modulus is equal to - ^ l o g -

Then, by Lemma 1 again, we can see that the center of y{\x\ -r) for almost

all r is the origin y = 0. Thus we conclude from Lemma 2 that the required

extremal mapping y(x) is nothing but fuκ(x(r, θlt 02)) in (1).

4. In order to obtain the corresponding estimates in the case where the

restriction y<0) = 0 is removed, we use the following lemma.

LEMMA 3. A Moebius transformation i.e. 1-quasiconformal mapping X-X(ξ)

of \ς\<l onto IX\ < 1 which carries ξa = (a, 0, 0) into the origin (0, 0, 0) is given

by

(4) Xz =

is simply denoted by X= X(ξ).

Proof. Some elementary computations using the cross ratio yields that the

linear transformation



ON A THEOREM OF SCHWARZ TYPE 25

carries the disc y/ςl + ξl<l into sXl + X\< 1 and (ft, ft) = (0,0) into (Xly X2)

= (0,0). We shall denote this linear transformation by Xi + iX-z = /(ft-f /£>).

Next, we denote by (ft, s, y>) and (Zi, £,</') the semi-polar coordinates of

'•(?i, £2, C3) and (Zi,X 2 , Xs), respectively. Consider the linear transformation

Xi -HY = /(ζi + zs) which carries the intersection of each plane ψ — u {0^u^2π)

with the sphere | f l < l into the intersection of each plane ψ-u (0^u^2π)

with the sphere | X \ < 1, where ψ takes the same u as each u taken by ψ.

Then, such a linear transformation produces immediately our required mapping.

5. Now, let y0 be y(χo) for any xύ in | # | < 1 . We denote by ξ-ξ{χ) the

rotation about the origin which carries \x\ < 1 into \ξ\ < 1 and x = XQ into ξ\Xo\ =

(|ΛΓOI,O, 0), and let η^-ηiy) be the similar rotation which carries l .y |<l into

\η\ < 1 and y=y* into τ?ι̂ ι = .(l^ol, 0,0). Further, let X = X(ξ) be the Moebius

transformation obtained by putting a=\xύ\ in (4), and let Y=Y{η) be the

similar one obtained by replacing Z, ξ, a in (4) with Y, y, \yQ\, respectively.

Then we have the following corollaries.

COROLLARY 1. Let y=y(x) be a K-quasiconformal mapping of U I < 1 such

that \y{χ)\<\. Then, for any xQ in | # | < 1 , it holds that

The sign of equality holds if and only if y(x) =guκ(x)t ivhere guAx) is the com-

posite mapping of the above £ = £(*), X= X(ς)t Y= Y{y), -η--η(y) and the quasi-

conformal mapping Y= Fi/κ(X) having the same form as (1).

Proof First, consider the composite mapping of four Moebius transfor-

mations ξ-ξix)t X~X(ζ), -η--η{y) and F = Yiη) mentioned above and a K-

quasiconformal mapping y~ yix) in this corollary. Then, the restriction F =

Y(X) of such a composite mapping to | Z | < 1 maps | Z | < 1 iΓ>quasiconformally

onto I YΊ<1 and carries the origin into itself, and so y = YiX) satisfies the

assumption of Theorem in § 1.

Next, simple computations for X~X(ς) yield that

VHΛ iF-ϊF+Tίi. \W+"('i*w* \Xo\ !'

Similarly, we have for Y= Yiy),
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Further, the distance between two points is invariant under any rotation about

the origin. Hence we find for the above rotations ξ~ς(x) and -η-ηiy). that

= \x-
Xo

U - ^ β i i - \y-y*\ and

Thus, we have finally

'-Sffi-rα

Consequently, it can be deduced from Theorem in § 1 that

UK

so that we have

limin£>—-
\X X

\y, y , „ 12

y-\y7\

-1 " 1 * ! L , q.e.d.
\ A — I -*0 I )

It is quite easy to see that the extremal mapping getting the equality here to

hold is nothing but the required y- g\ικ(x).

Considering the inverse of a mapping in Corollary 1, we have

COROLLARY 1.1. Let y=y(x) be a K-quasiconformal mapping of a domain

in \x\ <1 onto \y\ <1. Then, for any XQ in }x\<l, there holds

The sign of equality holds if and only if y =y(x) is the composite mapping of the

same ξ = ξ(x),.X = Xiξ), F = Ylrj), 7} = y{y) as in Corollary 1 and Y = FAX) re-

placing £ in Y^Fuκ(X) of Corollary 1 with K.

The following is an immediate consequence of Corollaries 1 and 1.1.
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COROLLARY 1.2. Let y-y(x) be a K-quasiconformal mapping of \x\<\ onto

\y\<l. Then, for any x0 in \x\< 1 and k>K, it holds that

6. We prove the following lemma necessary in the case where the sphere

is replaced by the half-space.

LEMMA 4. A 1-quasiconformal mapping of the half space # i > 0 onto the unit

sphere \X\<1 carrying xa= (au #2, #3) in the half space Xχ>Q into the origin is

given by

, β \ ) V _ ώ ttl \ Λ2 — Λ2)

XB

which is simply denoted by X-X(x).

Proof. First, perform the translation fi = #i, 2̂ = ̂ 2 — ^2, ξ i = Xz-az which

carries xa= (au a2, aΆ) into £fl = Ui,0, 0). Next, we make easily the linear

transformation

carrying the half-plane £i>0, ?3==0 into the unit disc Vxί-fX2

2< h ^3 = 0 and

(ft, 2̂) = (βi, 0) into (Zi, X2) = (0, 0). Hereafter, by the similar process as in

the proof of Lemma 3, we have the required mapping.

7. By the aid of Lemma 4, we have the following half-space forms of

Schwarz type.

COROLLARY 2. Let y = y(x) be a K-quasiconformal mapping of the half-space

Xι>Q into J Ί > 0 . Then, for any xa- (0i, a2> az) in Xι>§

v ' f}y(χ) -.y(*tf)l < 2(^i-component of y(xa))
™iα \x-xa\m~ ~ {2Ui-component oί xa){l'K'

The sign of equality holds if and only if y(x) = h1/K(x)t where huκ(x) is the com-

posite mapping of X-Xix) in (6) and Y= Y<y) replacing X, x> xa in (6) with
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Y> y* y(%a)> respectively, and the mapping Y—Fι/κ(X) mentioned in Corollary 1.

Proof. Consider the composite mapping of X = X(x), Y=Y(y) and a

mapping y-y(x) in this corollary. Then its restriction Y= Y{X) to | Z | < 1

maps | X | < 1 if-quasiconformally into | F | < 1 and carries the origin into itself.

Hence F = YiX) satisfies the assumption of Theorem in §.1.

After some computations for the absolute value of X=X(x), we obtain

/
Vr

\X-Xa\2\x-Xa\2 \X~ Xa

where xa denotes the symmetric point of xa with respect to the plane ΛΊ = 0.

Just similarly, we have

(7.2) l y
\y-y{χa)\

y(xa) being the symmetric point of y(xa) with respect to the plane yx = 0.

Then, we conclude by Theorem in § 1 that

lim taf!&§! - lim inf
-y(Xa)\\\x-

so that we have

-y(Xa)\ _ 2(yι - component of y(xa))
^ J """* 1~ ~ ~ ΓTTi

I1IX1 1111 i ΪY77/ — s . l l l l l ' j ^ Ji/rr """* 1~n / ~ι ~r ΓTTis*

*+*a \x-Xa\1/K ~x^*« \x-Xa\llK {2{xι-component of xa))ι'κ

It is easy to verify that the extremal mapping is nothing but y~hιjK(x) as re-

quired.

Considering the inverse of a mapping in Corollary 2, we hm^immediately

COROLLARY 2.1. Let y =y(x) be a K-quasiconformal mapping of a domain in

#i>0 onto yι>0. Then, for any xa in #i>0, there holds

^ -componentof y(xa))
r C~ΠΛ

component of ))h

τ«
r C~Π

-component of xa))h

The sign of equality holds if and only if y=y(x) is the composite mapping of

X = X(x)y Y= Y(y) mentioned in Corollary 2 and the mapping F = FAX) mentioned

in Corollary 1.1.

The following is an immediate consequence of Corollaries 2 and 2.1.

COROLLARY 2.2. Let y~y(x) be a K-quasiconformal mapping of #i>0 onto
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yi>0. Then, for any k>K and xa in #i>0 {whose x^component is not greater

than 1/2), it holds that

Γ ' Δy(χ} ~y{χ<*>*\ < 2(^i - component of y(xa))
*-Jft \x-xa\1/k = ^2^1-component of xa))vk

, ^Λ2( yι - component of y( xa)) ..
v = '<2(*,-component of xα)}* ~ m

/z£ condition for the Xι - component of xa in ( ) #?? J ί̂ ^ sign <* in i )

marked above are simultaneous.

Remark. Under the same condition as Theorem in § 1, another theorem

of Schwarz type "( Φ «(Λ)} ^ Λ ( Λ T ) holds for any 0 < | a r | < l " has been es-

tablished. (Theorem 1 in [4]). Therefore, if we use this result together with

the relations (5) in §5 and (7.1), (7.2) in §7, then other corollaries of Schwarz

type under the same conditions as Corollaries 1 and 2 and etc., respectively,

will be found. However, it is still open for us whether or not they are extended

to higher dimensions and the extremal quasiconformal mapping in them exists.
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Added. Corrections to [4]:

p. 179, line 5 from below, for ' jy = " read "Y, = ".

p. 181, lines 11, 12 from below, for "j>i = rXfK costfi, j/ 2 = rυκ sinθicos (02

yz = riy*sin0isin (ft + c) with a real constant c" read 'Vi = rvκcos (0i + ci), j>2 = r1'*

sin (̂ i + ft) cos (̂ 2 + ̂ 2), 3̂ = //^sin(^i-hci)sin(^2 + r2) with arbitrary real con-

stants C], Ci\

p. 183, line 1, for ".yi = pcos^i, y2 = josin0icos02, 3̂ = psin0isin02" read

"yi =. pcos (0i + cj), j 2 = psin iφi + cl) cos (02 -f cί), J's = psin (0! + c[) sin (02+ <?{),

cί, ri being arbitrary real constants".

p. 183, line 4, for "\J(x)\l\N(x)\ =sin0i dφ1d<p2/sinθ1dθιdθ2 = constantM read

"l/(*)!/l#(*)l = constant and sin(0i + c{)rf(0i + cί)rf02/sindxddxdd^ = constant".

p. 183, lines 7, 9 and 11, for "sin0ι<fyκfys" read #<sin(01 + cί)ί/(0i + cί)ί/02".

p. 183, line 14, for "Λ = #i" read eV2 = ft + ft".

p. 183, line 15, for "dφ2~dθ2f so that 02 = ̂ 2 + c, c being any real constant"

read "sin(0i + Ci')rf(0i + c{) = sin^1^1, so that ψi = θί + cι, cu c2 being arbitrary

real constants".




