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1. When a permutation group G on a set Ω is given, a transitive exten-

sion Gi of G is defined to be a transitive permutation group on the set Γ which

is a union of Ω and a new point <*> such that the stabilizer of °o in Gj is

isomorphic to G as a permutation group on Ω. The purpose of this paper is

to prove that many known simple groups which can be represented as doubly

transitive groups admit no transitive extension. Precise statement is found in

Theorem 2. For example, the simple groups discovered by Ree C5] do not

admit transitive extensions. Theorem 2 includes also a recent result of D. R.

Hughes [3] which states that the unitary group U*(q) q>2 does not admit a

transitive extension. As an application we prove a recent theorem of H. Nagao

[4], which generalizes a theorem of Wielandt on the non-existence of 8-transitive

permutation groups not containing the alternating groups under Schreier's

conjecture.

2. We will introduce notation which will be used throughout this paper.

Let G be a doubly transitive group on Ω and let H be the stabilizer of a

point a of Ω. Suppose that a conjugate class C of G consisting of elements of

order 2 is given. Then there is an element s of C such that we have a

decomposition of G into a union of two double cosets:

G = HDHsH where s^C.
We define

and remark that s normalizes D.

For a transitive extension, a theorem of E. Witt is fundamental (Witt

LlO]), which will be stated here as Lemma 1.
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LEMMA 1. Suppose that G admits a transitive extension. Then the extended

group Gι is generated by G and an element t satisfying the following properties:

G1 = <Gtt\ # ' = # , D'^D,

istY G D and t is conjugate to s in Gx.

Proof. Since Gi is triply transitive, G3 contains an element t such that t

exchanges co and a, and leaves s(a) invariant. Then t satisfies all the require-

ments except possibly the last. The group iV = <D, s, £> normalizes D and

N/D is the non-abelian group of order 6. Hence two groups <D, s> and <D, ί>

are conjugate. So there is an element tι in <D, t> - D which is conjugate to 5.

The element t\ meets all the requirements.

We need two lemmas from group theory.

LEMMA 2. If a finite group G admits an involutiυe automorphism t which

satisfies the property '

xt = x implies x = 1,

then G is άbelian and x* = x~ι for all x in G.

LEMMA 3. Suppose that a 2-group G contains an element u of order 2 such

that \Gu{u)\ = 4. Then G contains a cyclic subgroup of index 2, and is generated

by two elements u and v satisfying the following relations:

2;2* = w

2 = l, u'1vu=^vk

where \G\ = 4 n and k^-lork=—1 + n.

The first is a lemma of Burnside [1], while the second is in [6]. The

two possible groups in Lemma 3 are dihedral if k = — 1 and semi-dihedral

otherwise.

3. The following theorem is a partial statement of a more complete result,

but is sufficient in many applications.

THEOREM 1. Let G be a transitive permutation group on Ω and H the

stabilizer of a point a of Ω. Suppose that H contains a normal subgroup Q

satisfying the following conditions:

(1) Q is regular on Ω — {a}

(2) Q is a characteristic subgroup of H;
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(3) the order \Q\ of Q is a power of a prime number p.

If G admits a transitive extension, then we have one of the following two

cases:

(a) p-2 and Q contains a cyclic normal subgroup of index 2,

(b) p>2 and Q is abelian.

Proof. Suppose that G has a transitive extension Gi. Let C be a conjugate

class of G containing an element of order 2. We shall choose C in various

ways. Let s be an element of C not contained in H.

By assumption (1), G is doubly transitive. Hence

By Lemma 1, there is an element t of Gi such that

and t is conjugate to s in d . Then we have

Gι = G U Gt U GtsQ

and Gtsu= Gtsv for u, v<=Q implies u = v. Since Q is a characteristic subgroup

of H, t normalizes Q. Hence

Gtsut = Gtstu' = Gstsu = Gtsu*.

For any element x of Gi let i(x) denote the number of points of Ω U { °o} left

invariant by x. Then the above formula yields that

We distinguish two cases according as p = 2 or p>2. Suppose first p = 2.

Then Q contains an element j of order 2. In this case we take C to be the

class containing j . Since j leaves exactly one point on Ω, we have i(j) = 2.

Since j and t are conjugate,

The group Qι = <(?, f> is a 2-group. Hence by Lemma 3, Qu and hence 0,

contains a cyclic subgroup of index 2. Thus we have proved (a).

Suppose that p>2. If the group H is of odd order, then any element of

order 2 in G, in particular, 5 has no fixed point on Ω. Hence we have
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Therefore by Lemma 2, Q is abelian. If on the other hand H is of even order,

the subgroup D- HΓ\ Hs contains an element k of order 2. Since k normalizes

Q and ts normalizes D, we have

Gtsuk = Gtsuk.

Hence i(k) =2+|C ρ (A) | . This yields that, taking for C the class of k,

|Cg(f)|=2+|Cg(*)|.

Since Q is a >group, both \CQit)\ and \CQ(k)\ are powers of the odd prime

p. The above equality yields that

Again by Lemma 2, Q is abelian.

4. Application. Let S be one of the following groups : the two-dimensional

linear fractional groups L2(q), the three-dimensional unitary groups Uziq), the

groups Sziq)' defined in [7] or the Ree groups Riq) defined in [5] as a subgroup

of the group of type G2. Here the number q is a power of a prime number

p. In the first two cases p may be arbitrary but p = 2 for Sz(q) and p = 3 for

Riq). Except Z,2(2), Z*(3), ί/3(2), Sz(2) and i?(3), these groups are simple.

In any case the center of S is trivial. S acts naturally on the set of all the

Sylow ^-groups by conjugation and this representation of S is faithful. The

stabilizer of a Sylow p group Q is the normalizer of Q. The groups in the

particular class considered above have the property that Q is regular on the

set of Sylow i>-grouρs % Q. This is equivalent to the properties that

β n β * = {l} if QX*Q,

and the number of Sylow ^-groups is exactly l-f |ζ?|.

Let AutS be the totality of automorphisms of S. We consider S as a

subgroup of AutS by identifying S and the totality of inner automorphisms.

Consider any group G such that

Aut SΏGΏS,

and regard G as a permutation group acting on the set of all the Sylow p-

groups of S. This representation of G is faithful because the centralizer of S

in Aut S is trivial. We prove the following lemma.
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LEMMA 4. Let H = Nσ(Q). Then Q is a characteristic subgroup of H.

Proof. Since Aut S is known for each S we are considering, this lemma

can be checked. We can also show the validity as follows. If Q is not the

maximal normal ^-group of H, then the group D~ HOHS contains a normal

p-subgroup P* {1}. Put Hi = H Π S and D1 = D Π S. Since Dλ is a ^'-group,

we have [P, DJ = 1. We may take the element s in Ns(D^t so that N8(Di)

= <Di, 5>. P normalizes Ns(Di). Since there are as many elements in Ns(Di) - Di

as in Du P must centralize Ns(Di), in particular s^Cs(P). It is easy to see

that

| C * ( P ) | = r ( r + l ) |I>il with r = | C β ( P ) | .

Since [£>i, P] = 1, Dj normalizes Cg(P). Since P is a >group, C g(P)^{l}.

This yields that CQ(P) = Q for S = Z,2(<?), because Q is the only non-trivial A-

subgroup of Q.

If S= ί/3(<?), the center Z(Q) is the only proper Di-subgroup. P centralizes

Q/Z(Q) and Z(Q). If Λ: is a fixed element of P, then for any element u of Q

we have ux ~uυ with v^Z(Q). The mapping w^# is a homomorphism of Q

into Z(O). Hence CQ(x) has index less than \Z(Q)\, which is ζ?. Since \Q\ = ̂ 3,

and since Cρ(#) is a A-subgroup, we have Cg(x) = Q and so CQ(P) -Q.

If S=Sz(q), Z(Q) is the only proper A subgroup. Hence r^q. Then

r-f 1 must divide |S|/lAl = <fi(?+l). This yields that r = q2 and Cβ(P) = Q.

If S=R(q), \Q\=qz and there is a characteristic subgroup (?i of order q2

which is a direct product of Z(Q) and a Drsubgroup Q2. In R(q), Di is a

group of order q - 1 and contains a unique element j of order 2. The subgroup

Q2 is in fact CQ(j). Hence Q2 is P-invariant. Since ZiQ) and £ 2 are minimal

Di-subgroup, both are centralized by P. Hence we have r > q2. Again r -f 1

must divide tf3 + l since | S | == ^3(^3-f l)(ζf- 1). This yields that r = q3.

In all cases P centralizes Q. Since S= {(?, s}, P centralizes S. This is a

contradiction because the centralizer of S in Aut S is trivial.

The main theorem of this paper is the following.

THEOREM 2. Let G be a permutation group defined above, so that

AutSΏGΏS where S is UAq), Sz(q) or R(q). Then G does not admit a transitive

extension except when S= Z73(2) and S2(2).
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Proof. By definition and by Lemma 4 G satisfies all the conditions of

Theorem 1. Hence we have either (a) or (b). But Q is non-abelian except

the group S2(2). Therefore we must have (a). If q is a power of 2, the 2-

group Q is of exponent 4. Hence we must have | Q \ ^ 8 and q — 2. In both

exceptional cases transitive extensions are easy to determine.

Remarks. (1) A similar theorem is true for S = L2(q) as is well-known.

Not all statements of Theorem 2 are new. Hughes has shown that Uz(q) and

Sz(q) with q>2 does not admit an extension. He has published the result for

Sz(q) in [2] and the result for U3(q) is to appear [31 The author is grateful

to Professor Hughes for communicating his result before publication.

(2) Among the simple groups known so far the alternating groups, the

Mathieu groups, the linear fractional groups Ln(q) and the groups discussed

in Theorem 2 have doubly transitive representations. For other simple groups

it is not known whether they have doubly transitive presentations, and it has

been believed they do not.

5. The method used in the section 3 can be refined to give a more com-

plete result. It has been conjectured that the class of doubly transitive groups

which satisfy the assumptions of Theorem 1 coincides with the class of groups

G satisfying Aut SΏGΏS for simple groups discussed in the preceeding section.

However, since the conjecture has been verified so far only in the case when

Q contains a Sylow 2-group of G [8], we will give a refinement here. Throughout

this section we use the notation and results obtained in the section 3.

If G contains a regular normal subgroup R, then the group N=RQ is a

normal subgroup of G which is a doubly transitive Frobenius group. Therefore

G is a group of semi-linear transformations y = ax° + b over a near field F. We

remark that the condition (3) limits the structure of F to the following possi-

bilities : F = GF{2n), 2n - 1 = a Mersenne prime F = GF(p) for a Fermat prime

p or F is a near field of 9 elements.

THEOREM 3. Let G be a transitive permutation group satisfying the condi-

tions of Theorem 1. Suppose that G does not contain any regular normal sub-

group. Then G admits no transitive extension except possibly \Q\ =3, 4, 8 and 9.

Proof. Suppose that G has a transitive extension G\. We distinguish two

cases according as p = 2 or p > 2, and consider first the case p = 2.
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As shown in the section 3, the group Q1 = <ζ), t> is either dihedral or semi-

dihedral. Hence Q contains a characteristic subgroups of all possible order if

IQI > 8. * Hence if | Q | > 8, Aut Q is a 2-group. Assume that this is the case.

Since C0(Q)^Q by the condition (1), D is a 2-group as DQAxxt Q. By as-

sumption D^{1}.

Let k be an element of order 2 in D. Then by Lemma 1, there is an

element ti in the extended group Gι such that h satisfies the properties in

Lemma 1 and is conjugate to k. Then

which yields that \CQ(k)\ =2. Q contains a characteristic cyclic group of order

4. The element k inverts a generator of this subgroup of order 4. Since h

is arbitrary, we conclude that k is the unique element of order 2 in D. Hence

in particular k commutes with s.

It follows that

CQ{k) = CH{k) U CH{k)sCQ(k) and CB(k) = CQ{k)D.

Since \CQ(k)\ =2, we have \CQ(k)/D\ =6. We count the number of elements

of order 2 in CG(k) and find that there are exactly 7 elements of order 2 in

The element k leaves exactly 4 points. Hence k has exactly {\Q\ -2)/2

transpositions. If b is a point such that c = kib) ^b, there is a unique element

u of order 2 which leaves «>, 6 and c invariant. Since k^uk fixes <χ>, b and

c, we obtain k~iuk = u. Hence u<aCG(k) and CG(k) contains at least \Q\/2 — l

elements of order 2 besides k. Hence

since | © I is a power of 2.

Assume next p > 2 and assume that the group H is of odd order. Then t

inverts every element of Q. If x e D, then the commutator it, #] is an element

of D by Lemma 1 and it, xl e CD(Q)> Hence we obtain [£, ΛΓ] = 1. The element

st acts on D in the same way as s. The element d~ (si)8 belongs to D and

is inverted by s. Hence we have d=d"λ. Since D is of odd order, d=l or

(sί)3 = l. Since d and s induces the same automorphism in D, s commutes

with every element of Zλ
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Let u be an element ^ 1 of Q. Then

sus = vhsw where vf w^Q and ft e Iλ

The elements v, w and ft are determined uniquely by u. We claim ft = 1 for

all u*l of Q. Transform the above equality by t and use (£s)3 = l. Then

v~1hstsιv~1 = stsu~ιsts

= sf(fif1sΛ"1iΓ1)fs

= swstsh^vs

-h"ιυ~1suh~ιtusw~ih'1

= h"1v~1suh'1u'1h~1tshw~1h~\

Since # = G Π G', we have

sw^hwh^s^H or w^hwh'1 ^ H Π Hs = D.

But w~1hwh~1
 G Q S O that w commutes with ft. We obtain therefore

svhv'ιhs = ιΛ~ W 1

Hence both w and # commute with ft and ft4 = 1. Since D is of odd order, we

obtain ft = 1 as claimed.

Since sus = vsw with 0, w G Q , the set

is a subgroup of £. Since D normalizes Q and centralizes s, D normalizes N.

This implies that TV is a normal subgroup of G. Since N is a doubly transitive

Frobenius group, G contains a regular normal subgroup. This is not the case.

Assume finally that p > 2 and D is of even order. Let k be an element of

order 2 in D. Then we have

|C g ( ί ) l=3 and | C g ( * ) l = l ,

where t is conjugate to k. Hence k inverts every element of Q. Since k is an

arbitrary element of order 2, we conclude that k is the unique element of order

2 of D. Suppose that \Q\ >3. Then Q = QixQ2 where Qx = CQ(t) and t inverts

every element of Q2. Clearly kt is an element of order 2 and commutes with

every element of (?2. Since lζ?2l>l> kt is conjugate to k in G\. Hence we have

IQ21 = 3. This proves that | Q \ = 3 or 9.

6. Exceptional cases and further applications. It is easy to discuss the
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exceptional cases in Theorem 3. We just list the groups which satisfy the

conditions of Theorem 1 and admit transitive extensions. We denote by 9U

and <Sn the alternating and symmetric group on n letters respectively. For a

finite near field Fq of q elements, let L{Fq) denote the group of all the linear

transformations y = ax + b with α, b^Fqt L°{Fq) the group of all the semi-linear

transformations y = ax° + b, PGL2{FQ) the group of all linear fractional trans-

formations, and finally PΓL2{FQ) the group of all semi-linear fractional trans-

formations.

THEOREM 4. The groups which satisfy the assumptions of Theorem 1 and

admit transitive extensions are siί4, ©4, %, ©5> L{Fp) for Fermat primes p,

L(F9), L°(Fβ) for the field F*9 L(Fq) and L\Fq) for q = 2n such that 2n-l=p

are Mersenne primes, and PGL2(F9) with the non-commutative F».

The extended group is unique in each case and they are

9ί5, ©5, 9ίβ, ©β, PGLΛFp), PGLΛF*), PΓP2(F9)t PGL2(Fq), PΓL2(Fq) and

the Mathieu group Mn, respectively.

We remark that for each value of q considered there is a unique near field

Fqy except when q = 9. For q = 9, there are two non-isomorphic near fields.

If FQ is the non-commutative near field of 9 elements, then L(Fq) is isomorphic

to ϋi(2). In this case the transitive extension is PGL2(FQ) which Zassenhaus

[11] called a Mathieu group M9.

The following theorem has a few applications.

THEOREM 5. Let G be a ^-transitive permutation group such that the stabi-

lizer of two points contains a normal subgroup which is regular on the rest of

points. Then G is one of the following groups: 3ί6, ©4, ®5, @6, or Λfn.

Proof. Let U be the stabilizer of a point a and let H be the stabilizer of

two points a and b. By assumption H contains a normal subgroup Q which

is regular on points different from a nor b. Since G is 4-transitive, H is doubly

transitive. Hence Q is an elementary abelian ^-group (ΠX §145). Thus U

satisfies the conditions (1) and (3) of Theorem 1. The condition (2) was used

in the proof only to insure that the element t in the extended group leaves Q

invariant. In G, the group H\ = <H, ί> is doubly transitive on the set of points

b. If this representation of Hi is not faithful, then G contains a trans-
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position and G is a symmetric group. Hence G = @4, Ss or' ®6. On the other

hand if the representation is faithful, then Qi = <Q, Qιy is a solvable normal

subgroup of the doubly transitive group Hu Hence a minimal normal subgroup

of Hi contained in Qι is regular by a theorem of Burnside ([1], §154). We

may assume that Q* = Q. Thus U must be one of the exceptions described in

Theorem 3. Among exceptional groups, only <e3, €>4, 9Iδ, ©5 and PGL2(FQ)

are triply transitive.

The following are two corollaries.

COROLLARY 1. Let G be α permutation group on n letters, which does not

contain the alternating group 2IΛ. Assume that G is {k +2)-transitive for #>2.

If the stabilizer of k distinct letters contain a normal subgroup which is regular

on the rest of letters, then k = 2 or 3 and G is the Mathieu groups Mn or M&.

Proof. If k = 2, this is a restatement of Theorem 4. Mn admits a unique

transitive extension Mί2 but Mί2 admits no further extension.

COROLLARY 2. Let G be a permutation group on n letters which does not

contain the alternating group 2l». If G is Ί-transitive, then the stabilizer of 5

distinct letters contains a normal subgroup S such that S is non-abelian simple,

and ΛutS/S involves the symmetric group on 5 letters.

Proof. Let H be the stabilizer of 5 distinct letters and let L be the stabilizer

of the set consisting of these 5 letters. Then H is a normal subgroup of L

and L/H= ©5. Wielandt [9] proved that L is faithful on the rest of w-5

letters. A minimal normal subgroup S of L contained in H is not regular by

the previous corollary. Hence by a theorem of Burnside [ l j S is simple and

CL(S) - S. The assertion follows.

Remark. The above corollary is due to H. Nagao [4]. The author is

grateful to Professor Nagao for communicating his result before publication.

Schreier has conjectured that for any non-abelian simple group S, Aut S/S

would be solvable. The author knows no simple group S for which Aut S/S

involves ©4. So either any 6-transitive permutation group on n letters contains

the alternating group 5ίw or else the stabilizer of 4 distinct letters, involves a

very complicated, probably unknown at present, simple group.
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