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Introduction

A common feature of formal theories is that each theory has its own system

of axioms described in terms of some symbols for its primitive notions together

with logical symbols. Each of these theories is developed by deduction from

its axiom system in a certain logical system which is usually the classical logic

of the first order.

There are many formal theories of mathematics, e.g. the natural number

theory, the Euclidean geometry, the set theory, etc. Naturally, a single theory

can be formulated in various ways just as we can describe a theory in various

languages. There are, however, many mathematical theories which seem es-

sentially different to each other for instance, the natural number theory seems

quite different from the Euclidean geometry. On the other hand, these formal

theories are linked together closely by some basic theory, usually the set theory.

The linkage is exhibited in reducing consistency of each theory meta-theoretically

to consistency of the basic theory. We can really confirm meta-theoretically

consistency of the natural number theory as well as the Euclidean geometry by

assuming that the set theory is consistent. In the course of such meta-theoretical

reasoning, the dominion of the basic theory is enlarged step by step. As a

matter of course, we have been seeking for a consistent basic system as simple

and as dominant as possible, and we have composed our trial systems OZ and

OF along this line. (See Ono [9] and [10]J Anyway, our chief concern has

been the axiom systems of formal theories, not their logic. The logic of the

basic theory has been supposed to remain unchanged.

However, is it really our natural way of free thinking to develop special

theories in a certain basic theory without bringing up logic itself? In the pri-

mitive stage, our logic would concern with real objects only while in the develop-

ed stage, our logic must concern with abstract objects in the world of possibility.

Are our logics quite the same for real objects and for abstract objects? Even
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the logical notion existence does not remain the same in examples for real

objects such as "there are books on the table" and in examples for abstract

objects such as "there are complex numbers". What we have in our mind in

the latter example would be only that our imagination of complex numbers

leads to no contradictory circumstances at all, while in the former example we

positively assert that books really exist on the table. The logic for abstract

objects must be different from the primitive logic for real objects in some

respect.

As well known, we can formulate the logical system for abstracts objects

as the classical logic of the first order quite independently of primitive logic

for real objects. We believe, however, we had better formulate the primitive

logic for real objects at first and the logic for abstract objects thereafter as a

natural development of the former.

It is our opinion that the primitive logic can be developed to the logic for

a developed formal theory only in connection with the primitive stage of the

formal theory. In our real free thinking, we believe, our logic in the beginning

is something like the positive logic without the notion of negation. Our real

concern at that stage would be whether our imaginations and speculations lead

to some undesirable circumstances, or metaphorically speaking, to some taboos.

These taboos can be regarded as taboos of a certain theory to be developed.

However, logical denial of a proposition is surely motivated if the proposition

leads to some taboos. It is a standard course of our logical denial activity that

we deny a proposition because it leads to a taboo. From this point of view,

taboos look like bridges between logic and special theories. Having taboos at

hand, we need not start from a very complete logical system such as the pre-

dicate logic of the first order. Possibly, we can start from a simple logical

system even without negation. The positive logic introduced in § 3 is a typical

system of such kind. It has only two primitive notions, implication and uni-

versal quantification. The chief concern of the present paper is to study the

general feature of developments of formal theories starting from the primitive

positive logic and the taboo systems of the respective formal theories.

In dealing with logical problems, we have to consider matters standing on

various levels as occasions require. However, even when we discuss logical

problems, we seldom state clearly on which level we are standing. We may
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usually find out the level from contexts, but we may as well establish a con-

vention in employing words to express clearly on which level we are standing.

We discuss the matter in § 1 as preliminaries.

Any logical system can be described in various manners. We have intro-

duced a practical way of describing formal deductions (Ono [11]), and in the

present paper, we would like to describe logical systems mostly along our prac-

tical way. However, any logical system, even such a popular system as the

classical logic of the first order, has not been exactly exhibited in our practical

way. In § 3, we describe a system of positive logic along our practical way as

well as along Gentzen's way (Gentzen [2]), and prove equivalence of the

both descriptions. To bring out the mutual relation of the two descriptions as

clearly as possible, our system is slightly modified so as to be able to describe

proofs of sequents. A thorough exposition of the modified system is given in

§2.

The proof of equivalence of descriptions of the positive logic in our prac-

tical way and in the Gentzen manner deserves special attention, because the

proof leads to the conclusion that a system introduced in § 4, a development

PLK of the positive logic, is essentially nothing but the ordinary classical

predicate logic of the first order. In § 4, a few other systems are introduced,

which are in close connection with the minimal logic (See Johansson [6].) and

the intuitionistic logic (Compare Glivenko [3] and also Kuroda [7]).

In the last §5, we introduce a few examples of taboo systems. Most of

the formal theories defined by axiom systems would be defined also by taboo

systems. We are dreaming that a certain basic theory would be defined by a

really simple taboo system. To formulate taboos in simple forms in the pri-

mitive positive logic is far more difficult to formulate axioms in simple

forms in the ordinary predicate logic, because primitive pcsitive logic allows

smaller vocabulary of logical terms. We believe, however, we can really for-

mulate an object theory equivalent to OF by a taboo system which can be

described as simply as the axiom schemes of OZ or OF.

1. Preliminaries

When we talk on logical problems, we have to do with the same words

such as "assumption", "implication", "set", etc. in different meanings according
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as the level we are standing on as occasions require.

Any formal theory has some logical notions such as implication or universal

quantification on the formal-theoretical level. The same words, however, can

also be employed for expressing corresponding notions of higher levels. To avoid

confusion, we might as well establish a convention to underline a word by a

single straight line when we wish to express clearly that the word is employed

standing on the formal-theoretical level.

Logic has mostly to do with propositions of formal theories standing on a

higher level which could be called meta formal-theoretical level or logical leveL

Typical talks standing on the logical level are such talks as "The set of as-

sumptions leads to the conclusion". This kind of talks is nicely expressed in

the sequent form {91,, . . . , 91*} l= 23 or Γ\= 3Sυ (We denote by a capital Greek

letter a finite set of propositions including the vacant case.). To express clearly

that a word denotes a notion of the logical level, we underline the word by

double straight lines.

Chief concern of logic is provability, provability of propositions as well as

provability of sequents. In this work, we call our attention rather to the prov-

ability of sequents. However, we call a proposition 33 provable, when the

sequent 01=93 is provable. To deal with provability of a sequent, we have to

stand on a still higher level, which we call meta-logical level. To express clearly

that a word denotes a notion of the meta-logical level, we underline the word

by a single wavy line.

One might occasionally need to use words of so-to-say meta-meta-logical

level. Such a circumstance could be clearly expressed by underlining the words

by double wavy lines.

Now, provability of a sequent depends on logical systems. In any system,

however, tautology and modus ponens could be assumed. These can be naturally

expressed as

(Tautology) {3ti, . . . , 3ίn, 33)1=33 or ΓU {33} l=35.

*) Compare Gentzen [2], Gentzen denotes this logical relation in the form
δh, . . . , Sϊfi-»33 or Γ->$3. 3h 5ί« or Γ in Gentzen's formulation are not regarded as
sets, but as sequences.

2) Gentzen's Schnitt. See Gentzen [2].



A CERTAIN KIND OF FORMAL THEORIES 63

or

Thus far, we have nothing to do with special notions of the formal theoret-

ical level. Concerning these notions, we believe that even the simplest logical

system should have implication or something like a prototype of it. We shall

denote this by 3 .

Naturally, implication is closely connected with the implication i=. As it

is a natural way of talking to say "91 implies 33 under the set of assumptions

{Si, . . . , (£„}" instead of "The set of assumptions {glf . . ., gΛ, 91} .implies 33",

so the daily usage of the word "implication" harmonizes well with the following

stipulation: 7"|= 5(3 33 is called provable ifjind only if ΓU {9ί}|=33 is provable.

Usually, our logical system is expected to be a predicate logic. As we have

no device to introduce quantification exclusively by proposition-logical notions,

we wish to have at least one kind of quantifications to begin with. However,

we can hardly define provability of a sequent with respect to quantifications

so as to harmonize very well with the common-sense usages of the words such

as "any", "all", "there exist", etc.

Concerning abstract objects, the meaning of existential quantification looks

far more oblique than the meaning of universal quantification. In fact, we

always wondering whether mathematicians could come to a unanimous agreement

concerning the real meaning of the simplest statements in mathematics such

as "there are negative numbers" or "there is at least one infinite set". So, let

us take up another simpler example, the universal quantification.

Universal quantification is expressed here in the form (x)%(x). To be

simple, let us put aside any discussion on the range of a quantification, and let

us take up the exemplar proposition "The natural number x is even or odd"

as 9ϊ(#). Then, the common-sense interpretation of (#)9l(#) must be "0 is even

or odd", "1 is even or odd", "2 is even or odd", . . . , i.e. 91(0), 91(1), 9ί(2), . . . .

Now, how do we prove (x)ςΆ(x)? Surely, we do not prove (x)'Ά(x) by

really proving 9ί(0), 91(1), 9ί(2), . . . all. A typical device in mathematics

for enabling such kind of proofs is employment of free variables denoting an

arbitrary object. (Compare Suetuna's beliebig allgemein and beliebig bestirnmt.

See Suetuma [12].). We know that exemplar cases 9ί(0), 9ί(l), %(2), . . . are
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all provable, if we know that 9ί(#) is provable for any variable (not for any

object). Although it is impossible to prove literally all propositions 9K0), 91(1),

9ΐ(2), . . . , but it is still possible to know for a certain kind of propositions

9ί(#) that 9I(#) is provable for any variable x.

Of course, it must be impossible to prove %(x) literally for all variables x

i.e to prove literally all the propositions 9I(ΛΓ), 9ϊ(jy), 9ί(;ε), . . . . However, if

we can prove 51 (x) for a variable x of a certain kind (i.e. for such x which

does not occur in 9ί(f) nor in any assumption of the statement (#)9l(*)), we

can see that 9I(#), 9ί(jy>, 9l(z), . . . are all provable.

It is quite uncertain that sMx) is provable for any arbitrary variable xy

even when 51(0), 31(1), 91(2), . . . are surely provable, as it has been pointed

out by Godel (See Gδdel [4]. See also Nishimura [8].). In formal theories,

however, it is very simple to introduce universal quantification of the form

(x)')l(x) in such a manner that the provability of (x)%(x) does not mean pro-

vability of 91(0 for all objects t but does mean provability of 9ίU) for all

variables t. In fact, the majority of logical systems make their way along this

line.

In our formal system too, we have to use universal quantification of the

form (x)s){(x) in this sense. So, we call Γ |=(#)9I(#) provable if and only if

Γ\=%(z) is provable for every variable z.

§ 2. Practical way of description

The leading idea of our practical way of describing formal deductions in-

troduced in our former work (Ono [11]) is unchanged. However, our way of

description exhibited here is slightly changed so as to enable easy comparison

with the popular Gentzen system. (See Gentzςn [2].)

In any proof, we attach to every statemant a finite sequence of letters called

the index wordZ) of the statement. We use small Greek letters as variables

for finite sequences of letters (including empty case) and small German letters

as variables for letters. Letters should be supplemented if necessary, and

expressions such as aβ, αί, cciβ, etc. should be suitably interpreted.- (More in

detail, see Ono [111)

3> The term "index-word" is originally introduced by the term "number" in Ono [11].
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We can indicate any statement in a proof by its index-word in such manner

as "the statement (a)", or "the statement (a \ 91)" if we wish to denote further

that (a) is the statement 91. Usually, we arrange all the statements of a proof

in the lexicographic order of their index-wτords. Accordingly, we can duely

call a statement (a) standing before another statement (β) in a proof if a

stands before β in the lexicographic order. For a fixed a, we call the set of

all the statements of the form (aψ) in a proof (including empty ψ) the a-

block (notation: (#)*, or (a 9ί)* if we wish to denote further that (a) is 90.

If (α)* is not the unit set {(a)}, we call (a) a lemma.

By to, ti, *2, . . . , we denote the part of alphabetical series of letters be-

ginning with i. For example, po, plf p2, . . . denote p, q, r, . . . . Similar nota-

tion are employed also for index-words. Namely, ceo, <*i> a , . . . denote the

index-words γiOt γίu rh, . . . assuming that γ\ is a. By a<β, we denote that

β can be expressed in the forms <xkδ (&>1). Evidently, (a) stands before (β)

in the proof if a<β.

Just as in our real inferences, every statement should be a statement either

of assertion character or of assumption character. Typical examples of state-

ments of assumption character are such statements as "Assume 91" or "Take

any x". The former example is called a temporary assumption and the latter

a temporary denomination.^

We put the index-word of a statement in a proof just before the statement.

The following devices seem very practical.

(1) When (a) is a statement of assumption character, the last letter of a

is written in the capital.51 The statement is written in such a way as "a) (a)".

(2) When (#) is a statement of assertion character, we use only small

letters for denoting a, and the statement is written in such way as

4> The term "temporary denomination" is originally introduced by the term "tem-
porary nomination" in Ono [11]. More popular usage of temporary denomination is such
kind of denominations as "Take any x satisfying ?{(#)". This usage can be regarded as
a composition of the temporary denomination "Take any x" and the temporary assump-
tion "Assume 5I(*)" Because the purpose of our former work Ono [11] was practical
description, we have adopted in [11] this popular usage as standard. Notice that
we have also another kind of popular usage of temporary denomination of assertion
character such as "Because there is at least one t satisfying Sϊ(t), take any one of such
objects and denote it by x". We discuss denomination of this kind in §4.

5> We use also symbols of the form p» for capital ip. For example, Po, Pi, Pi, . . .
denote P, Q, R, . . . , and aOt alt a.,, ... denote TP, γQ, rR, . . . assuming that a is ΐP.
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a) (α)/***.. (if (a) is not a lemma.)

a)) (#)/*** . (if (a) is a lemma.)

In the place "***", we give the index-words of the logical basis of this

statement. (In practice, we may give the names or the numbers of already

proved theorems which are used in deducing (a).)

It is not indispensable to give logical basis for statements of assertion

character, nor to give special marks for index-words of lemmas. However, by

our experience, these additional devices seem adequate for enabling easier

understanding.

For any statement (a) in a proof, we call the set of all the statements of

the form (αp) the frame-work of (α)*. Evidently, («)* is formed by (a) and

the blocks of members of its frame-work. Lemmas only have non-empty frame-

works. The set of all the statements (0) of assumption character (except

denominations) satisfying β<a is called the assumption of (a) as well as of (or)*.

Any logical system should have a rule for letting statements of assertion

character as well as of assumption character come into proofs. The rule should

be so established as to enable us to decide for any statement (a) of a proof

only by checking the assumption and the frame-work of (or)* whether (a) could

come rightly into the proof.

§ 3. A primitive system of logic

Here we introduce a primitive system of positive logic. The positive logic

is supposed to be a system simplest possible under predicate logics. We describe

the system along two lines, i.e. along the Gentzen line (Gentzen [2]) and along

our line (Ono [11]), exhibited in § 2. In this paragraph, we prove also equivalence

of the systems described along these two lines.

The positive logic has two primitive notions, implication " 3 " and universal

quantification "( )". As for the meaning of these primitive notions, we expect

that 5ί=>33 would be provable if and only if "9ί implies 33" is provable and

that (x)%(x) would provable if and only if %(x) is provable for every variable

x.

(3.1) The system LP, a formulation of the positive logic along the Gentzen

line.
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Implication " | = " , a notion of logical level, is used for expressing sequents.

Any .sequent is called provable if and only if the sequent can be proved

to be provable by the rules (3.1.1)-(3.1.4):

(3.1.1) Tautology. If a statement 31 is a member of a statement-set /',

then Γ|=2l is provable.

(3.1.2) Cut. If Γ|= a and ΛU {51} l= 33 are both provable, then ΓU Jl=23

is also provable.

(3.1.3) Implication rule. Π=2l=>23 is provable if and only if ΓU {21)1=33

is provable.

(3.1.4) Quantification rule. Γ\={x)%(x) is provable if and only if

n=3l(f) is provable for every variable t.

We can prove easily the following theorem.

(3.1.5) THEOREM. Γ|=?l(ί) is provable for every variable t if Γ|=9l(z) is

provable for a variable z which does not occur in Γ and 21(f).

Taking this theorem into account, the inference rules (3.1.2)-(3.1.4) can be

formulated as follow:

( C u t ,

( I D ^ 1 ^ (21)

(z should not occur in Γ nor in

(2Q) ΠΓ\=%fyf
(3.1.6) We now take up another inference rule

(3I) Γ l = 9 I r ! = Ξ 9 1 ^
THEOREM. The single inference rule (3 I) is equivalent to the pair of inference

rules (Cut) and (2 1). More precisely, any sequent is provable by tautology\

(Cut), ( I I ) , (21), (1Q), and (2Q) if and only if the sequent is provable by
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tautology, (II), (3D, (1 Q), and (2Q).

We regard (II), (3D, (1Q), and (2Q) as a system of inference rules

of LP.

(3.1.7) Remark. Conjunction " " and equivalence " = " can be introduced

in LP, though we rarely assume them in the following. Namely,

r|=3i n= s n= a as π=«*»
i)

ii)

Γ|=?l S Γ|= ?t

5ί~8 stands for (3I=>33) (

(3.2) The system PLP, the positive logic described along our line.

The denominating quantifier (j>!) means "take any variable p".

If, in a proof satisfying the following conditions (3.2.1)-(3.2.3), (cc\ 90 is

a statement of assertion character and Γ is the assumption of (α)*, the sequent

Γ|=?I is called provable in PLP.

(3.2.1) Any statement of assumption character should be either a temporary

assumption of the form (aβ; 91) or a temporary denomination of the form

(aβ; (pi)). In the latter case, the variable p should not occur in (a) nor in any

member of the assumption of (acβ)*.

(3.2.2) Any statement (a) of assertion character should come in proof

under one of the following categories'

A.
Category
number

I
II

III
IV

B.
Form of
(«)

%(z)
2i^S3

(xMx)

C. Forms of statements which
should be in the union of the
assumption and the frame-work
of (a)*

S3 and S3D9Ϊ

{χ)%(χ)

S3

2IU)

D. Necessary or admissible
statements of assumption
character in the frame-work
of (α)*.

None
None

51 (admissible)
(z\) (necessary.)

(3.2.3) Thus far, for introduction of the system PLP. Now, we give some

remarks concerning practical usage of PLP.

General denomination.6* To be practical, we might as well introduce the

abbreviated description such as Uo, •••««!) 9ίUo, . . - , zn) as a combination of

temporary denominations and a temporary assumption. Uo zn !) 9ί(zo, . . . , z«)

is read "Take any set of variables zQt . . . , zn satisfying 9ί(20, . . >zn)".

δ) See Ono [11], general nomination. See also §4 of the present paper.
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In practice, s ta tements of the form (#<>•• #n)& 7 ) can be mostly expressed in

the form O 0 Xn) (9l(# 0, . . . , xn) ^^( t fo, . . . , #«)). T o prove (x0- - •#„)(£

in such cases, it is a usual procedure to take arbi t rary variables 20, . . . , zn at

first, and assume 9I(2o,.. . . , zn) thereafter, (20 zn\) 9ίUo, . . . , 2«) is an

abbreviated description of this typical procedure. Namely, the standard descrip-

tion

a ) ) (XQ ΛΓn)C3ί(ΛΓo, . . . , x n ) = > 2 3 ( # O , . . . , X n ) ) / x A , ab.

a A) (zoϊ)

ab)) (xi - xny($(znt xu . . . , xn) ^ 2 3 ( 2 0 , Xi, . . . y'Xn)) lotbA, abb.

ab- Z?)) 9ί(2o, . . , z»)=>S(2o, . . . ,2») /α6 -bA} ab-

91(20. . . . ,zn).

(ab- - bm; 33(afo, . . . ,««))*.

is abbreviated as

a)) (Λb

α A ) (20 2 Λ ! ) 3 l ( 2 o , . . , 2 » ) .

( a m ; S(2o, . . .• , Zn))*t

where every statement of the form (xbiψ) is the statement (ab β -bbiψ) of the
n

original description.

(3.2.4) Rules for conjunction, equivalence, and general denomination. Any

statement of the form (20 • 2n!)9l(2o, . . . , zn) is a statement of assumption

character. If (aβ) is a statement of this kind, the variables 20, . . , zn should

be mutually different and should not occur in:(a) nor in any assumptions of

(αr/9)*. (aβ) can be regarded as a temporary assumption 91 (20, . . . , zn) for

any statement (γ) satisfying aβ<r-

The table in (3.2.2) could be supplemented as follows-

7> Uo Xn)d stands for (%o) •(*»)&
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B

C I i S I . 53
C I I E i t h e r Si o r 23
D I ! (xo - x , . ) ( 5 ί ( * o , . . . , Xα)
D Π I (*0 ••*,») ( 9 I ( * β , . . . , * n )

i D 3 3 ( * O , . . . , Xn))

!

51 and S3
91.33

2ϊUo, . . . , 2n)
3 3 ( 2 0 , . . . 9 Z n )

D

None j
None !

(20 Zn!) (necessary) '
(zo z Λ ! )8lUβ, . . . ,zn)

is necessary and is regarded;
as assumption 2l(zo, . . . ,zn) \

(As for headings, see (3.2.2).)

5ί = S stands for

(3.3) Equivalence.

We show now equivalence of the two systems LP and PLP by proving the

following two theorems.

(3.3.1) THEOREM. Any proof of a sequent in LP can be transformed into

a proof of the same sequent in PLP.

Proof. Any proof of a sequent of the form {9Ii, . . . , ?l«}|=33 in PLP is

called standard, if it is a proof of the form

A) 21

An-l)

We express this shortly by

A-An-i) {?ίi, - . ,5ί«}

(n>0)

(an+m'> 53)*. ( m > 0 )

Now, our theorem can be proved recursively by proving the followings :

i) Every tautological sequent can be proved by a standard proof.

ii) If the assumption sequent or sequents of any inference of the types ( I I ) ,

(3 1), (1Q), and (2 Q) are provable by standard proofs, then the conclusion

sequent of the same inference can be proved by a standard proof.

At first, tautological sequent: 7"U {S}|= 55 can be proved in P L P as follows,

assuming Γ contains n statements.

A-An-i) Γ. An) S

25 323 /β«+iA. an+iA) » .

Next, (11) : Let A-An-ι)Γ. A»)%. (an+m'> S3)* be a standard proof

of ΓU{2ϊ} |=S in PLP. Then, Γ |=9Ϊ3 S S can be proved as follows:
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A-An-i) Γ. an)) 9X=3 33 /anA, anam. anA) %. . . . (anaml $)*.

(Index-words α ^ ^ r (0<&^m) of the former proof are transformed into anakϊ

of the latter.)

Thirdly, (3 1): Let A-A^) Γ. . . . (an*p\ 33)*. (o 0) and

A-i4n-0 Γ. . . . (αn + ζ ?; »=>β)*. (0<g) be proofs of Γ|=<B and Γ|=sB=>e

in PLP, respectively. Then, Γ|=S can be proved in PLP as follows:

A-An-i> 1\ . . . (an-rp; »)*. . . . {an+p+q; S ^ δ ) * .

anϊprqίi) S /an+p, CLn+p + q

(Index-words of the form #^£7- ( 0 < ^ # ) of the proof of Γl=23rDβ are trans-

formed into the index-words an+p+kr of the proof of Γ |=S.)

Fourthly, (1 Q) : Let A - An-i)T. . . . (an+pl ( * » « ( * ) ) *

be a proof of Γ\=(x)%{x) in PLP. Then, Γ|=«(/) can be proved in PLP as

follows:

A-An-i)Γ. . . . (an+P; (ΛT)3IU))*. βn+/> + i)3Kί) /β»fί.

Lastly, (2Q) : Let A - Λ n - i ) Γ . . . . ( Λ r t ^; 9I(ί))* be a proof of Γ|=9IU)

in PLP, having no occurrence of t in Γ as well as in 9ί(#). Then, Γ H

can be proved in PLP as follows:

A-An-i) Γ.

an)) (*)3f(*) /anA, anap+i. anA) ( ί ! ) . . . .

(Index-words of the form ΛΛ+jfer (0<^<jf>) in the former proof are transformed

into index-words anak+ιr in the latter.)

(3.3.2) THEOREM. Any proof of a sequent in PLP can be transformed into

a proof of the same sequent in LP.

Proof. We can prove this recursively by proving that, for any proof of

a sequent Γ|= (α) in PLP, we can give a proof of the same sequent in LP,

assuming that any proof of a sequent in PLP formed by less number of state-

ments can be transformed into a proof of the sequent in LP.

At first, we define the reduced segment of the proof for any statement (ψ)

of assertion character. Namely, if ψ is a single letter index-word j>, then the

foremost segment of the proof ending with the block (p)* is the reduced segment

of the proof for (p). If ψ is a index-word of the form λaπ, then we delete the
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statement (λ) and replace all the index-words of the form λaιθ by λhd in the

foremost segment ending with the block (ψ\ 3D* i.e. Q* 3D*. We continue

the same process again and again until the index-word of the statement 3ί

becomes a single letter index-word p. Then, we obtain a proof in PLP ending

with the block (p; s)ί) which is called the reduced segment of the proof for

(φ; 91). Any reduced segment of a proof has less or equal number of state-

ments than the original proof.

Now we transform the proof of Γ\=(a) in PLP into a proof of the same

sequent in LP as follows, according as the category under which (a) comes into

the proof in PLP, (As for the category numbers, see (3.2.2).)

Category I. We can find out two statements of the forms (β; 33̂ >31) and

(γ; 33) in the union of the assumption and the frame-work of («)*. If (β)(oτ

(γ)) is a temporary assumption, then it belongs to Γ, so Γ\-(β) (or Γ | = ( r ) )

is provable in LP. If (β) (or iγ)) is a statement of assertion character, the

reduced segement of the proof for (β) (or for (γ)) is a proof in PLP formed

by less number of statements than the original proof. So, we can prove in

LP a segment of the form Γi\=(β) (or of the form Γ 2 | = ( r ) ) , where Γi (or Γ2)

is a subset of Γ. Hence, Γ\=(β) and Γ\=(γ) are both provable in LP anyway.

Therefore, Γ\=% is provable in LP by (3 I).

Category II. (a) is a statement of the form 33U) and we can find out a

statement of the form iβ; (x)ΐb(x)) in the union of the assumption and the

frame-work of (α). Either iβ) is a temporary assumption, or iβ) is a statement

of assertion character and the reduced segment of the proof for (β) has less

number of statements than the original proof. Hence Γ\=:(β) is provable in

LP anyway. Therefore, Γ\=(β) is provable in by (2 Q).

Category III. (a) is a statement of the form 9ί3.(j9). Either (β) is a tem-

porary assumption, or (β) is a statement of assertion character and the reduced

segment of the proof for (β) has less number of statements than the original

proof. Hence, ΓU{2ί>|=(j9) is provable in LP anyway. Therefore, 71=9(p (β)

is provable in LP by ( I I ) .

Category IV. (a) is a statement of the form (#)9I(#). We can find out

two statements of the forms (βl (zl)) and (γ 31(2)) in the frame-work of

(α:)* and in the union of the assumption and the frame-work of (cc)*t respective-
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ly. Either (r) is a temporary assumption (in this case z does not occur in

91(2)), or (γ) is a statement of assertion character and the reduced segment of

the proof for (γ) has less number of statements than the original proof. Hence,

Γ\= 91(2) is provable in LP. Therefore, Γ|=(*)9lU) is provable by (1Q), because

z does not occur in the sequent.

(3.3.3) Remark. Cut in PLP. If Γ\= 9ί and A U {91} l= S3 are both provable

in PLP, then ΓUΛ|=33 is provable in PLP.

§4. Logical developments

In this paragraph, we develop our logical systems starting from the primi-

tive system of positive logic and assuming a system of taboos so as to be able

to introduce the traditional system of logic. The set of taboos is expressed

as

S = { , Oiib), •},

where ?, is assumed to be a sequence of all the free variables (without repeti-

tion) in the taboo O/(£, ). For any ΎH of the same length as f, , including such

τti having some repetition of variables, Oii ηd is regarded as a taboo. It would

be adequate to suppose that some free variables may occur in a taboo as para

meters (See §5. Example.).

As shown in the preceeding paragraph, LP and PLP can be regarded as

two formulations of the same system of the positive logic. Mostly, we describe

our development along our line of practical description. The classical predicate

logic of the first order described along this line is denoted by PLK. (See Ono

[10] and [11].) However, one can easily see that the same development could

be done by starting from LP and it would lead to Gentzen's LK. (See Gentzen

[2].) This would show that PLK is equivalent to LK.

In the classical logic as well as in the intuitionistic logic, any contradiction

implies any proposition. Is this valid also for taboos ? Should every taboo be

assumed to imply everything? It would be a matter of taste to assume this

or not to do so. If we assume this, we obtain a special logical system denoted

by %-PLJ which is closely connected with Gentzen's LJ i.e. the intuitionistic

logic. (See Gentzen [2].) £-PLJ is formally defined in (4.2), although we do

not go into details on the subject.

To introduce the logical system PLK, we do not need to go so far as to
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assume that every taboo implies everything. It is sufficient for the purpose to

assume only that any taboo leads to any other taboos. The system which

assumes this only is denoted by %-FLM as it looks closely connected with the

minimal logic. (See Johannson [6].) S-PLM is formally introduced in (4.1).

(4.1) The systems £-PLM and the system PLM.

(4.1.1) DEFINITION. Any sequent Γ\-% is called provable in £-PLM if and

only if a sequent of the form ΓU J|=3ί is provable in PLP for some set Δ

formed by exclusively propositions of the form

where f, and ξi are assumed to be disjoint.

We assume that our taboo system is non-void. We can fix a specially

designated taboo with a fixed set of parameters, say O.9) Then, Γ|=9ί is pro-

vable in %«PLM if and only if a sequent of the form ΓU Λ\-% is provable in

PLP for a set formed by exclusively propositions of the forms (£ι)(O, (?, ) 3 θ )

or (ft)(O=)O/(ft)).

(4.1.2) DEFINITION. -9ί stands for 9ί => O in &-PLM.

Evidently, the definition of negation can be taken as independent of the

choice of the designated taboo. For, the negation -7j?l of 31 with respect to

Oi is equivalent to the negation -723ί of 31 with respect to O2 in 2-PLM.

The following sequents are easily provable in £-PLM.

(Ml) 0 |=-7θ, (M2) O, (fc)h-7»,

(M3) {31, -^SOhO.Xfi), (M4) {31}l=-7-731,

(M5) {^^-y%}\^^% (M6) {% 7Sr}|=r7».

(4.1.3) Any taboo system "% could be called stronger than or equivalent to

another taboo system ϊ , if propositions provable in S-PLM are all provable in

S-PLM. Accordingly, we can define "% is stronger than or equivalent to %" by

that sequents of the form 0\= (ζiξj)(Oi(ξi) ΌOj(ξj)) are provable in £-PLM for

8 ) (ζiξj) s tands for the multiple quantification (*« JC, W x3\ xjn) assuming that ξi

and ξj are sequents xa> ..., Xim and Xj\, ... t xjn respect ively. We assume naturally a lso

that all x w ' s are mutually different.
9 ) T h e designated taboo can be taken also as a notation which has not already occur-

red in the formulation. In this case, O is regarded as a new taboo added to Z.
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any taboos 0, (&) and Oj(ξj) of %. If % is also stronger than or equivalent to <£,

we call them equivalent, otherwise we call £ stronger than %.

Just as any axiom system is stronger than or equivalent to its sub-systems,

any taboo system is stronger than or equivalent to its sub-taboo-systems. How-

ever, there is some difference between taboo-systems and axiom-systems in the

following respect.

Starting from any axiom system Σ we can prove theorems of Σ. If we add

some theorems to the axiom system Σ as new axioms, we get an axiom system

equivalent to Σ. Similarly, referring to any taboo system %, we could have

some contradictions which lead to some taboos. If we add these contradictions

to the taboo system as new taboos, we can not always expect to have a taboo

system equivalent to %. (Compare (4.2.3).)

(4.1.4) The system £-PLM can not be regarded as a purely logical system

because it possibly concerns formal-theoretical statements through taboos. If

the taboo system is a unit set {0} and the only taboo O is just a symbol for

the designated taboo, then we have a purely logical system denoted by O-PLM.

O-PLM is the weakest system under the systems S-PLM. Of course, O-PLM

is stronger than PLP.

Any system £-PLM is trivial if a taboo of % is provable in it. The requirement

for a taboo system % that any taboo of X should not be provable in the system

%-PLM corresponds to the usual requirement for an axiom system that the

axiom system should be consistent. Accordingly, we call any taboo system %

consistent if any taboo of % is not provable in £-PLM. If the taboo system %

has only one taboo which is not provable in PLP, then the taboo system is

consistent.

(4.1.5) The system PLM. A logical system called PLM is defined by the

following:

(i) Logical notions of PLM are implication 3 , negation -7, and universal

quantification ( ).

(ii) In PLM, temporary assumptions and temporary denominations should

be stated according to the rule for temporary assumptions and temporary deno-

minations of PLP. (See (3.2.1).)

(iii) In PLM, statement (a) of-assertion character should come into proof
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under any one of the following categories *.

A.
Category
number

I
II

III
IV
V

B.
Form
of (α)

δί(*)
211> S3

(*)2IU)

C. Forms of statements which
should be in the union of the
assumption and the frame-work
of (α)*

S3 and S3D21

U)δίU)
S3

31(2)
S3 and --S3

D. Necessary or admissible
statements of assumption
character in the frame-work of

None
None

51 (admissible)
{z\) (necessary)
21 (admissible)

(Compare (3.2.2). It can be easily seen that PLM is stronger than PLP.)

(4.1.6) THEOREM. PLM and O-PLM are mutually equivalent in the sense

that any sequent expressible in terms of logical notions implication, negation,

and universal quantification only (if we use negation symbol in O-PLM, the

sequent should be expressed without the special symbol O) is provable in one

system if and only if it is provable in the other.

Proof. At first, any sequent provable in PLM is also provable in O-PLM.

According to (4.1.5), we have only to check the case of the category V after

replacing every statement of the form -Ύ1^ by $=>O. If the statement U )

comes into proof under the category V, (α) is a statement of the form

(a I -7 20, and we can find out in the union of the assumption and the frame-

work of U ) * two statements of the forms (β S) and (r -^25). The number of

members of the frame-work of U ) * be n, then we can supplement the original

block U ) * so as to be a right block of a proof in O-PLM as follows:

Original block (in PLM)

«)) ^51 /<3, r,

Supplemented block (in O-PLM)

a)) 51 =>O lutn. Cap]

Uα)*, . . . , Ua«-i)*

«an) O Iβ, γ.

Next, conversely, any sequent 71=51 provable in O-PLM is also provable

in PLM, assuming that the sequent can be expressed in a form without O. To

show this, take any proof of a sequent of such kind in O-PLM. -Take also

any fixed symbol D for a proposition. Now, replace all the negative propositions

10 > The notations of the form [V5] denote the both possibilities of occurrence and non-
occurrence of the index-word Ψ.
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of the form -7 $ in the proof by $ ^ O, and replace again all O's in the replaced

proof by -y(D^D).

Every block of the proof is transformed into a right proof block in the

system PLM. Hence, the sequent 7'|=3ί is evidently provable in PLM if we

can prove

{ ^ N δ ^ ^ ^ D D ) and {$=> -̂ (£>=>£>)} i= -,%>

which are both provable in PLM without difficulty.

(4.1.7) Remark. In PLM too, if two sequents Γ|=3t and ΛU{20h sΰ are

both provable, then the sequent ΓUΛ|=2J is also provable (Cut rule in PLM).

Further, we would like to remark here that the sequents

and

|=-7-7313

are all provable in PLM.

(4.1.8) Remark. We can introduce V, 3, ->, A, V of %-PLK or PLK

in %-PLM or PLM. (Compare (4.3.7).). Namely, V* 3l(*) by (x)-?-?t(x)

(proved to be epuivalent to -7 -r(x)-r -7%{x) by (4.1.7)), 3x %(x) by

^UW9ί(#), 9ί-*33 by -^^SI^-^-^S (proved to be equivalent to

-7-7(-7Γ73ίD^-7S) by (4.1.7)), 3ί A® by v ( 5 l D v S ) (proved to be equvalent

to -7(^-72I=>-739) by (4.1.7)), and 21VS by ^ 9 ί 3 ^ ^ i β (proved to be

equivalent to -7 "7 (-7 913 -7 ̂ 33) by (4.1.7)).

(4.2) The systems S-PLJ and the system PLJ.

(4.2.1) DEFINITION. Any sequent Γ|=9ί is called provable in 2-PLJ, if and

only if a sequent of the form ΓU J l=31 is provable in PLP for some set Δ formed

exclusively by propositions of the form iξiη) (Oi{ξi)^><$>(rj))i assuming that all

the variables in the sequence ζi-η are mutually diffierent.

(4.2.2) We can define negation in any £-PLJ system just as in S-PLM.

We can also define the system O-PLJ and the system PLJ just as we have

defined O-PLM and PLM. O-PLJ and PLJ are mutually equivalent in the
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sense of (4.1.6). Clearly, S-PLJ is stronger than £-PLM for any taboo system

(4.2.3) If ϊf-PLJ provability implies £-PLJ provability for every sequent,

then % could be called J-stronger than or J-equivalent to %. If, moreover, % is

J-stronger or J-equivalent to %, the two taboo systems 3: and % are called J-

equivalent to each other. The necessary and sufficient condition for % to be J-

stronger than or J-equivalent to % is that any sequent of the form 0,1=51 is

provable in S-PLJ for any taboo O, of SL

Now, let % be any taboo system and & be a contradiction in 2-PLJ i.e.

{©} |= Oi be provable for some taboo O, in %FLJ. If ί? is a set of all the taboos

of % and some contradictions of this kind, then % is J-equivalent to ST. (Compare

(4.1.3).)

(4.3) The systems %-PLK and the system PLK.

The traditional logic is a logic of the world of possible objects. Objects

are assumed to be existing because their existence can not be denied, statements

are asserted because they can not be denied. In accordance with this circum-

stance, we try to introduce a system, in which all the statements can be regarded

to have double negative character. Logical notions would have to be suitably

modified to keep the inference rule of £-PLM. In fact, such a plan can be

realized, and the imagined system is called S-PLK. We express sequents of

Ϊ-PLK by the form Γ|-3ί which is interpreted as Γ|=-7^3ί in £-PLM, where

Γ is the set of statements ^-?§, for all members £ of Γ. Implication and

universal quantification can be suitably modified so as to keep all the inference

rules of SΓ-PJLM valid. Modified implication is denoted by the symbol -» and

modified universal quantification is denoted by the symbol V. Conjunction,

disjunction, equivalence, and existential quantification can be defined in this system

ky implication and universal quantification of PLP along the usual line. Most

remarkable feature of the system is that {^^3ί}|-2l is always provable.

Corresponding to 0-PLM and PLM, we can define equivalent (in the sense

of (4.1.6)) systems, 0-PLK and PLK. To be practical, we really give the

inference rule of PLK later.

(4.3.1) Sequents of 2-PLK and PLK are expressed in the form
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{Sli, . . . , 9UI-3B which means {-^2li, . . . , -^ - ^ ϊ U h ^ 7 8 .

(4.3.2) To make ΓU{2ί}|-23 and Γ|-2l-»33 equivalent, we define 2ί-*S

by -^-7^3-7-^55.

To make Γ\-\fx%(x) equivalent to that ΓhSϊU) holds for every variable 2,

we define V# 2ίU) by UW-^31U).

(4.3.3) Remark. Evidently, Γ|-2I and ΛUWI-SB lead to Γ I M | - S in

2 PLK

(4.3.4) THEOREM. Γ|-2l-*-SB is Provable in £ PLK if and only ifΓU W l - S

is provable in £ PLK. Γ\- V* 9l(#) is Provable £-PLK if and only if Γ\-%(z)

is provable for every variable z.

We can prove the theorem by making use of (4.1.2)-(M4), (4.1.4), (4.1.7),

(4.3.1), and (4.3.2).

(4.3.5) THEOREM. We can not prove any taboo in £-PLK, i.e. 0\-Oι is

not provable in £-PLK, as long as % is consistent.

Proof. If 0 | - Oi is provable, then 0\=-?-rOi i.e. 0|=(O, 3 θ ) 3 θ must be

provable in £-PLM. Hence, 0\=O must be provable in £-PLM.

(4.3.6) The system PLK. Theoretically, we can define PLK only by re-

placing 3 and ( ) of the table in (4.1.5) by -> and V respectively and by

adding the following category VI to the table.

A

VI

B C ! D

S3 and --58 --3I (admissible)

(As for the headings, see (4.1.5).) For PL J (intuitionistic logic), one

should take instead of this category the category VI* which is obtained from

this category by substituting "None" in place of " -̂ 91 (admissible)" under the

heading D.)

Practically, however, it is far more convenient to introduce a few other

logical notions and supplement the table for these notions. We shall give a

table of such kind in (4.3.7).

Our present concern is to show that PLK defined here is equivalent to O-
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PLK as far as statements expressible in terms of -+ and V concern. We

can prove this as follows -

Firstly, the following is easily proved to hold in O-PLK: If two sequents

of the forms ΓU{-^2ί}ί-33 and ΓU {-/2ί}|-^33 are both provable, then Γ|-9I

is also provable. Hence, any sequent provable in PLK is also provable in O-

PLK.

Next, conversely, let {9ίi, . . . , 91«}h33 be a sequent provable in O-PLK.

Then, the sequent {-7 -7 31*, . . . , -7 -7?ίί}|= -7 -78* is provable in O-PLM,

where $* denotes the formula obtained from ?y by expressing -> and V in

terms of 3 and ( ) according to the definition (4.3.2). Now, let us denote

by ££** the formula obtained by replacing all the symbols => and ( ) occurring

in g* by -* and V, respectively. Then, we can prove easily that the sequents,

{ - ^ s r r , . . . , - ^ 2 i r } i - - ^ s * * , { 2 U h ^ ¥ r (f=i, 2 , . . . , * ) ,

{ -7 ̂ 33**} I- S are all provable in PLK. (By (4.3.2) and (4.3.6).) This shows

that the sequent {9ίi, . . . , 2I«}|-S3 is provable in PLK.

(4.3.7) Other logical notions. In any &-PLK system as well as in PLK,

we can introduce logical notions such as disjunction V, conjunction A,

equivalence =, and existential quantification 3 by defining them as usual in

terms of -*, -^,and V. (Compare (4.1.8O Concerning equivalence, we should

only remark that {&i, . . . , (£w, 9ί}|— 21* is provable assuming that 6, is a

statement of the form Vς, (gϊ(£/) = (£,-(&)) and 9ί* denotes a statement obtained

from 5t by replacing some of sub-formulas of the forms (M?*) by gKfi).

Existential quantification can be defined as usual (i.e. 3*5l(#) stands for

-TVΛΓ -7%(X).) However, in PLK, we can introduce temporary denominations

of the form 3ε! 91(2) of assertion character, which means "There is an object

t satisfying 2ί(f), so take any one of such object t and call it z" Inference

rules for the existential quantification and the existential denominating quanti-

fication are given in the following table together with the rules for conjunction

and disjunction. The variable z which is introduced by an existential denomi-

nating quantification (a 3z\ 9ί(z)) should not occur in 9ί(ί) nor in the as-

sumption of (α). Further, (a 3z! 9ί(ε)) should be treated as the statement 9ί(z)

with the free variable z in references of statements standing after (α).
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A.
Category
number

I
II
III
IV
V
VI
VII
VIII
IX
X
XI
XII

B.
Forms
of (a)

91
31(2)
2ϊ->53
V* $l(x)

21

5ί

21
3x %{x)
3z!5ί(2r)

C. Forms of statements which
should be in the union of
assumption and the frame-work
of (a)

53 and 53->2ϊ
V* 2ίU)
53
9l(s)
S3 and --53
53 and -53
91 and 53
Either 31 A 93 or 53A2I
Etiher 2ί or 53
53V<£, 23->2I and (S-*2I

3 * 2ϊU)

D. Necessary or admissible
statements of assumption
character in the frame-work of
(a)

None
None
51 (admissible)
Vz! (necessary)
21 (admissible)
-*2l (admissible)
None
None
None
None
None
None

(One should take the category VI* instead of VI for PLJ. One should

delete VI for PLM (minimal logic).)

The categories VII-XII are not necessary if we define Λ, V, and 3 in

terms of -*, -r, and V. Further, we can prove conversely that the definitions

of A, V, and 3 turn out dispensable if we adopt the categories VΠ-XII.11)

As it seems that no further illustration on the matter is necessary for the

definitions of A and V, or the categories VII-X, we will prove only that the

definition of 3 is equivalent to the categories XI and XII.

At first, we prove that the categories XI and XII leads to equivalence of

3* «(*) and -^Vs

cb) /cA.

A)

Proof of 3* 3I(*)|--7V* -7 2Γ(*) /A, c.

A) a* 3(*). b) 32! 31(2) /A.

c)) -7V* -7 2l(*) /b, cb. cA) V*

Proof of ^V# - 2 ί U ) h 3 * 2l(*) /A, b.

b)) 3* 3I(*) /bA, A, bb. bA)

bb)) VΛ -^SίU) /bbA, bbb. bbA) Val.

bbb)) -7%(z) /bbbb, bA. bbbA) %{z). bbbb) 3x %(%) /bbbA.

Accordingly, any sequence provable by the definition of the existential

quantifier can be proved by the categories XI and XII. Next, conversely,

"> We can introduce general existential denomination of the form 3x z\ 5ί( x,... , z)

in a natural way. (See (3.2.3).). We can further introduce more general mixed denominations

of the form Qm Qttxn\ 9l(*i, . . . , * „ ) , where Qt is either of v or 3. (See Ono [ll]7general

nomination.).
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we will show that any sequent provable by the categories XI and XII are also

provable by the definition.

If the statement (a) comes into a proof by the category XI, (a) is a state-

ment of the form 3 * 2ί(#), and there is a statement of the form (β; 2ίU)) in

the union of the assumption and the frame-work of (a \ 3# ?!(#))*. We trans-

form the block (αr)* of the proof as follows so as to become a proof depending

on the definition of existential quantifier:

Original block | Transformed block

a)) ax ΊHx) Iβ. a)) 3# 2l(*) i.e. -7Vx ^3I(*) /aAn. aan+u β.

(w>0. a)) should be

replaced by a) if n = 0)

aAn)

I a An.

Now we discuss the case where (a) comes into a proof by the category

XII. If (a) is a lemma and the frame-work of (α)* has ^-members, then

replace the index-word oc by αr«, all the index-words of the form aaiψ by ctiψ

(i = 0, . . . , w —1), and all the index-words of the form ockψ by ctk+nψ (k 1).

The replaced proof is easily seen to be a right proof. For non-lemma (cc), we

can take n as 0. In the replaced proof, (an) is a statement of the form

"α) 3z\ i$(z)/r" where iγ) is a statement standing before {a). In the replaced

proof, we express the index-word a in the form βm, and we transform

the block (#)* so as to be a right block of proof based on the definition of

the exis^ntial_quantifier_ by -7 and V. If β is a vacant sequence, (β)* denotes

the whole proof and (β) denotes the conclusion of the sequent proved by the

proof.

We transform the proof separately in the following four cases.

At first, the case where (β) comes into proof by the categories V or VI.

In this case, the block (#)* of the form

β)) ^?ί(or 20 /*, **, [***]. /9m) 32! gU) /r

is transformed into

β)) -7 21 (or 20 /r, /9m, [***]. -

/3m)) \fx -7$(x) /j9mA, j9mb.
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/9mb)) -7^(2) /0mbA, *, **. 0mbA) %(z).

All the statements of the form (βmiψ), if there are any, should be placed

after (0mb) by changing their index-words to βmbai-iψ (i 1).

Next, if (0) comes into proof (i) by the category III, (ii) by the

category IV, (iii) by the categories other than III-VI, then (0)* is a

block of the form

(i) 0)) 2ί-»S / * , [ * * ] . ••• 0m) 3a! g(2) Iγ. •••

(ii) 0)) V* 3I(*) /0£>, *. 0£>) Vί!

βm) 3z\ g U) /r.

(iii) 0)) 91 / * , . . . . . • • 0:n) 3 2 ! 5(2) Iγ. •••

respectively. We can transform these into

(i) 0)) 3Ϊ —39 / [ * * ] , 0mi. ••• (βm; - V * - $ ( # ) - * $ ) * .

0wi) ΰ /r, /3m.

(ii) β)) VΛΓ 9KΛΓ) //9©, βmi. β%) Vί!

(iii) /9)) 9ί / r, βm. ••• (/9m; -VΛr -g(Λ;)^9ί)*,

respectively. All the blocks (/3m)* of these proofs are blocks of the form

(βm - Ύ X -^XΛ;)->&)*, so we can show the construction of these blocks

simultaneously as follows:

βm)) - V # - £ ( * ) - * & //3mA, 0mb. /5mA)

0mb)) S /0mA, 0mbA, 0mbb. 0mbA) - 6 .

0mbb)) Vx -τ%(x) /0mbbA, 0mbbb. 0mbbA)

0mbbb)) - g ( 2 ) /*, 0mbbbA. 0mbbbA)

The statements after (0mbbbA) in this block are the statements after (0m)

in the block (0m)* of the original proof obtained by changing every index-

words of the form βmiψ to the index-words 0mbbba,f. The transformed blocks

remain as right blocks as far as the original blocks (0)* are right blocks.

(4.3.8) Remark. Instead of starting from S-PLM, we could also start

from %-PLJ. By doing so, we could have obtained a system £-PLK* which is

perfectly similar to £-PLK. Concerning -", Λ, V, ->, V, 3, these two systems
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do not show any difference. We have prefered £-PLM to £-PLJ for our starting

system, because we have wished to start from a system having as weak assump-

tion as possible. (See (5.2). Compare Kuroda [7].)

(5) EXAMPLES

Many formal theories are developable starting from PLP and a taboo system.

In fact, as is shown in (5.1), any mathematical theory might be developable

along this line, if we can find out a taboo expressible in terms of 3 and ( )

only in the system. However, in the real course of our thinking, this might

be stupid if the theory becomes complicated by doing so. Especially, we would

like to expect a simple expression of the disignated taboo. Peano's axiom system

of natural numbers looks like a nice example of a theory having a simple desig-

nated taboo. (See (5.2).)

(5.1) Trivial taboo systems of theories defined by axiom system.

Let Σ be a usual formal theory defined by an axiom-system { , 3ί, ,

• } in the classical predicate logic of the first order with logical symbols

A, V, ->, V, 3, and let O be a special proposition symbol which does not

occur in any axiom. Then, we can trivally interpret the axioms in terms of

3 , ( ), and O by the rules given in (4.1.8). (Take ^ $ as standing for g 3 O.)

Let the formula obtained from ϊf, by this interpretation be denoted by ?ίf, then

the set $ of formulas 3ί * 3 O can be regarded as a taboo system of Σ.

Now, let f be a system of taboos which can be expressed in terms of

A, V, ->, V, 3 only, and % be a system of formulas expressible in terms of

3 , ( ) (if one wish, the symbol introduced in (3.1.7) could be added) obtained

from members of % by replacing V, Λ, -*, V, 3 partly by the rule given in

(4.1.8) and partly 3 in place of -* and ( ) in place of V (if one wish, partly

• in place of A). Then, any proposition provable in &-PLK is also provable

in Ϊ-PLK (every taboo in % be regarded as a formula expressed in terms of

3 and ( ) by the rules given in (4.1.8).). For, if all the symbols 3 and ( )

in taboos of % are replaced again by -» and V respectively, then we would

have a new taboo system %* which is easily proved to be weaker than %.

(5.2) Taboo system of natural numbers.

Peano's axiom system can be formulated in PLK as follows (We disregard

here theories of recursive functions because our purpose is only to show a
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simple example of taboo systems.)

PL O*x'

P2. # = x

P3. x=

P 4. x'=

P5.

where O, ', and = are taken as primitive notions. As the taboo system of the

primitive theory of this system, we can take

PT1.

PT2.

PT3.

PT4. U

It is easy to show that O = Of can be regarded as the designated taboo of

the system. (See (4.1.3).)

It should be noticed that these axioms are simply expressed in terms of 3

and ( ).

(5.3) On taboos of set theories.

In most set theories, any statement of the form x e x can be taken as a

taboo. This is valid even in the theories of sets and classes, e.g. Bernays-

Godel set theory (Bernays [1], Gδdel [5].). Regarding xe x as the only taboo

scheme, peg might be as well interpreted to mean "p is distinct from q".

This taboo system could be much strengthened by taking up all the formulas

of the form

as taboos, which practically implies existence of an infinite ascending series

α 0 G ^ G β 2 G without any cycle (i.e. i< j implies -*ajGai). Here, formulas

of the form 9l $ : =>K stands for ?ί =>"(©=>δ).
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