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Many results of the theory of Riemann surfaces derive only from the pro-

perties of the sheaf of harmonic functions on these surfaces. It is therefore

natural to try to extend these results to more comprehensive structures defined

by means of a sheaf of continuous functions on a topological space which should

possess the main properties of the sheaf of harmonic functions on a Riemann

surface. The aim of the present paper is to generalise some known results

from the theory of Riemann surfaces to spaces endowed with sheaves satisfying

Brelot's axioms [2], which we call harmonic spaces. In order to do so we had

to introduce and to study the maps, associated in a natural way with this

structure, called harmonic maps; they replace the analytic maps between

Riemann surfaces. In this general frame we reconstruct the whole theory of

Wiener compactification as well as the theory of the behaviour of analytic

maps at the Wiener boundary.

The first paragraph contains some simple remarks about the Dirichlet prob-

lem which could not be found in the existing literature. In the second para-

graph we introduce and study the operator h and the Wiener functions which

represent the main tool of the present paper. The harmonic maps are studied

in the third paragraph. In the fourth paragraph we treat some problems con-

cerning general compactifications and in the fifth one the particular case of

Wiener compactification is considered. This compactification is closely related

to Feller's ideal boundary. The last paragraph is devoted to the problem of

the behaviour of the harmonic maps at the Wiener boundary.

Without mentioning the source we have borrowed intensively ideas, methods

and usual tricks from various papers on the theory of Riemann surfaces. For

many of them we are indebted to K. Hayashi, M. Heins, Y. Kusunoki, S. Mori,

M. Nakai. A detailed bibliography in this direction may be found in our book

"Ideate Rander Riemannscher Flachen", Springer Verlag, 1963.
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§ 1. Preliminaries

1.1. We call a harmonic space a locally compact space^ on which it is given

a sheaf of continuous functions, called harmonic functions, satisfying the axioms

1, 2, 3 from [2]. We denote by $ (resp. £>) the class of harmonic spaces on

which there exists a positive potential (resp. a positive harmonic function).

We shall denote in this paragraph by X a harmonic space on which there

exists a positive superharmonic function, i.e. J G $ U § . For any open subset

U of X we denote by dU the boundary of U. Let U be an open subset of X,

£/e$β. For any real function /**} defined on a set containing dU we denote

byώ?f x=3?f=j7f (resp. ^ψx = ^ = \y>) the set of lower bounded hyper-'

harmonic (resp. upper bounded hypoharmonic) functions 5 on U such that

non-negative (resp. non-positive) outside a compact set Ks of J£and for any point

yeidU

lim inf s(x) f(y) (resp. lim sup s(x)< f(y)).

Any function of J//7"τ (resp. ύf/'x) possesses a non-positive subharmonic

minorant (resp. non-negative superharmonic majorant). If sejf/'*, se^f/'*

then 1 < 5". This follows for the non-compact components of U from Co-

rollary 1 in [3] and for a compact component of U (Theorem 6 of [33). We

denote by Ήψx=Ή/^H/ (resp. Hψx = Hιj = //)) the greatest lower bound of

37/'* (resp. the least upper bound of y j ^ ) . The restrictions of Hψx

9 Sψx

to any component of U are either differences of non-negative harmonic func-

tions or identically ± °° and we have Hψ x < ΉUf'x. The function/ is called

resolutive (with respect to (Ut X)) if H/>x and Hψx are finite and equal; in

that case we denote by Hψ x = H1/ = H/ their common value.

LEMMA 1.1. Let U, Uf be open subsets of X, Uc U\ Z7eφ, and let f be a

real function on U1 Π dU. If we denote by f\ the function on dU equal to f on

U1 Π dU and equal to 0 on dU- U* we have

H?-ϋ'=H?;x

9 H?'U>I$;X.

Obviously J/7/'u> c.y*}; x and therefore Hγ; ^ Ήψ u'. Let s0 be a positive super-

harmonic function on X. For any s e j / / ; * and e>0 we have 5"4-es0^JPf'u'

*) We don't require that the space is non-compact and connected.
**) / may take the values ±oo.
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Hence

e and 5 being arbitrary we get Hf'u' <H/(;
X.

LEMMA 1.2. Let U, V be open subsets of Xy K c ί / ε φ, and let f be a real

function on BU. If ive denote by /'. the function on Tj equal to f on dU and

equal to Ήψx on U then

on V.

We may suppose U is connected. Let s ε y / ' 1 , Then 5<=ςp/ i'γ and

therefore Hvf> x < Ήυf x. If Ή}'Λ' = - 00 the required equality is obvious.

Suppose now Hψ x finite. Let s e J7/ λ , 5' e^}/ x. The function on U equal to s

on U- V and equal to s-ϊϊf'x+ min (ΉιjtX

f sf) on V is hyperharmonic and

belongs to S?/' x Hence

Hι}>x<s-Ήufx+s'.

s and s' being arbitrary we get H/'x<H/'X.

If Hf'x= + °° then for any s'ej^/,1* the function equal to + 00 On ί / - F

and equal to sf on F belongs to Z/ψx- Hence sf = + °° and H/'x - + °°.

THEOREM 1.1. Let U be an open subset of X, £7e$. For any non-negative

Borel-function f on dU we have

Let s be a finite positive continuous superharmonic function on X. From

Corollary 3 in [1] it follows that for any natural number n the function

min (/, ns) is resolutive. Hence

Hf = lim Jϊmln (/, ns) < Ef < Ήf.
M-»O0

COROLLARY 1.1. If s is a non-negative superharmonic function on X and

U an open subset of Xt Z7e^, then

Ms = Ks

on U.

*> See [2], page 80, definition 9.
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Obviously H^x Rf-u. Let s ε y P ' . The function on X equal to s on

X— U and equal to min (s, s) on U is a non-negative superharmonic function.

It follows Rχ-U<s, Rx~ι^Hs'x on £/.

LEMMA 1.3. Z«?f £7 te aw 0/>ew subset of X, Z7e$, αfltf let f be a non-

negative real function on dU such that H/tX is finite. If u is a continuous

function on Z7, harmonic on U, \u\< H/'x on Uy then u is resolutive and

Since

u is resolutive by Theorem 1.1.

Let s e J / 7 . Then 5 - w G y / - « and therefore

s being arbitrary we get

Similarly we deduce u Hu.

1.2. A potential p on a non-compact connected space X is called an Evans

potential if there exists a positive potential p1 on X such that ^ - converges

to infinite at the Alexandroff point of X {here ~ = «>.) p is called also an

Evans potential associated with pf.

LEMMA 1.4. If X is connected and non-compact, then for any positive

potential p' there exists an Evans potential associated with p\ continuous if p1

is continuous and finite.

The existence of an Evans potential p associated with p' was proved in Lemma

1 in Cl]. Suppose now p1 continuous. Let X* be the Alexandroff com-

pactification of X. The function equal to φ- on X and equal to °° at the

Alexandroff point of X is lower semi-continuous. There exists therefore a con-

tinuous non-negative function / on X* equal to °o at the Alexandroff point of

X and smaller than ^ on X. R%> is a continuous superharmonic function

Theorem 3 in [3]. Since it is dominated by p it is a potential and since it domi-
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nates fp1 it is an Evans potential associated with pf.

1.3. Let U be an open subset of X / be a real function on U and x&dU.

We say that f is associated with zero at x if there exists a regular neighbour-

hood V of x and a positive superharmonic function s defined on a neighbourhood

of V such that i/i < HsnJ >u If / is harmonic on the trace on U of a neighbour-

hood of x then / is associated with zero at x if and only if there exists a re-

gular neighbourhood W of x such that / is bounded on UΠW and f = Hfn]y'u.

Indeed if / is associated with zero at x, then / is bounded on a neighbourhood

of x since HsnV'u<H1s'x and by Lemma 1.3 and Lemma 1.2,/= H/nW'v for any

W c V. The converse is trivial.

LEMMA 1.5. Let U be a domain on X, C/e^p, and u a harmonic function

on U associated with zero at a boundary point y of U. For any Evans potential

p on U we have

lim inf (u(x)
X-+V

Let F be a regular neighbourhood of y such that u = Hunί>u and u is

bounded on UV\ V, and let / be the function on d{UΓ\ V) equal to \u\ on UC\dV

and equal to 0 on VΓίdU. Then U i < H / π Γ ' * .

Let p' be a positive potential on U such that p is an Evans potential as-

sociated with pf and let I! be an ultra-filter on U converging to y. If p' con-

verges to zero along 11 then by Lemma 2 in [1]

O<\imVi\u\ \im]χHΪnV>x = 0,

If p1 doesn't converge to zero along U then p converges to infinite along Π and

(u+p)>0.

THEOREM 1.2. Let Z7e$ be an open set and u be a non-negative harmonic

function on U associated with zero at any boundary point of U. The function

s on X equal to u on U and equal to 0 on X— U is nearly subharmonic and

the least upper bound of the family of its continous subharmonic minorants.

Let V be a regular domain, U£ be a component of U and pt be an Evans

potential on Ut. The function Hζ'x + εpc- u is superharmonic on V(M7C for

ε>0 and for any boundary point y

Urn inf (Hl'tX(x) + epdx) - u(x)) > 0.
x-+v
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This is obvious for y(ΞU(Γ\dV and for y<E VΠdUt it follows from the pre-

ceding lemma εpt being an Evans potential. Hence Hl'x + epc- u is non-nega-

tive, e being arbitrary we get

u<HΪx

on FΠK. Ut being arbitrary and s equal to 0 on X — U it follows

s< HΪX

on V.

For any ε>0 and any finite system {Ulv . . . , UCn) of components of U we
n

denote by Suv..tn the function on X equal to 0 on X— Π UCj and equal to
j = 1

max {u- εptj, 0) on Utp where ptj is a continuous Evans potential on U. It is

easy to see that the functions sζίl...ίn are subharmonic and continuous and s is

their least upper bound.

§ 2. Harmonizable functions

2.1. In this paragraph X denotes a harmonic space on which there exists

a positive superharmonic function, i.e. Z e $ U § .

Let U be an open subset of X, Ue% and / be a real function defined on

a set containing U-K, where K is a compact subset of X. We denote by

ψψx =ψv = τjpf (resp. ^} r"Y= # ^ = ̂ /) the set of hyperharmonic (resp. hy-

poharmonic) functions $ on U such that: a) s possesses a non-positive subhar-

monic minorant (resp. a non-negative superharmonic majorant); b) s dominates

(resp. is dominated by) / outside a compact subset Ks of X; c) for any y&dU

lim inf S(ΛT)>0 (resp. lim sup six) <0).
x->V χ-*y

It follows from the definition that jjĵ / *, ^.ftX depend only on the values taken

by / in a neighbourhood of the Alexandroff point of X. If f and / ' coincide

outside a compact subset of X we have ψ}*x = ψv

f *, #?j? x = ̂ / ' *. If s e= ψ}*x,

s<Ξ#/" γ then ^ < 5 . This follows for a non-compact component of U from

Corollary 1 in [3] and for a compact component of U from Theorem 6 in [3].

We denote by hL}'x=hf = h/ (resp. hψx = A/ = */) the greatest lower bound

of i^/'Λ' (resp. the least upper bound of # / ' * ) . Obviously h^x<h/fX and their

restrictions to any component of U are either differences of non-negative har-

monic functions or identically ± oo. If C7' is a component of C7 and X' the
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component of X containing W then hυ/'x' = h/'x> WtX> = */ '*

If s is a non-negative superharmonic function on X, Its'x is associated with

zero at any boundary point of U and for U=X it is the greatest harmonic

minorant of s. For the first assertion it is sufficient to see that for any rela-

tively compact open subset V of 'X, (Rs"v)p^ψstX*)

LEMMA 2.1. Let U be an open subset of X, U&% and let f, f be real

functions defined on U outside a compact subset of X and a be a positive number.

We have:

a) h-/= -hf;

b) Jiaf-ochf, haf = ochf;

c) hfϊf'<Έf + Έf', kf+f>kf+hf'**\ whenever the second part of

the inequalities has a sense

d) if f<J1 outside a compact subset of X then h/ < hf, t/< kf >

e) if 1if> hf (resp. hfi hf) are finite then

J5ma*(/./') = S/VΛ/' {resp. fcmiu</./'> = hf\kf)***\

The only non-trivial relation is

Let s^ψ/y s'^ψf. Then Λ/V hf + s-/j/ + 5' -hf e^max(/./•> and the in-

equality is proved 5 and s' being arbitrary.

LEMMA 2.2. Let U be a domain on Xy C/e^β, and f be a real function

defined on U outside a compact subset of X. If H/'x is finite then there exists

a non-negative superharmonic function s on U such that for any e>0 hrfx-hes
e # / " Y If U~ X then there exists a potential s with the same property.

Let {sn) be a sequence of # / such that

S = Σ (Sn - hf)
n = 1

is convergent at a point. This function fulfils the conditions of the lemma.

Suppose now U=X. Let Kn be a compact set such that sn>f on X—Kn.

*> See [2], page 82, definition 10.
**> Here / + / ' is defined arbitrarily if the operation has no sense.

***> If u> v are differences of non-negative harmonic functions u\J υ (resp. u/\υ)
denotes the least harmonic majorant (resp. the greatest harmonic minorant) of u and υ.
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Let {Xn) be a pseudo-exhaustion of X (See Theorem 8 in [3]) such that

for j<2n. pn-R*Z-hj is a potential (Proposition 10 in [2]). It follows that

is also a potential (Lemma 3, [3]). There exists a potential po infinite on
CO

X- U Xn by Theorem 9 in [3]. We denote
n = 1

p is a potential and we have for e>0, rn> — , j 1 and XGXm+2j~-Xm+j

-±- Σ Pnix)=^r Σ

It follows immediately

on X— Xmγι.

We denote by © the set of open relatively compact sets of X. For any

we denote

%Ό = {£/' e ®! £7' 3 £/}.

is a basis of a filter on ©. We denote this filter by ©*.

LEMMA 2.3. Lftf Z7 ̂  an open subset of X, £/e$, and f be a real function

on X. Then

Ψrx< lim inf H?nr'V < Mm sup H?"v>ϋ £ hψ x.

Let s<Ξψ'/'x. There exists Fe<§ such that s > / on U- V. For any

F' e ©r s e ^ / ^ 1 " ' * , where /0 is the function on X equal to / on £7 and equal

to 0 on I - ί / . Hence by Lemma 1.1

H?"v*u = ΉT'* x<s, lim sup H^ u < s, lim sup Hu

f

nV'u 5/.

LEMMA 2.4. Zef £/ ̂  an open subset of X, Z7e Sβ, and f be a non-negative

function on dU. If u = H/'x is finite then 7z«"γ = 0.

We may suppose U connected and / lower semi-continuous. For any

1 €= ̂ f>x, U-SCΞψϊx. Hence
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huux<u-l.

§_ being arbitrary, hLuX vanishes by Theorem 1.1.

LEMMA 2.5. Let U, U1 be open subsets of X, £/c £/'<=$, and f be a real

function defined on U' outside a compact subset of X. If f - hψ*x is finite then

hLSx = ψx.

If s e ψJ

f;
x and s' e ψf ' x then s + sf-f'<s ψψ x. Hence

In order to prove the converse inequality we suppose IP connected. Let

s'e^?/''*, s' superharmonic, s e ^ / ( ϊ , s eJ7£aχ('s',o). The function on U1 equal

to s' on Uf — U and equal to min (s', s + l) on U is superharmonic and belongs

to ψuf'yx. Hence / ' < s + s onί/, Since 5 is arbitrary we get f<s-fffitV.oi.

By definition there exists a non-positive subharmonic minorant £ of s'. Since

s' —I is a superharmonic function belonging to J7max(s',o), Hm^ls'^) is finite.

By Lemma 2.4 and Lemma 2.2 there exists a non-negative superharmonic func-

tion so on U such that for any e>0 eSo>#max(V,o) on U outside a compact set

of Uf. Then s + ε 5 O e ^ / / z and we have, e and s being arbitrary, h/>'x<h/'x.

LEMMA 2.6. L*ί Z G $ , A C Z ατi<i / £e a real function defined on X

outside a compact subset of X, such that hf is finite and non-negative and f is

non-positive quasi everywhere** on A outside a compact subset of X. If we denote

u=hf then RT^ is a potential.

Let p be a potential such that u-p&^f (Lemma 2.2). There exists a

compact set K such that u-p<f on X-K and f<0 quasi-everywhere on

A-K. It follows

LEMMA 2.7. Let U be an open sety C/eφ, and f be a continuous finite

function on Ό. Ifh/'u or ψfϋ or both functions h/ x, t§>x are finite, f is

resolutive with respect to (U> X). 1/ f is resolutive with respect to (U, X) then

Suppose hf'u does not take the value + °°. Let s e ^ / ' r and £ be a non-

*> See [2], page 124, definition 21.
**> See [2], page 80, definition 9.
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positive subharmonic minorant of s. Then s — i e ^ / ' z and V/'x does not take

the value + °°. Similarly if M/'u does not take the value — oo then Wfx does

not take the value - oo.

Suppose now hUftX does not take the value + oo. Let s e ^ / ' 1 , £ be a non-

positive subharmonic minorant of s and s0 be a positive superharmonic

function on X. Since there exists a compact set K on X such that s>f on

U- K there exists a positive number cc such that s - s + ccso <=J//'x. It follows

that Hτf'x does not take the value 4- oo. Let sxϊΞψψx

y s 2 e j ? / ' z . For any

e>0, si + s2 + εs0(Ξψf'u and therefore

Si, S2 and ε being arbitrary we get

h?>u<h?'x + H?>x.

Similarly if hJ/x does not take the value - oo then fi/ * does not take the

value - oo and

t,U,U 7,1/. X

From these considerations we see that if h/'u (resp. hUf'v) is finite then

Hf*x (resp. Hψx) is finite and / is therefore resolutive (Theorem 1.1). If

7if'x and hfx are finite then Ήψx (resp. S/'x) does not take the value + °°

(resp. - oo) these functions are therefore finite and / is resolutive.

Suppose now / resolutive. Let s e ψ/'υ and £ e <¥/%x. Then s - s e ψψ x

and therefore

s and 5 being arbitrary we get

The converse inequality follows from the first part of the proof. The proof of

the second equality is similar.

2.2. Let U be an open subset of X, C7s $ and / be a real function defined

outside a compact set of X. We say that / is associated with zero at the

Alexandroff point of X along U if Ti{yf = 0. If Uα F E φ and / is associated

with zero at the Alexandroff point of X along V then it is associated with zero

at the Alexandroff point of X along U. A potential on X is associated with'
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zero at the Alexandroff point of X along X. If X$ ty then any non-negative

superharmonic function 5 on X is associated with zero at the Alexandroff point

of X along any open subset U of X, U e φ. Indeed let s <=Jfs'x I the function

on X equal to s on X— U and equal to min (s, s) on U is superharmonic, non-

negative. Since X^ it must be equal to s. We deduce s = #"**, Jh'x = 0

(Lemma 2.4).

THEOREM 2.1. Let U be an open subset of X, t/e φ, and s be a non-negative

superharmonic function on X. The following two conditions are equivalent:

a) s is associated with zero at the Alexandroff point of X along U;

b) any superharmonic function s' on U is non-negative if

lim inf s'(x)>0

for any y e9£7 and if there exists a positive number a such that s '> - as out-

side a compact set of X.

By Lemma 2.2 there exists a non-negative superharmonic function s0

on Usuch that for any e>0 es0 eψΌ

s*
x. Then s' + εs0eψ%'x for any ε>0. Hence

sf + eso > 0. ε being arbitrary, s1 is non-negative.

b=$a. We may suppose ΊJ connected. Let p be an Evans potential on U.

Since hs'x is associated with zero at any boundary point of U we see by Lem-

ma 1.6 that p - hϋs'x satisfies the conditions of b) with a = 1. Hence it is non-

negative and hs'x vanishes, being dominated by a potential.

2.3. Let U be an open set on X, U^% and / be a real function defined

on U outside a compact set of X. The function f is called harmonizable with

respect to (U, X) if hfiX, hf'x are finite and equal I in this case ive denote

by }Pfx -lίϊf = hf their common value. Instead of harmonizable with respect to

(Uf U) we shall say harmonizable on U.

THEOREM 2.2. Let U be an open subset of X, Z7e % and f> f be real functions

defined on U outside a compact set of X, harmonizable with respect to (£/, X)

and let a be a real number. Then af*\ f+f'*\ max (/, /"'), min (f,f) are also

harmonizable with respect to (U, X) and we have

* ̂  Here af and / + / ' are defined arbitrary when the operations have no sense.
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This theorem follows immediately from Lemma 2.1.

THEOREM 2.3. Zέtf £/, £/' be open subsets of X, Uα £/', U' e φ, and let f be

a real function defined on U1 outside a compact set of X. If f is harmonizable

with respect to (Uf, X) and if we denote / ' = /*/''*, / and f are harmonizable

with respect to (Z7, X) and tif'x = hu/:x.

In order to prove that f is harmonizable with respect to (U, X) we may

suppose/ non-negative. There exists by Lemma 2.2, a non-negative superhar-

monic function s' on U1 such that / ' - e s ' e ^ / ' ' * for any e>0. Let p be an

Evans potential on U. Since hψx is associated with zero at any point of IP Π

dU and since it is dominated by / ' on U, h/'x -p- εs' e ^ , *,

p and e being arbitrary f is harmonizable with respect to (U, X).

The other assertions of the theorem follow now from Lemma 2.5.

COROLLARY 2,1. Let ^ be a set of superharmonic functions on Xy f be the

greatest lower bound of έf and U be an open subset of J, C/6φ. If f pos-

sesses a non-positive subharmonic minorant it is harmonizable with respect to

(Uf X).

If XΦφ then / is associated with zero at the Alexandroff point of X along

U. If X G φ, by the preceding theorem it is sufficient to prove that / is harmo-

nizable on X Obviously ^lf hs<s for any s e <*/. Hence Tif e #?/, h/< /?/.

COROLLARY 2.2. Let l £ $ , U be an open subset of X and f be a real func-

tion defined on X outside a compact set such that f vanishes quasi-everywhere

on X— U outside a compact set and 1/1 is dominated by a superharmonic func-

tion on X. If f is harmonizable on X and h/'x = 0 then h}'x = 0.

Let us denote u = hf/f. By the theorem

UU, X τtf» x (\

Hence by Lemma 2.7 and Corollary 1.1
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From Lemma 2.6 it follows that u is a potential. Hence u = 0.

THEOREM 2.4. Let £7. ϋ' be open subsets of X, [fa U', ί/e % and let f be a

real function defined on U outside a compact subset of U'. If f is harmonizable

tvith respect to (U, U') and there exists a superharmonic function on X domina-

ting I/I then f is harmonizable with respect to (U, X). If hUf'v> = 0 then h/'x = 0.

Suppose firstly / harmonic on U and non-negative. Since / is dominated

by a superharmonic function on Xy Tifx is associated with zero at any point of

dU. Hence for any Evans potential p on U, h1}'λ—p e # / ' x and / is harmoniz-

able with respect to (Z7. X),

In virtue of Theorem 2.2 and the above considerations we may suppose

that h/'u" = 0. In this case again by Theorem 2.2 we have ftf/Γ =0. Since

ffin'^W\i\x w e S e t ι̂/fY = 0. / is therefore harmonizable with respect to

(£/, X).

THEOREM 2.5. Let X^ty> U be an open subset of Xt s be a non-negative

superharmonic function on X such that Rs~u is a potential and f be a real

function defined on X outside a compact set, \f\<s. If f is harmonizable with

respect to (U, X) then f is harmonizable on X. If \ifx = 0 then h/'x = 0.

We denote u=h/'x- hf x (resp. u = hfyx if hψ x = 0). The functions Jif v,

h/'x, hfff are finite, since | / | < s , and by Lemma 2.5. we have /z«'A' = 0. By

Lemma 2.7 and Corollary 1.1 we get

u = hUu>u = HιL>\ u = Rl-v<2Rξ-ϋ.

Being dominated by a potential, u vanishes.

COROLLARY 2.3. Under the same hypothesis if f is harmonizable on U then

f is harmonizable on X. If h/'ϋ = 0 then hf'x = 0.

The assertion follows immediately from the theorem using Theorem 2.4.

COROLLARY 2.4. Let X<=% U be an open subset of X, such that X- U is

compact and f be a real function defined on X outside a compact set. If f is

harmonizable with respect to (U, X) then f is harmonizable on X. If ft/' γ = 0

then h/'x = 0.

Let s be a superharmonic function from W\;/\x. It can be shown like in

[2] (Theorem 14) the existence of a positive superharmonic function s1 on X
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which dominates s on U outside a compact subset of X Since R$~υ is a

potential the conditions of the theorem are fulfilled.

COROLLARY 2.5. Let X e $ , Uu U2 be open disjoint subsets on X and /j,

/2 be harmonizable functions on X. If X- UiU U2 is compact then the function

equal to /i on U\ and equal to ft on U-z is harmonizable on X.

By Theorem 2.3 this function is harmonizable with respect to (Uu X) (i =

1, 2) and therefore with respect to (tfiU U*f X).

LEMMA 2.8. Let I G $ and let f> g be real finite functions on X, g 0, and

locally bounded such that g and fg are harmonizable on X Let a, β be real

numbers a< β and A = {#e X\f(x)<a}> £ = {* e X\f(x)>β). Then min (££ # | )

is a potential.

Denote

^f. θ)

The functions gfA, gfε are harmonizable. We put u = hg/A, υ - hs/B. Then

hmln (K, V) = hut\hυ — U t\V = Λinin (g/A, gfβ) = 0.

min(w, ι;) is therefore a potential. On the other hand, by Lemma 2.2 there

exists a potential p such that

gfA u + p, gfB <υ+p.

Since fA (resp. fR) is not smaller than 1 on A (resp. B) we have

Rg<u+p, Rg<υ+p,

min (Rg, Rg) < min («, z;) -f̂ ,

and min (J^J, ̂ | ) is a potential being dominated by a potential.

THEOREM 2.6. Let I e $ , I connected, g be a non-negative locally bounded

harmonizable function on X, f be a real finite function on X and for any real

number a denote

If fg is harmonizable then Rg* is a potential except for a countable set of a.

Conversely if f is continuous and bounded and the set of a for which Rga is a

potential is dense then fg is harmonizable.
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Let us denote for any real number <x sa = Rga. Then hS(ί = hsa < hg.

Suppose firstly that fg is harmonizable. From the preceding lemma we

see that for any two different real numbers α, β

hsa A hsp = #min (Sα, Sfl) ̂ = 0.

Therefore

Σ = V hsa<h8

and hSa is different from zero only for a countable set of cc.

Suppose now that / is continuous and bounded and let Z denote the set of

real numbers a for which s<* is a potential. We may suppose 0 < / < l . Since

\g-hg\ is dominated outside a compact set by a potential the function Rί* is

a potential (resp. the function fg is harmonizable 1 if and only if Rh% is a

potential (resp. fhg is harmonizable) and therefore we may suppose g is harmonic.

Let e be a positive number and {#*}<)==/=?« numbers from Z such that

0 = αo<α:i<
oci--#ί-i<ε ( i = 1, 2, . . . ,n)j

Gi = {x^X\cci-ι </(*) <cti).

On X-Fu n^Rg* is equal to Rg«i-^A«i and therefore smaller than sβ<.x

Hence Rr^Fi is a potential. We have

r

Since RrΓFi and 5«t are potentials we deduce
n n

Σ oci-i hn hfg < ~hfg < Σ oci hn,
t = 1 < = 1

Σ ^^ < hg9 hfg ~ AV̂  ff Σ /̂ rt < e^.
i=1 i=1

e being arbitrary fg is harmonizable.

2.4. LEMMA 2.9. Z,eί / be a continuous finite function on X and U an open

subset of X, UG%

a) / is harmonizable on U if and only if it is harmonizable with respect to
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(£/, X).

b) // X G $ and f is harmonizable on X then f is harmonizable on U.

c) If I e $ , X-U is compact and f is harmonizable on U it is harmonizable

on X.

a) follows immediately from Lemma 2.7. b) results from Theorem 2.3 and

from a), c) may be obtained using Corollary 2.4 and a).

A continuous finite function f on X is called a Wiener function if there exists

an open set U with compact complement, £7eφ, such that f is harmonizable on

U. From the preceding lemma the last assertion is equivalent to the assertion

t h a t / is harmonizable with respect to (£/, X).

If X is connnected and belongs to ξ> - $ then any continuous function on

X dominated by a superlfermonic function is a Wiener function.

THEOREM 2.7. If f is a Wiener function and U an open set, ί / ε $ , then

f is harmonizable on U.

By the definition there exists an open set V with compact complement,

F ε $ , such that /is harmonizable on V. If U<^X- Vthen U is relatively com-

pact and / is harmonizable by Lemma 2.7. On the contrary case let K be a

compact non-polar subset of U(λV. Then X-K<=Ξ% by Theorem 7 in [3]. By

b) of the preceding lemma / is harmonizable on F— K and by c) it is harmoniza-

ble on X— K. Again by b) / is harmonizable on U— K and by c) on U.

REMARK. The restriction of a Wiener function to an open subset U is a

Wiener function on U. If X^ β̂, a coyitinuous finite function is a Wiener func-

tion if and only if it is harmonizable on X. We denote by &(X) = W the set

of all Wiener functions on X. From Theorem 2.2 and Theorem 2.7 we see that

W is a real vector space and from fu / 2 G / it follows max(fi, / 2 ) , min (/i, /2)

e ^ . If X belongs to $ we denote by &Q(X) = # 0 the set of Wiener functions

f for which h} vanishes and call the functions of # 0 Wiener potentials. ^ 0

coincides tvith the set of continuous finite functions whose moduli are dominated

by a potential, {Lemma 2.2).

LEMMA 2.10. / / J ϊ e ( ί > - S p ) U ( φ - © ) then any real finite continuous func-

tion f on X such that | / | possesses a superharmonic majorant is a Wiener

function.

Let s be a superharmonic majorant of | / | . Since for any t / e φ , s is as-
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sociated with zero at the Alexandroff point of X along U we have 

0^?>f^/£'* = 0 

a n d / is harmonizable with respect to (U, X). 

LEMMA 2.11. Let f be a Wiener function on X and U be an open subset 

of X, U(E% If the function g on X equal to f on X-U and equal to H/*x on 

U is continuons then it is a Wiener function. 

Suppose firstly XfEty and l e t / ' be a locally bounded harmonizable function 

on Xsuch that H/'* is finite and g1 be the function on X equal to / ' on X-U 

and equal toH/>'x on U. Denote u = hf>. There exists a potential p dominating 

\f'-u\. Then p dominates | ^ - R*voU + Rx~mvo\ and g'- Rx7o+Rf-w, is 

harmonizable. Since Rxrf, Rf-Sw are harmonizable (Corollary 2.1), g9 is 

harmonizable. 

Suppose now X$<$ and let K be a non-polar compact subset of X-U. 

Then X- Ks= $. We denote by gQ the function on X-K equal to 0 on (X- K) 

- U and equal to HZX on U, where <p is equal to / on KOdU and equal to 

0 on 3U- K. Since | / | possesses a superharmonic majorant on X- K, H+'x is 

associated with zero at any point of BU - K. Hence by Theorem 2.2, Theorem 

1.2 and Corollary 2.1, g0 is harmonizable on X— K. We se t / ' =f-g0 and denote 

by g' the function on X-K equal t o / ' on (X-K)-U and equal to H/,'X~K 

on U. Since / ' is harmonizable on X— K, g* is harmonizable on X- K by the 

above proof. From the equality g = g' + go it follows that g is harmonizable 

on X- K. g is therefore a Wiener function. 

LEMMA 2.12. Let X be non-compact, J£e % and f be a real function on X, 

whose modulus possesses a superharmonic majorant and such that 

limsupa'/Z/^O**. 

Let further g be a non-negative harmonizable function on X and F be a closed 

set such that g^f on F. Then R% is a potential 

Let us denote u = hg. There exists a potential p dominating | u - g\ outside 

a compact set. It is sufficient to prove that Ru is a potential. Let us denote 

/ ' = u -f and G = X-F. Since I/I possesses a superharmonic majorant there 

*> ©* is the filter defined in the page 8. 
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exists a super harmonic majorant s for \f \. 
Let *7e ®, s e ^ * £ e ^?u£7'z . The function #" + 5 - £ is hyperharmonic 

on G, non-negative on UCiG and outside a compact subset of X and its lower 

limit at any point of 9G — U is non- negative. Hence this function is non-nega

tive. J, s being arbitrary we get 

*?u"-z £*?•*+«? 

on G. If we denote for any C/e® by Su the function on X, equal to 0 on 

X-GU U and equal to fc?ut7,z on GU £7 we get from the above inequality 

since i ^ i s a potential and Su is nearly subharmonic. 

We have for U, LP e ®, Z7c £/*, *7 sufficiently large, 

Hp*™'* Z(tf-U')*ua+p. 

Since by Lemma 2.3 

5«7 = *?wir-x= lim <£?-"'W 

we get 
lim sup j ^ ™ ^ ^ + ^ fcx + ^ 

on G U *7. Since 

jjUyj(QnU') = u__ JfUv(QnO') 

we have 

« £ lim sup (lim sup #^«^'>) + i im s u p (Hm s u p jf^iGnU'^ hx +p 

where v denotes ft?,. Since by Lemma 2.6, £? is a potential, kl is a potential. 

THEOREM 2.8. Zef JY te non compact, X^% and f be a finite continuous 

function on X whose modulus is dominated by a superharmonic function. If 

lim®* H/ 

exists then f is a Wiener function and 

\im& H/ = hf. 

Let s be a continuous finite superharmonic majorant of \f\. 
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Suppose firstly 

lim@* H1/ = 0. 

Let c be a positive number and 

F={x<zX\ts(x)<Lf(x)}. 

Let s' be a non-negative hyperharmonic function dominating s on F. Then 

s' + e s £ ^ / . Hence 

hf^s' + cs. 

sf being arbitrary we get h/<.Rs + es and therefore H/ ^ es since by the preced

ing lemma Rs is a potential. Similarly hf> -es . Hence h/ = 0. 

For the general case let us denote 

tt = lim<B*i?/. 

We want to prove firstly that u is harmonic. We may assume X is connected. 

Let {[/») be a pseudo-exhaustion of X, p be a potential on X equal to infinite 
0 0 QO 0 0 

on X- U Un and finite on U Un> x be a point of U #» and e be a positive 
n = l n » l * - l 

number. There exists a relatively compact open set U of X, x^U, such that 

| f l ? ' ( * ) - * ( * ) ! < c 

for any relatively compact open set U'^U. Let oc be a positive number and 

G = { ^ e ^ ( > ) > ^ ) } . 

00 

U - G is a compact subset of U *7» and we have therefore, for a sufficiently large 

nt U-G<^Un. Let us denote by g the function on U\j Un equal to f on 

a(*7U £/„)and equal to # / u f ; n on J7U Ki. Obviously | # | ^ s. By Lemma 1.2 

Since \f-g\ is equal to zero on dUn-G and dominated by -£- on G f i a ^ w e 

get 

Hence 

\mn(x)-u{x)\<L\H'^x)-HvAx)\ + \m^(x)-u(x)\^t+^^-. 

lim sup | H'/"(x) - u(x) | £ e + ^ T ^ 
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s and a being arbitrary we get 

lim H/n(x)=u(x). 

Let V be an arbitrary regular domain, x<= Vy and {Un} be a pseudo-exhaus

tion of X such that Vc Ui. We put w„ = H/n. Then I w„ I < s and 

#(#) =lim un{x) =lim \undu)x=\uda)x. 

V and x being arbitrary w is harmonic. 

We have 

By the first part of the proof we see that / - w i s a Wiener potential. Since 

\u\ possesses a superharmonic majorant, u is a Wiener function. Hence / is a 

Wiener function and we have 

§3. Harmonic maps 

3.1. Let X, X be two harmonic spaces. A continuous map <p: X^X' is 

called a harmonic map if for any open set LP c X1 and any harmonic function 

uf on IP, u'°<p is harmonic on <p~l(ZJ9). The composition of two harmonic maps 

and the canonic injection of an open set of X in X are harmonic maps. If 

<p: X - X' is a harmonic map and / ' is a positive continuous finite function on X' 

and if we denote by Y (resp. Y') the harmonic space obtained from X (resp. 

X') dividing the sheaf of harmonic functions by / ' ° f (resp. / ' ) then <p : Y-+Y' 

is also a harmonic map. 

THEOREM 3.1. If <p - X-*X* is a harmonic map and s' a hyperharmonic 

function on an open set IPaX', then s'°<p is a hyperharmonic function on <p~\U). 

We may suppose s' is superhamonic. Let Fbe a relatively compact open set, 

Vd<p'l(Uf). Then <p(V) is a compact subset of IP. Let $8' be a finite covering 

of <p (V) with regular domains. We denote by s%> the function on IP equal to 

s' on f/'- U V and equal to 

min H*\xf) 
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at any point x' e U V. Let x e F and £7 be a regular domain, # e £7c V such

that £7 is contained in any set φ~λ( V), for which φ(x) ε V ε 55'. We denote by s

the function on Π ^"H^') equal to min (H% °<p)\ Since any function

HΪ'°φ is harmonic on this set, s is superharmonic. We have s>s%,°φ and

six) = sfo°φ{x). Hence

Since s^°^ is continuous it is superharmonic on V (See Theorem 4 in [2]).

Obviously sf is the least upper bound of the family {sĵ ls .̂ Since it is upper

directed it follows that s'°ψ is hyperharmonic.

COROLLARY 3.1. Let ψ X-+X1 be a non-constant harmonic map, X con-

nected. If Z ' G ? (resp. 0), then I G $ (resp. ©).

If X'Gcξ) there exists a positive harmonic function u' on X Then u'°ψ

is a positive harmonic function on X and Z G $ ,

Suppose now I ' e $ and let x'u x[ be two different points of ψ(X). There

exists two positive finite superharmonic functions s{, s'2 such that

Then s[°ψt s[°φ are two positive non-proportional superharmonic functions on

X. Hence

THEOREM 3.2. Zeί ^ : X-+X' be a non-constant harmonic map and X be

connected. Then for any polar set*} A ' c j ' , ψ~ι{A') is polar.

Let A denote the set of points x<=X such that for any neighbourhood U

of x, UΠφ^iA') is non-polar. A is obviously closed. Let x^ A, and s' be a

positive superharmonic function on a neighbourhood U1 of ψ(x) infinite on

17' Π A1. Let y' e £7', y # ?>(#) and F, Fl be two closed sets on U\ U1 = F U Fj,

Then

Let £7 be the component of ψ'^ΌJ1) containing x. We have

*> A set AcX is called polar if for any point ΛGX there exists a positive superhar-
monic function on a neighbourhood £7 of x infinite on ΛπU.
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on U. Since s'°φ is infinite on the non-polar set UΠψΉA1) it is identically

infinite. The function (Rs')υ'°ψ being finite at x it follows that (Rp')u>°<P is

identically infinite. Hence y'$φ(U). y' being arbitrary we get ψ(U) = {ψ(x)}t

ψ(x) eA', UC.A. Hence A is open and ψ is locally constant on A. Since X

is connected either A is empty or A is equal to X and ψ is constant. By

hypothesis ψ is non-constant. Hence A is empty and <f~1(At) polar.

COROLLARY 3.2. If ψ : X->X' is a non-constant harmonic map, X is con-

nected and s1 is a superharmonic function on an open set U'ciX1 then s'°φ is

superharmonic on φ~1(Ul).

LEMMA 3.1. Let ψ X-+X' be a harmonic map and x'&X'. If U is an

open set on X containing a compact component of ψ^ίx') then x' is an interior

point of ψ(U).

We may suppose U relatively compact and ψ'Hx') Γ\dU=φ. Then x'$φ(dU)

and there exists a regular domain V such that *' e V and V Π ψ(dU) = φ.

Denote V=UΓ\φ~HW). The set V'-φ(V) is open since it is equal to

V - ψ(V). If it is non-empty we may take a compact non-polar set Kf contained

in it. Then the function sf = (R?')v is harmonic and positive on V — K1 and

converges to zero at any point of dV. The function s'°φ is harmonic and

positive on Fand converges to zero at any point of BV. This is a contradiction

and we deduce ψ( V) = V and the proof is complete.

THEOREM 3.3. A zero-dimensional harmonic map^ is an open map.

THEOREM 3.4. Let ψ : X-*X' be a bijective harmonic map. Then ψ"1 is

also a harmonic map.

From the preceding theorem it results that ψ~x is continuous. Let U be

an open set on X and u be a harmonic function on U. We want to prove that

u°ψ~ι is harmonic on ψ(U). Let V1 be a regular domain in Y', V'cφiU),

and

v> = fftVi.

Then v'°ψ is harmonic on <p~1(V')c<p-1(Vl)c^U and converges to u at any

boundary point of ψ^iV1). Hence

*> A continuous map ψ is called zero-dimensional if Ψ {%') is totally disconnected for
any x'.
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and u°ψ~1 is harmonic.

COROLLARY 3.3. Let ̂ J&', *£/* be two harmonic sheaves on the same space.

If Jtf' c Jf/, then J//< = Jt/.

THEOREM 3.5. Let ψ : X-+X1 be a non-constant harmonic map, X connected.

If any point of Xf is polar, then ψ is an open map with respect to the fine

topologies of X and X'.

Since the theorem has a local character we may suppose that there exists

a positive harmonic function u1 on Xf. Dividing the sheaf of harmonic func-

tions on X (resp. X') with u'°φ (resp. u1) we may suppose further that the

constants are harmonic on both spaces.

Let x<=X and E be a fine neighbourhood of x. We must prove that <f(E)

is a fine neighbourhood of φ(x). There exists a positive superharmonic func-

tion, defined on a neighbourhood of x, such that

s(x)<l<\im inf s(y).

Let U be a regular domain containing x such that s is defined on U and s > 1

on Ό - E. We denote

Obviously Π — GcE. Since {ψ(x)} is a polar set ψΉψix)) is also polar (Theorem

3.2). ψΉψ(x)) Hat/is therefore of harmonic measure zero with respect to U

(See p. 125 of [2]). Let K be a compact subset of dU-ψ~\ψ(x)) such that

where / denotes the characteristic function of dU-K. Since ψ(x)^ψiK) there

exists a regular domain IP, φix) e IP, U' Π φ(K) = 0. We denote F = C/Π φ~\U')>

G' = U'-<f(V-G). From

we see that it is sufficient to prove that G' is thin at ψ(x).

Let K' be a compact subset of G1 and s' = (/?TV. s'°γ> is harmonic on

y - ^ ' ^ X O . The function H/ + s-sf°φ is superharmonic on F - y H A 7 ) and

its lower limit at any boundary point of V—ψ^iK1) is non-negative. Hence it
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is non-negative and we get

(&?')σ<(φ(x)) = sup (Rΐ')u,(φ(x)) H?(x) + sixXl.
K'QQ'

This relation indicates that Gf is thin at ψ (x).

THEOREM 3.6. Let ψ : X-+X' be a harmonic map, Ze*βUξ>, X connected.

If ZP is a non-reϊatively compact domain of X' then the set of components of

ψ^iZP) is at most countable.

Since any component of ψ^iU1) is not relatively compact the assertion

follows immediately from Theorem 11 in [3].

3.2. THEOREM 3.7. Let ψ : X-+X' be a harmonic map, Z ' G $ . If f is a

Wiener function on X\ then f'°φ is a Wiener function on X.

We may suppose X is connected.

Suppose firstly that / ' has a compact carrier K'. Let s' be a positive finite

superharmonic function on X1 and e be a positive number. There exists two

finite potentials £', £" on X1 such that I/' - (/>' -p") \ <es' on K (Theorem 15

in [2]). Then ! / ' - (Rf>-Rp>)\<es' on the whole space X and therefore

7i/,oφ- hf,Oφ<2εs'°φ.

e being arbitrary f'°ψ is a Wiener function.

Let now / ; be a Wiener potential. There exists a potential p' on Xf such

that for any ε>0 \f I <εp' outside a compact set K[. There exists a continuous

finite function f{ with compact carrier such that | / ' - f[ \ < ep'. Hence

hf>oφ- hf,Oφ<2epΌφ.

ε being arbitrary f'°ψ is a Wiener function.

If / ' is a Wiener function the / ' - hf> is a Wiener potential. From

f'oψ= (f'~hf,)<><ρ-\-hf<°φ

we see that ff°φ is a Wiener function.

THEOREM 3.8. Let ψ : X-*X' be a harmonic map, X> X1 connected,

X' <= φ - φ. The folloiving assertions are equivalent:
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a) there exists a continuous non-negative non-harmonic function / ' on X1

such that ff°ψ is a Wiener function on X*

b) there exists a closed non-polar set F' on X1 such that Rl 1 ( Γ ) is a poten-

tial;

c) if f is a locally bounded non-negative function on X1 such that ftoψ is

harmonizable on X and g1 is a Wiener function on X\ \g'\ </ ' , then g'°φ is a

Wiener function on X.

a=$b. Let uf be a positive harmonic function on Xf

f g1 = ^-j and for any

real number a

g1 is continuous and non-constant and therefore for any a,

inf g* < a < sup g1

the set F'a is non-polar because it separates X'. The function uf°ψ and

{gf°φ)(u'°φ) are harmonizable. By Theorem2.6. there exists an a,

inf gf < oc < sup g'

such that Ru~olpFa) is a potential. Let F1 be a compact non-polar subset of F'Λ
and

0 = inf »'(*') > 0 .

From

we see that R'*~HFf) is a potential.

c\ Let jfiC' be a compact non-polar subset of F' and

0 = sup / ' ( Λ ' ) .

By Lemma 2.2 there exists a potential p on X such that \hf>Oφ- ff°φ\ <*p

outside a compact subset K of X Then s = Λ//o? -\-p-\- Rfoφ is a superharmonic

majorant of f'°φ on ,Z and RΓHκ>) is a potential being dominated by the

potential βR'fHFΊ + 2 M + 2^. By the preceding theorem #'«?> is a Wiener func-

tion and therefore harmonizable on X- φ'^K'). gf°ψ is therefore a Wiener

function on X by Corollary 2.3.

c=*« is trivial since any non-negative continuous function on Xf dominated

by a harmonic function is a Wiener function.
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THEOREM 3.9. Let ψ ' X->Xf be a harmonic map, Xt X1 connected,

ξ> - $, X ' 6 § - φ, and / ' be a continuous non-negative function on X'. If f'°ψ

is a Wiener function on X then for any Wiener function g'on X', \g'\< f',g!°ψ

is a Wiener function on X.

If / ' is harmonic then it is immediate that gτ°φ is a Wiener function.

Suppose now / ' is not harmonic. Let U be a domain on X, f/e $. We deduce

by the preceding theorem (a=$c) that g'°ψ is a Wiener function on U.

3.3. ω Z G $ U § . We denote by W(X) =9Ϊ the set of open subsets U of

X such that either U=φ or ί / e ? and Έi'x = 0. If U*<f> this is equivalent

with the assertion that 1 is associated with zero at the Alexandroff point of X

along U. If F c U and Z7e9ϊ then V^ 91. Any relatively compact open set

belongs to 9Ϊ.

The notion of analytic map of type-Bl introduced and studied by M. Heins

(On the Lindelδf principle, Ann. of Math. 61 (1955), 440-473) can be generalized

directly to the case of harmonic maps between spaces belonging to ty U £>. We

shall say that a harmonic map ψ ' X-+X1 (X, I ' G $ U § ) is of type-Bl at the

point χ'G.Xf if there exists a neighbourhood U' of x1 such that ψ~ι{U') e??.

Then there exists a fundamental system of neighbourhoods of x1 with the same

property. The set of points x! e X1 at which ψ is of type-Bl is obviously open.

If ψ is of type-Bl at χf <= Xf and ZP is an open subset of X1 containing x' then

the map ψ^UJ')-*!!' induced by ψ is of type-Bl at x'. If ψ is of type-Bl at

any point of X1 we say that ψ is of type-Bl. If U1 is an open subset of X' and

ψ^iU1) e 9?, then the map ψ~ι(Uf) — U' induced by ψ is of type-Bl. Any harmonic

map of type-Bl is non-constant on any component of X. Indeed such a component

belongs to 9Ϊ by the definition and this contradicts the fact that the constants

are harmonic on it.

LEMMA 3.2. Let ψ : X-*Xf be a harmonic map, J ' ε § U 5 p , / be a real

function on X, y be the set of non-negative superharmonic functions s1 on X!

such that s'oψ^f and U1 be an open subset of X1 such that ψ'KU') is either

empty or belongs to $ and f>Ή'fHu'\ If ^/' is non-empty, then its greatest

lower bound is harmonic on Uf.

Let / ' be the greatest lower bound of ά/'% s' <Ξ J/*' and s' be a non-negative

superharmonic function on X1 greater than 5' on X' — U1. Then s' e ^/'.
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Indeed if ψ'hU1) is empty this is obvious. Otherwise s'°φGj?}~Huf) and

s'°φ> HfhUΊ > / It follows

/ ' < Rΐ> ~u\ / ' = infRf!" u\

Since {Rx>'~ϋ' \s' e J/*7} is a lower directed set of harmonic functions on ί/', / ' is

harmonic on Uf.

THEOREM 3.10. Let ψ ' X->X' be a harmonic map, Z ' G $ U § . The follow-

ing assertions are equivalent:

a) φ is of type-Bl;

b) the set of points at which ψ is not of type-Bl is polar;

c) for any open set Z7'cX' and any locally bounded potential pf on U', p(°ψ

is a potential on ψ"1(Uf)

d) for any locally bounded function f on X1 and any open subset U1 of X\

U1 e φ, we have

e) there exists a real function / ' on X1 such that for any compact set K!

of X'

0< inf fix')

and for any open relatively compact subset U1 of X' ( ί / ' e $ ) we hawe Iff ι o^ ' Λ ) =0.

is trivial.

c. Let U' be an open subset of X\ p' be a locally bounded potential

on Uf and u be the greatest harmonic minorant of p'°φ on φ'^U1). Let ̂ /f

be the set of non-negative superharmonic functions s' on U' such that s'°φ>u

and u1 be the greatest lower bound of y . Let V be a relatively compact open

subset of X\ VfdU'y such that φ~H V1) e 51. Since u<p'°ψ and p1 is bounded

on V, u is bounded on <p~l{V). Hence either <p~\Vf) is empty or by Lemma

2. 7, u = Hu~Hv/) on ψ~\V). By the preceding lemma we see that u' is harmonic

on V. u1 is therefore harmonic on U1 with the exception of a closed polar

set. From u1 <pf it follows that u1 is locally bounded. Hence it may be extended

to a harmonic function on U'. Being dominated by a potential it vanishes.

Hence u is equal to zero and p'°ψ is a potential on φ'^U').

It is sufficient to do the proof for X' connected. Suppose firstly / '
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continuous with compact carrier Lr and let U1 be an open subset of X\ £7 'e$.

Let K' be a compact subset of U' such that X ' - ϋ Γ ' e φ and let p1 (resp. q')

be a positive potential on Uf (resp. Xf — Kf). Then pΌφ (resp. g'°f) is a

potential on φΉU') (resp. ^ ( X ' - U L ' ) ) . Let i> (resp. #) be a positive Evans

potential on φ~HU) (resp. <p~\Xf-Kf)) associated with pf°φ (resp. <?'°tf). Obvi-

ously p + q (resp. i>) converges to infinite at the Alexandroff point of X through

φ'HL'-K') (resp. φ'HK1)). Let s e ^ Γ ' 1 . There exists an «>1 such

that ccp>s on<p~l(K'). The function <*£-}-#— s is a hyperharmonic function

on φ~1(Uf — Kl) non-negative outside a compact set of X and its lower limit at

any boundary point of φ~1{Ut — Kl) is non-negative. Hence apΛ-q^il on

<p~\Uf-K'). Since q is arbitrary we have ccp>s on φ~ι(U' -K'). This ine-

quality being satisfied also on φ~ι{K') we get ctp>§_ on φ^ttP). Since i> is

a potential on <ρ~\Uf) it follows 5<0 and tf/>oUf)'x<0. Similarly we get

Έf7o¥')tX>Q. By Theorem 3.7, f'°φ is a Wiener function on ψ"\lP) and there-

fore harmonizable on ψ"1(Uf). By Lemma 2.9 a) we see that / ;°f is harmoniz-

able with respect to {ψ'1(U')> X) and we get tifl?')>z = 0.

Let now / ' be as in the theorem and sf <£%?/!•*'. There exists a continuous

finite function f[ on X1 with compact carrier such that / ' - f[ < sr on U1. Then

(/' - fl)°<P<s'°<p on φ'HU'). For any point y^dφ~\Uf) we have

lim inf s'°φ(x)>\im inf s'(#')>0
' ί )

since y(^)e3C7'. Hence s'°φ

since Λjyo-Γ*'x = 0 by the above proof. sf being arbitrary we get the required

inequality.

d -=^e is trivial.

e =*β. Let £/' be a relatively compact open subset of X1. Since there

exists a positive number a such that 1 < af on £7' we have

and ^ O

COROLLARY 3.4. Let ψ : X-*X' be a harmonic map. If there exists a positive

superharmonk function s' on Xf such that s'°φ is a potential then ψ is of type-

Bl.

The assertion follows from e
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COROLLARY 3.5. Let φ : X-+X1 be a harmonic map, X1 connected, and u\

v1 be positive harmonic functions on Xf. The following assertions are equivalent:

a) ψ is of type-Bl and u'f\v' = 0;

b) u'°φ/\vt°φ = 0.

a=$b. Since u' Γ\v' = 0, min (»', vf) is a potential. Hence

min (uloψ9 vf°φ) = min {u\ v')°ψ

is a potential and we get utoψ/\v'°ψ = 0.

b =$a. Since min (u\ »') is a superharmonic function and min (u't v')°ψ is

a potential, ψ is of type-Bl by the preceding corollary. On the other hand

(u1 ί\vl)°ψ vanishes since it is a minorant of u'°φ /\vloψ. Hence u'/\vf = 0.

COROLLARY 3.6. Let ψ X-+X' be a harmonic map and F be the set of

points at which ψ is not of type-Bl. The intersection of Ff with any open set

is either empty or non-polar.

This follows from b

COROLLARY 3.7. If ψ > X-> X' is of type-Bl and X' connected then any

closed set F^X* - ψ(X) is polar.

Let IP be a domain of X\ ί/ 'e$ such that F'ΓiU' is non-polar and

IP Π φ(X) is non-empty. Then there exists a compact non-polar set K'ciF Π Uf.

The function

is a positive potential. Since ψ is of type-Bl, s'°^ is a potential on φ~i(Ul) by

This is a contradiction since it is harmonic.

COROLLARY 3.8. Let ψ : X-*X'y f : X'-*X" be harmonic maps and X, X',

X" connected. <ff°φ is of type-Bl if and only if ψ and ψ1 are of type-Bl.

Let IP' be an open subset of X", U"&% and p" be a positive locally

bounded potential on £7". If φ, <f' are of type-Bl then p'Όφ* and therefore
- 1

pfoψioψ are locally bounded potentials on <p'~ι(U") and φ'°φ(Ulf) respectively.

Hence ψ'°ψ is of type-Bl. Conversely if <f'°φ is of type-Bl then p'Όφfoψ i s a

potential on φ'oφiU"). Let u' be the greatest harmonic minorant of p'Όφ on

ψ'~1(Uft). Then u'°φ is a harmonic minorant oί p"°φ1oφ. It follows u'°ψ = 0,
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w' = 0. Hence p" °φ' is a potential and ψ, <f' are of type-Bl by Corollary 3.4.

THEOREM 3.11. Let ψ:X-*X be a harmonic map of type-Bl, X<B%

X'eξ> - φ, X' connected. If f is a continuous non-negative function on X such

that f'°φ is a Wiener function on X then f is harmonic.

Suppose / ' is non-harmonic and let u' be a positive harmonic function on X'.

Let U'u . . . > Un be a finite covering of X1 such that U\ are open sets with

compact boundaries and Z7, e φ for any iy l<,i<m. There exists for any i a

non-negative continuous function /,' whose carrier lies in U\ such that

« '=Σ/: .
t = 1

Since I ' ε § - $ w e have h/<'x' = 0. Hence by Theorem 3.10 (a =*d)

By Theorem 3.8 (a =^c), f\°<p is a Wiener function and therefore harmonizable

on X. From Corollary 2.2. we deduce that it is a Wiener potential. This is a

contradiction since

§4. Compactifications

4.1. We shall suppose from now on X is connected. A compact space X*

such that X is a dense subset of X, is called a compactification of X. Since X

is locally compact it is open in XA\ The closed set Δ = X* — X is called the

ideal boundary of the compactification X*.

We shall suppose in this paragraph I G ^ . For any potential p on X we

denote by Γp the set of points jy e Δ such that

lim inf p(x) =0.

We denote further

where p is an arbitrary potential on X. Γis compact. If there exists a bounded

positive harmonic function on X, then Γp is non-empty for any p. The family

{Γp)p being a filter-basis Γ is also non-empty in this case. We call Γ the hat-
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monic boundary of the compactification X*.

LEMMA 4.1. If K is a compact set in Λ, then there exists a continuous

potential p on X such that

\\mp(x) = °°.

x^K

Let y e K. There exists a potential py on X such that

liminf py(x)>0.
X-+V

Let Gy be the set of points / e j for which

liminf py(x)>0.
x->y'

Since K is compact there exists a finite number of points yϊt . . . , yn on K

such that

Hence there exists a potential p' on X for which

liminf p'(x)>0.
x->K

If pfl denotes an Evans potential associated with p\ then

lim inf p"(x) = <*>.

There exists a continuous non-negative function / on JY"*, equal to infinite on

K not greater than pn. From

/ < ^ < p"

we see that i?/ is a continuous potential (see Theorem 3 in [3]) on X, converg-

ing to infinite at K.

A real function f on X is called lower (resp. upper) pseudo-bounded if there

exists a potential p such that f+P (resp. f—p) is lower {resp. upper) bounded,

where °° — °° = - °° + °° = 0. It is called pseudo-bounded if it is both lower

and upper pseudo-bounded. An open non-compact set UaX is called M.P.-set

// any hyperharmonic function on U is non-negative if its lower limit at the

Alexandroff point of U is non-negative. If there exists a superharmonic function

on U with positive infimum, U is of type M.P. (by Corollary 1 of [3]).
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LEMMA 4.2. Let U be an M.P.-set and s a lower pseudo-bounded hyper-

harmonic function on U. If

liminf s(x)>0
χ-+V

for any point y of the relative boundary of U and for any y^ΓΠU, then s is

non-negative.

Let p be a potential such that s0 = s+p is lower bounded. For any natural

number n we denote

Kn= {y^ Δ ΠU\ liminf

Kn is a compact subset of A. By the preceding lemma there exists a potential

pn on X converging to infinite at Kn. There exists a sequence {εn} of positive

numbers such that
00

P0 = Σ εnpn

00

is a potential. For any y e U /Γn,
n = 1

lim PQ(X) = oo.
x-*V

Therefore for any e>0 the lower limit of So4-ε/>0 at the Alexandroff point of

U is non-negative. Since U is an M.P.-set, s0 + ep0 is non-negative, e being

arbitrary, s0 is non-negative. We deduce

THEOREM 4.1. (Minimum principle) If X is an M.P.-set and s is a lower

pseudo-bounded hyperharmonic function on X for which

liminf s{x)>0,
x->Γ

then s is non-negative.

THEOREM 4.2. Let U be an open subset of Xt whose relative boundary is

compact. ΓΓ\U is empty if and only if Cfe9ΐ.

If ΓC)U is empty then JΠU is a compact subset of Λ. There exists

therefore a potential p on X converging to °° at Δ Π U. For any ε > 0
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Hence
η-U, X

h\
= 0 .

Conversely suppose now h\'x = 0. The function / on X equal to 1 on U and

equal to 0 on X- U is then harmonizable with respect to (X-dU, X) and

hf~w'x = 0. Then by Corollary 2.4, / is harmonizable on X and hfx = 0. By

Lemma 2.2 there exists a potential dominating / outside a compact set. It fol-

lows immediately ΓΓ\Uc:Λ.

THEOREM 4.3. Let X*, X*' be two compactsfications of X and π : X*

be a continuous map whose restriction on X is the identity. If we denote by Γ1

the harmonic boundary of the compactifie ation X*' then

τr(Γ)=Γ'.

Let y G Γ . For any potential p we have

0 < lim infp(x) < lim inf p(x) = 0.
()

Hence π(Γ)aΓ. Let now y e Γ ' . For any neighbourhood U of π'Hy') there

exists a neighbourhood U' of y1 such that π^iU^aU. From here we get

0< lim inf p{x) <\\m inf^(#) =0.

Hence Γp Π π~Hy') is not empty. Since the family {Γp Π TΓ'^^O }P is a filter basis

ΓΓiπ'Hy) is not empty and Γ'Cτr(Γ).

COROLLARY 4.1. 7/* /or a compάtification X* o/ X the harmonic boundary

is not empty then the harmonic boundary of any compactification X*f of X is

not empty.

Let X*" be the Alexandroff compactification of X and n : X* - X*", TΓ' :

X*'-*X*" be the natural maps. From

we see that F is not empty.

4.2. In order to develop an interesting theory of Dirichlet problem on the

ideal boundary it seems necessary to require that X is non-compact. Z G $ , and

there exists a superharmonic function on X whose infimum is positive. We

shall suppose that X fulfils these conditions. Then X is an M.P.-set. Let
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f be a real function defined on a set which contains A. We denote by

=3?f=Jpf (resp. έf/ z* = 53f/ = cy>) the set of lower bounded hyperharmonic

(resp. upper bounded hypoharmonic) functions s on X such that for any y^ Δ

lim inf s(x) >f(y) (resp. lim sup s(x) < f(y)).
X3x-*y X3ί-»p

We denote by H?'x*=Hf = Hf (resp. /?/•** = # / = fl» the greatest lower

bound of J?/'x* (resp. the least upper bound of y / 1*). Obviously Sf<Ή/

and ///, 22/ are either differences of non-negative harmonic functions or iden-

tically ± °° on X

LEMMA 4.3. Let A be a subset of X, X be the characteristic function of

Af) J, f be a non-negative pseudo bounded function on X and s = Rj. There

exists a positive number oc such that

There exists a potential p on X and a real number a1 such that

Let a>a1 and 5 e y α χ . Then J-hp dominates f on A outside a compact

subset K of X. Hence

hs<s.

5 being arbitrary we get

If Hf, Sf are finite and equal f is called resolutive; their common value

is denoted H/'x* -H/ =- Hf and is called the solution of Dirichlet problem

with / as boundary function.

LEMMA 4.4. Let f be a continuous bounded function on X*. f is resolutive

if and only if it is harmonizable on X. In this case hf = Hf.

Obviously ^/ cc>^/. Hence H/ < Tif. Let s be a superharmonic function on

X with positive inίimum and ^ e ^ / . Then for any e>0, s + εs^%?f and

therefore

+ εs.

J and ε being arbitrary we get

hf<Hf,
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Similarly it can be proved the relation h/ = Hf.

A compactification X* of X is called resolutive if any continuous bounded

function on Δ is resolutive.

THEOREM 4.4. The following properties of a compactification X* of X are

equivalent'

a) X* is a resolutive compactification;

b) any continuous bounded function on X* is a Wiener function on X;

c) for any x&X, ωu

x*
] converges vaguely to a measure on Δ along the filter

β*

a$=$b follows immediately from the preceding lemma.

b^=^c follows from Theorem 2.8 and Lemma 2.3.

If X* is a resolutive compactification then for any x&X the map

f-+H/(x)

is a positive linear functional on the space of continuous finite functions on Δ.

We denote by ωx'
x* = ωi = ωx- ω the measure on Δ such that

for any continuous bounded function f on Δ and we call it the harmonic measure

on Δ at the point *. It follows from Theorem 4.4 and Theorem 2.8 that if

X* is a resolutive compactification, ωlJ

x converges vaguely to ωx along ©*.

A function on Δ is called ω-integrable if it is ωx integrable for any x e X.

f is ω-integrable if and only if it is ωx-integrable for an x^X (Axiom 3). If /

is ω-integrable, the function x~*ydωx is harmonic. A set A^Δ is called ω-

measurable if its characteristic function is ω-integrable. We denote by ω(A)

the function x->ωx(A) and we call it the harmonic measure of A. The set A

is called of harmonic measure zero if ω(A) is identically zero. We say that a

property is true almost everywhere on Δ if it is true at any point of Δ with the

exception of a set of harmonic measure zero.

LEMMA 4.5. Let X* be a resolutive compactification of X and f be a lower

*> For any open set U^% and *e£7 we denote by o>̂  the harmonic measure on U at

the point *, i.e. the measure for which H^(x) = \fdw1^ for any continuous finite function /

on dU with compact carrier.
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bounded lower semicontinuous (resp. upper bounded upper semicontinuous) ω-

integrabϊe function on Δ. Then

Hf, (resp. §fdω = Hf).

Let / ' be a continuous bounded function on Δ, / ' <>f. Then

Hf > sup j/'rfω = J/rfω.

Let s^^f/f /o be the function on Δ equal to

lim sup s(x)

at any y e Δ. Then / 0 is upper semicontinuous, upper bounded and not greater

than /. There exists a continuous bounded function / ' on Δ

and we have

THEOREM 4.5. Let X* be a resolutive compactifloat ion and f,ff be ω-

integrable functions on Δ. Then

V J/'rfω = J max (/,/') dω,

Λ J/'έfo = j min (/, f')dω.

Let ^ ! (resp. J?f2) be the set of ω-integrable functions / on Δ for which

these relations hold for any continuous bounded (resp. ω-integrable) function

/ ' on J. Let / be an ω-integrable function and {/«} be a monotone sequence

of Jzfi (resp. J*f2) converging almost everywhere t o / . From the properties of

the integral and of a Riesz space we see that / belongs to JzfL (resp. J^ 2 ) .

Since any continuous bounded function on Δ belongs to Jzfi it follows that any

ω-integrable function belongs to Jzfi. Hence any continuous bounded function

on Δ belongs to f̂2 and therefore any ω-integrable function belongs to J^f% and
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the proof is complete.

COROLLARY 4.2. Let Aίt A2 be ω-measurable sets on Δ. Then

i) V ω(A2) = ω(Aι U A2), ω(Ai) Λ ω(A2) = ω(Aι Π A2).

COROLLARY 4.3. If U* is an open set on a resolutive compactification X*,

then R^Γάnu*) is a potential.

Let us denote

Since 1 is a Wiener function, / is pseudo-bounded. By Lemma 4.3 and Lemma

4.5 there exists a positive number a such that hs aω(Δ — £/*). Hence

hs<ω(JΓ) U*)/\ao)(J- £/*) < max (or, 1) (ω(ΔΓi U*) Λα>(Δ- £/*)) ^

max (or, l ) ω ( J Π U* - U*) - 0

and 5 is a potential.

THEOREM 4.6. Λ compactification X* of X is resolutive if and only if 1 is

a Wiener function and one of the following properties are fulfilled:

a) if u is a non-negative pseudo-bounded harmonic function on X and any

point of Δ possesses a neighbourhood U such that Jtn"x'x = 0 then M = 0 ;

b) if f is a non-negative pseudo-bounded function on X and for any point

yeΔ there exists a neighbourhood U of y such that hfnX'x = 0 then h/-0>

c) if A, B are subsets of X and AΠB Π Δ~ψ then min (£i\ R*) is a

potential,'

d) if Ay B are subsets of Δ and A Π B = φ we have

HχAuB = HyA

where XΜ denotes the characteristic function of M.

We denote by a1 (resp. bf, c\ df) the assertion "a (resp. b, c, d) and 1 is a

Wiener function" and by e the assertion "X* is a iesolutive compactification

of X'\

e =$af. There exists a finite number of open sets UΊt . . . , Un on X* such

that

j c \JUi.
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and

Tii^ = 0.

It follows from Lemma 2.7 and Corollary 1.1

u = ki-Ut

and from Lemma 4.3 and Lemma 4.5

u<oaω(Δ- Ui),

where cti is a positive number. Hence from Corollary 4.2

u < (sup cci) Λ ωU - Ui) = (sup */) ω( Γ\ (J - Ui)) = 0.

a1 =$bf. Put u = ft/. Since 1 is a Wiener function and / is pseudo-bounded

u is finite. By Lemma 2.5 we get

Jgnx = JV«X

for any open set U of X*. w is pseudo-bounded and therefore vanishes.

b1 =*c'. Put /=min(^f , ^f). For any ^ e j there exists a neighbour-

hood £7 such that either UPι7i = ψ or UPιB = φ. Since f<Rf~u we get by

Corollary 1.1 and Lemma 2.4 ^/ o λ = 0. Hence 7ί/ = 0 and / is a potential.

cf =*<i'. Let U, V be open sets of X* such that

Obviously

HχA<Rιrx, ΆP<Rτ;

Hence min (HχAf HχB) is a potential. From

ΉyΛ + SX Λ = min (//x.4, ϊlχn) + max

and Theorem 2.2 we get

The equality HXAvn = H*A\/H%n can be proved using standard arguments of the

Dirichlet problem.

df =5e. Let / be a continuous bounded function on JY* and for 'any real

number a, denote
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By the hypothesis there exists at most a countable set of a such that H%a is

positive, where X* denotes the characteristic function of Fa Π A. By Lemma 4.3

we see that RζanX is a potential for a dense set of a and by Theorem 2 . 6 / =

/• 1 is a Wiener function on X. X* is a resolutive compactiίϊcation by Theorem

4.4.

LEMMA 4.6. Lef f be a continuous finite function on XC\Γ. If f is a

Wiener potential on X> then f is equal to zero on Γ. Conversely, if f is pseudo-

bounded and equal to zero on I\ then f is a Wiener potential on X.

The first assertion follows from the fact that | / | is dominated by a poten-

tial on X (Lemma 2.2).

Let now / be pseudo-bounded and equal to zero on Γ, pQ be a potential on

X such that |/ | -pa is upper bounded and s a superharmonic function on X for

which

infs(*)=l .

For any e>0 we denote

Fz = {y<BX\ |/00l>e}, ϋΓe = FεΓl.J.

Since Kξ is a compact set in A there exists a potential p on X such that

lim p(x) = °°.
X-*Kζ

Then po +p -f- εs s ~yf/\f\ and therefore

THEOREM 4.7. // X* is a resolutive compactification then the carrier of ω

coincides with the harmonic boundary of X.

Let / be a continuous bounded function on A equal to zero on Γ. We extend

/ to a continuous bounded function on X*. From the preceding lemma it fol-

lows that / is a Wiener potential on X. Hence

= Hf = hf = 0

and the carrier of ω is contained in Γ.

Let now U be the complement of the carrier of ω and / be a continuous

non-negative bounded function on A whose carrier lies in U. We extend / to

a continuous bounded function on X*. f is a Wiener function on X and
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= 0.

Hence / is\a Wiener potential on X. From the lemma we deduce that Γc: Δ-U

and the ρrd?of is completed.

THEOREM 4.8. Let X*, X*' be two compactifications of X and π : X*

be a continuous map whose restriction to X is the identical map. If X* is a

resolutive compactification then X*1 is also a resolutive compactification and for

any continuous bounded function ff on Δf = X*1 - X we have

We extend / ' to a continuous bounded function on X*'. Then f'°π is a

continuous bounded function on X*. Since X* is a resolutive compactification

/ ' is a Wiener function on X. Hence X*1 is a resolutive compactification. The

last assertion follows from the obvious relation ^/}ix*'

4.3. Let X* be a resolutive compactification. We denote by H(X*) the

set of pseudo-bounded harmonic functions which can be extended continuously

on Γ\JX.

LEMMA 4.7. Let ueH(X*) and u* be the limit function of u on Γ. We

have

u= \u*dω.

Since u is pseudo-bounded there exists a positive number a and a potential

p on X such that \u\ <cc+p.

Hence «* is bounded. Let / be a continuous bounded function on X* equal

w* on Γ. Since u—f is pseudo-bounded continuous on I U Γ and zero on Γ it

is a Wiener potential on X by Lemma 4.6. Hence

u = hf = Hf = ̂ u*dω.

Let X* be a resolutive compactification. A point y e Δ is called regular,

if for any continuous bounded function f on Δ

lim Hf(x) =f(y).
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Obviously all points of A are non-regular. If y is regular and / is a bounded

function on Δ continuous at y, then

lim Hf(χ) = lim H/(x) =/(>).

THEOREM 4.9. Let X* be a resolutive compactification of X. If any point

of Γ is regular then

I \fdω\f is a ω-integrable function}

is the smallest subset of the set of differences of non-negative harmonic functions

containing H(X*) and closed with respect to the monotone limits.

From the above lemma we get

H(X*) = \\fdω\f is a continuous bounded function on Δy

The theorem follows immediately from this equality.

4.4. Let X be an arbitrary** harmonic space and X* be a compactification

of X. A subset A of X is called polar if for any domain U of X, Z7e $, there

exists a positive superharmonic functions on U such that

lim^slx) = oo.
χ-*Ar\U

For a subset of X this concept coincides with the usual one. If X e $ then

the compact subsets of A are polar. If X e ξ > - φ and there exists a harmonic

function on X with positive infimum then J is a polar set. The subsets of a

polar set and the countable union of polar sets are also polar sets. Let I G $ ,

A c j and XA be the characteristic function of A A is polar if and only if '/A

is resolutive and H%A = 0. Every polar set is therefore of harmonic measure

zero, but not any set of harmonic measure zero is polar. This is however true

for a set of harmonic measure zero of regular points.

LEMMA 4.8. ω i e φ u ξ ) and let X* be a compactification of X. A subset

A of X* is polar ij and only if for any open subset U of X, £7e $, there exist

a compact subset K of X— U and a positive superharmonic function s on X - K

such that KΓ\ A = φ and

*) Not necessarily from Sβ.
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lim s(x) = 00.

The sufficiency and in the case I G $ the necessity are trivial. Suppose

now A is polar and ZΦφ. Let U be an open subset of X, £7eφ. Then there

exists a domain C / ' G $ such that Uf - U is non-polar. There exists by definition

a positive superharmonic function s1 on Uf infinite on A Π IP. If we denote

then Fn is non-polar for at least an n. Let K be a compact non-polar subset

of F n . Obviously ULΠA = 0. Let Ut be the components of X — K. Since any

£Λ e $ there exists for any f a positive superharmonic function Sc on E7i such

that

lirn_ sΛx) = 00.
%-+AnUί

The function s o n l - ϋ f equal to s< on £Λ satisfies the required condition because

there are only a finite number of non-relatively compact components of X—K.

LEMMA 4.9. If X* is a resolutive compactiβcation of Xf U an open subset

of X, s a positive superharmonic function on U and

A = {y&J- X^U\ lim s(x) = 00},

then A is of harmonic measure zero.

Let s e j / f **, ε>0, s' ^^u~x and s0 be the function on X equal to 5 on

X- U and equal to min (s, s'-f es) on U. s0 is a superharmonic function and

belongs toJ/^/j**, where fA is the characteristic function of A on Δ. We get

on £7. s' and e being arbitrary it follows ω(A) </7~, and, by Lemma 1.3 and

Corollany 1.1, ω(A) = &£{"ί £ Ϊ£CAU->*=U).

Hence ω(A) vanishes since R*7A-X=Ό) is a potential by Corollary 4.3.

Let Z* be a compactification of X and f be a map of X on a topological

space. We denote for any y e X* - X

where U runs through the set of neighbourhoods of y in X*
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THEOREM 4.10. Let <p:X-*Xf be a harmonic non-constant map, Z e s$,

I ' 6 p €>, X* (resp. X'*) a compactification of X iresp. X'). If for a set A c A

the set

U φ*(y)
VSΞA

is polar on Xf* and if X* is a resolutive compactification, then A is of har-

monic measure zero.

Denote

A' - Uψ*(y).
VGA

By Lemma 4.8. there exists a compact subset K1 of X' and a positive super-

harmonic function s' on X1 - K such that Kf Π A' = ψ and

lim s'(#0 = °°.
X' +A'

The function s'°̂ > is a positive superharmonic function on φ~\X' — K') and

From the preceding lemma, A is of harmonic measure zero since

§ 5. Wiener compactification

5.1. We shall suppose in this paragraph that I G $ U § and that the

function 1 is a Wiener function. There exists a compactification X* such that:

a) any Wiener function on X possesses a continuous extension to X* b) the

set of these extensions separates X*. These two conditions determine uniquely

the compactification X* except for a homeomorphism whose restriction to X

is the identical map. We shall call this compactification the Wiener compactifica-

tion of X and denote it by X%. A# = X% — X will be called the Wiener ideal boun-

dary of X. Further we denote for I G ^ P by Γγ/ the harmonic boundary of X%

and A& = Δy/ — Γft. If misunderstandings will not occur we shall write simply

X*, J, Γ, A instead of X%% A#, Γ>y, Aγ/ respectively.

LEMMA 5.1. Let f be a harmonizable function on X and A be the set of

points where f is not continuous, f possesses a limit at any point of X% - A.

We may suppose / is non-negative. Let y e X* - A and / ' be a continuous
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function on X*t u f<1, equal to 1 on a neighbourhood of y and equal to 0

on A. Then for any a>0, min (/, af) is a continuous bounded harmonizable

function on X. Hence it possesses a limit at y. Since a is arbitrary / possesses

a limit at y.

Let JSf denote the set of continuous functions / such that there exists a

compact set K/ for which / is equal either to 0 or to 1 on any component of

X— Kf. We denote by X# the compactification for which any function / S c #

can be extended continuously to X% and such that these extended functions

separate the points of X%. X% is uniquely determined except for a homeo-

morphism which induces the identical map on X. It can be characterized also

by the following property: X& -X is totally disconnected and does not discon-

nect any domain of X&.

THEOREM 5.1. There exists a canonic continuous map π '- X%-*X% which

induces the identical map on X, {π~\e) | e e X%- X) is the set of components

of Δ#.

It is sufficient to prove that any function / e c# is a Wiener function.

This follows from Corollary 2.5.

THEOREM 5.2. Let X, X' be two harmonic spaces, K {resp. Kr) be a compact

subset of X {resp. X1) and ψ be an one-to-one harmonic map: X- K-+X1 -K1

such that ψ(x) converges to K! if x converges to K. Then ψ can be extended

to a homeomorphism X# - K -*• X'% - K'.

This is an immediate consequence of the definitions.

THEOREM 5.3. Let Z G ? . A compactiήcation X* of X is resolutiυe if and

only if there exists a continuous map π : X&-* X* which reduces to the identiy

on X.

Let X* be a resolutive compactification of X. Then for any continuous

bounded function / on X*, / is a Wiener function on X (Theorem 4.4). /can be

extended therefore continuously on X% and there exists a continuous map

π : X#-*X* which reduces to the identity on X.

Suppose now that there exists such a map π : X&-+X* and le t/ be a con-

tinuous function on X*. It is sufficient to prove that / is a Wiener function on

X (Theorem 4.4). We observe that/°7r is a continuous bounded function on
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X&. Since Jβ is a real vector space and a latice with respect to max, min,

there exists a sequence {/*} of continuous bounded functions on X%, such that

fn are -Wiener functions on X, and {fn} converges uniformly to f°π. Since 1

is a Wiener function W' is closed with respect to the uniform convergence. / is

therefore a Wiener function on X.

COROLLARY 5.1. The Wiener compact ificat ion is resolutive.

THEOREM 5.4. All points of Γψ/ are regular.

Let / be a continuous bounded function on Δ. We denote also by / a con-

tinuous bounded extension of / on X*. Since / - h/ is a Wiener potential it

can be extended to a continuous bounded function on X* equal to zero on Γ.

h/ can be extended therefore continuously on X* equal to / on Γ. The asser-

tion follows now from the equality h/ = H/ (Lemma 4.4).

5.2. THEOREM 5.5. Let f be a bounded lower semi-continuous function on

Γw and f the function on Γw

fix) =lim sup f(y).
y-*x

f is continuous and differs from f on a polar set.

Denote by u the function

>ydωx.

u may be extended continuously to Δ. If g is a continuous bounded function

on Δ, g< f on Γ, then Hg< u. Hence u>g on Γ. g being arbitrary we have

u . f on Γ. Since u = Hu> u differs from / on a set of harmonic measure zero,

which is therefore polar since all points of /' are regular. Obviously f<u.

Hence u-f is a non-negative lower semi-continuous function equal to zero

almost everywhere on Γ. Since the carrier of ω is equal to Γ, u-f vanishes

identically.

COROLLARY 5.2. Let G be an open subset of Γ&. Then G is open on Γγ/

and G - G is polar.

COROLLARY 5.3. 7 V is totally disconnected and either finite pr non metrizable.

THEOREM 5.6 Let F be a closed subset of X. Rζ is a potential if and only
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if FΓU#c:Λ#.

If T Π J c A there exists a potential p on X such that

lim p(x) = 00.
ae-+Fr\A

Let ϋf = (X<^ F\p(x) < 1}. if is a compact set and therefore R? is a potential.

From

we see that RΪ is a potential.

Let us suppose now j?f is a potential. By Corollary 6 of [3] there exists a

continuous potential p0 on Xt pύ>l on F. Hence 7f)jc:A.

COROLLARY 5.4. If {x&X\{x} is polar} is dense outside a compact subset

of X then Λ# is dense in A^.

Let y e Γ, and {Un) be a pseudo-exhaustion of X. Since X— U £7» is a polar
1

set ^ $ Z - U J7Λ. Let U be a neighbourhood of ^ such that ί7 Π ( Z - U Un) = <t>.
n=1 n=1

We may suppose that UU (Un~ Un-i) *Φ for any n. Let us take

(Un-Un-i) such that {xn) is polar. The set {xn\n-l, 2, . . .} is polar and

has no points of accumulation in X. Let jy0 be a point of accumulation of this

sequence. yQ e Ay/ Π U and the proof is complete.

THEOREM 5.7. If a point # e Aw possesses a countable fundamental system

of neighbourhoods then Z £ $ , * e Tw and there exists a neighbourhood U of x

such that any point of UΓ\X is not polar.

1 6 $ , since otherwise X^ is Stone-Cech compactiίication. Let # e Γ and

{Un} be a fundamental system of neighbourhoods of x. Suppose that there

exists for any n a polar point xn<= Un Π X. Then the set A = {xn\n>1) is polar

and A Π Δ- {x}. This contradicts Theorem 5.6.

Let now x e A, p be a potential on X such that

lim^(jy) = oo,

and {Un} a fundamental system of neighbourhoods of x, Un+\^Un. For any

n let fn be a continuous function on X such that \fn\<pt sup/n = l, equal

with zero outside Un — Un+i. The function / = Σ/« is a Wiener potential. This
M~l
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is a contradiction since it cannot be extended continuously at x.

THEOREM 5.8. If U is an open subset of X} then U — dU is an open subset

of X% and if Xt=% Γ#Π (U-W) is closed™.

Let y<=U-dU and / be a continuous function on X*, o f 1, f(y) = 1,

f equal to 0 on dU. Then / is a Wiener function on X. Let g be a function

on X equal to / on UΌdU and equal to 0 on X- (UΌdU). By Lemma 2.11, g

is a Wiener function. It can be extended therefore continuously on X*, and

giy) = l. The set {ΛΓ e X*\g(x) > y j is a neighbourhood of y contained in

Suppose now Z G $ and denote u = ω(ΓΓ\ (U-dΌ)). By Corollary 4.3,

Ru~L is a potential. By Corollary 6 in [33 Rl~v is dominated by a continuous

potential p. The function u-p can be extended continuously to X* equal to

1 on ΓΓi(U-dU) and non-positive on Γf) X-U^Γ- {U -dU). Hence Γf\

(U-dU) is closed.

COROLLARY 5.5. If U is an open subset of X then

Obviously U~dϋo>ϋ- X^Ό. Since U - dU is open and (U - 3ί7) Π ( X - C7)

= 0 we have (U-dU) OX-U = φ, U-dUaU-X-U.

COROLLARY 5.6. If U* is an open connected set of X& then U* Π X is con-

nected.

Otherwise there would exist two open disjoint non-empty sets Uu K, I e φ,

£7* Π X = CΛ U Ut. Since £7* is connected C7* Π ^ n f/2 # 0. Let ^ e ί7* Π Z7a Π C72.

Since jyίaΰFfϊX) and a^ca(C7*ΠZ) (i= 1,2) y$3tt :. Hence ^ e ( ^ - 3 ^ )

Π(Z72~3tt!). The set (£7i-3K) Π (£7 a -3tt) being open and non-empty and

X being dense in X* we get

Ui n Z72 = i n (ϋι - aw) n (c/2 - ϋ

which is a contradiction.

5.3. LEMMA 5.2. Let X^ty, U be an open subset of X and {Ut} be the com-

ponents of U. The set

*> dU means the boundary of U in X and not in X*.
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is a subset of Δγ/ of harmonic measure zero.

Denote by u the harmonic measure of JΠ(£/~3ί7). By Corollary 4.3.

Ru~u is a potential and by Corollary 6 in [3] R£~u is dominated by a continuous

potential p. The function St equal to maxiu-p, 0) on Ut and equal to 0 on

X — Ut is subharmonic and from its boundary behaviour we see that it minorises

ωiUt-dϋt). Hence

ω{j n (U - δΌ)) = o)( J n ( u (ϋc - dϋ<))).

THEOREM 5.9. A point of Γf/ is isolated in Tγ/ if and only if it has a positive

harmonic measure. In this case it possesses a fundamental system of connected

neighbourhoods.

If a point of Γ is isolated in Γ its harmonic measure must be positive since

it is open and Γ is the carrier of the harmonic measure. Conversely let y&Γ

be of positive harmonic measure and denote u = ω((y}). u is a positive har-

monic function. It can be extended therefore to a continuous function on Δ

equal to 0 on Γ- {y} and different from 0 at y. It follows that y is isolated

in Γ.

Suppose J Έ Γ has a positive harmonic measure. Let U* be a neighbourhood

of y such that Z7* Π Γ - {y}. Denote U=U*dX. Obviously ytΞU-dU. By

the proceding lemma there exists a component V of U such that y^V-BV.

By Theorem 5.8, V -dV is a neighbourhood of y and it is obviously connected.

COROLLARY 5.7. The dimension of the space of pseudo-bounded harmonic

functions on X is equal to n if and only if Γ& consists of exactly n points.

By Lemma 4.7. this space is isomorphic with the space of continuous

bounded functions on Γ.

THEOREM 5.10. A pseudo-bounded harmonic function is minimal if and only

if it is proportional to the harmonic measure of a point.

Let y(=Γ be of positive harmonic measure and v a harmonic function

0<t><lω( {jy}). Since v can be extended continuously to Γ we see that v is pro-
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portional to ω({y}).

Let u be a pseudo-bounded minimal function. It can be extended con-

tinuously on Γ and we have u = Hi (Lemma 4.7). u is equal to zero on Γ with

the exception of a point y e Γ. Indeed on the contrary case we can find two

non-negative continuous functions flt fι on Γ not identicaly zero, /i4-./•><#,

min (/i, f2) = 0. Since fl>< (i = 1, 2) are positive and proportional to u we get

a contradiction since

#/i Λ H/t = #nήn (/„ /2) = 0.

5.4. THEOREM 5.11. Let I G φ awrf U be an open subset of X. ί/e 9ϊ */

and only if /> c ^ - K

Let us denote u-h\. By Lemma 2.5 we have

Hence ί/s^JJ if and only if /*'„''Λ' = 0. By Lemma 2.7 and Corollary 1.1 this is

equivalent to the equality

Suppose ΓczX-U. Let s be a non-negative hyperharmonic function on X>

s u on X—U. Then by the minimum principle (Theorem 4.1) s>w on X.

Hence

Suppose now

Then from

it follows

u = Ru~h = R
ω(Γ-X-U)

u = ω(ΓΠ

U — Ku

A— u)-rO)\J — A —

ι ( Γ - . γ - r ) S ω l / l l A —- U) + ω{Γ-X~U) = «,

Since ^(orri^rzo is a potential (Corollary 4.3), ω{Γ- X-ΪJ) vanishes. Γ being

the carrier of ω and Γ-X—U being open, we have ΓC-X—Ό.

COROLLARY 5.8. If two open subsets of X coincide outside a compact subset

of X then they belong or do not belong simultaneously to ?ϊ.

COROLLARY 5.9. If there exist n disjoint open subsets Uit . . . , Un each
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n

of which does not belong to 9? and if R?~iϊiUi is not a potential, then the

dimension of the space of psuedo bounded harmonic functions on X is at least

equal to n -f-1.

The assertion follows from the theorem using Corollary 5.7 and Theorem 5.6.

5.5. LEMMA 5.3. Let F be a closed set on X, f be a continuous bounded

function on X and T be its carrier on X. If the closures of F and T in X%

are disjoint and f is a Wiener function on X— F then f is a Wiener function

on X. If X e s $ and f is a Wiener potential on X— F then f is a Wiener

potential on X.

Suppose firstly X E $ . There exists a continuous bounded function /0 on

X* equal to zero on F and equal to sup |/ | on T. /o is a Wiener function on

X and there exists a potential p on X such that /o < fr/0 4-/>. If we denote

s = h/0+p, Rs is a potential (Lemma 2.6). Since | / | <s,/is a Wiener function

(Corollary 2.3). If / is a Wiener potential on X-Fy f is a Wiener potential

on X by the same corollary.

Suppose now Z e § - $ . Let K be a compact non-polar subset of X and U

a component of X-K. Since ί/e % and the closures of FΠ ί/and TΠ U in U%

are disjoint, / is a Wiener function on U by the above proof. Hence / is har-

monizable on X- K and therefore a Wiener function on X

THEOREM 5.12. Let X' be α harmonic space and X be a domain of X1. We

denote F1 = X1 - X and by -η the identical map X-* X'. η possesses a continuous

extension to a map X%-*X%, which we shall denote also by -η. Let us denote

further U'* = X% - ~F\ U* = T?"H U'*).

a) The map C7*-̂ C7f* defined by η is a homeomorphism.

b) / / T e ? then q(Γ»Π U*) = Γ*Π £/'*, V(Λ#Π U*) = MwΠ IP*.

c) If X'^ty then any ω-measurable set AczΓ^ΓϊU* is of harmonic measure

zero (ivith respect to X) if and only if η(A) is of harmonic measure zero (with

respect to X').

ά) ^ ( F ' n ϊ n j ' ) is polar.

7) possesses a continuous extension to a map X*-*X'* since the restriction

of any Wiener function on X1 to X is a Wiener function on X.

Let x, y be two different points of £7* and V be a neighbourhood of x on

X* such that -ηΪY) Π ~Ff = φ. Let / be a continuous bounded function on X*
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whose carrier lies in V, equal to 1 at x and equal to 0 at y. Its restriction to

X is a Wiener function. Let / ' be the function on X equal to / on X and

equal to 0 on Ff. Since /'. is continuous, v(V) contains its carrier and

7}(V) Π F' = φt / ' is a Wiener function by the preceding lemma. Hence it may

be extended continuously on X1*. We shall denote equally by / ' this extension.

flo7) is equal to / on X and therefore on X*.

a) From

f'(y(x)) =/(*) = 1, f'(y(y)) =f(y) = 0,

it follows τj(x)^7}(y). -η is therefore a one-to-one map on U*. From

we see that y{V) is a neighbourhood oί η(χ) and so -η induces an homeomorphism

U*-tΓ*.

b) Suppose x e A Π U*. Then we can take / such that it is a Wiener

potential on X. By the preceding lemma / ' is also a Wiener potential on X1.

Since

/'(τ?U)) = / ( * ) = !

it follows -ηix) e Λ' Π t/'*, η(Λ Π £/*)cΛ' Π £/'*.

Suppose 7}{χ) £ΞΛ' Π U1*. We may take V such that η( V) Π Γ' = φ. Then / '

is a Wiener potential on X'. From Lemma 2.5 we get h/'x' = 0 and by Lemma

2.7, /2/'* =0. Hence / is a Wiener potential on X and # e Λ.

c) If τ?(i4) is of harmonic measure zero, it is a polar set since all points of

Γf are regular. By Theorem 4.10, A is of harmonic measure zero.

If A is of harmonic measure zero, there exists a positive superharmonic

function s on X converging to infinite at A s0^"1 converges to infinite at τj( A)

which is therefore of harmonic measure zero by Lemma 4.9.

d) Suppose firstly X ' e $ and denote by '/ the characteristic function of

rΓHΨ'ΠXn J'). We have to show that

Ή%'x* is associated with zero at any boundary point of X with respect to X1.

Hence the function s' equal to 0 on F and equal to Ήx'x* on X is the least

upper bound of the set of its continuous subharmonic minorants (Theorem 1.2).

Let 5/ be a continuous subharmonic minorant of s'. Since s' is a Wiener func-
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tion it may be extended continuously on Xf*. Since Hx'x* converges to zero

at m U*9 I1 is equal to zero on

Since sf is upper pseudo-bounded it is non-positive by the minimum principle

(Theorem 4.1). It follows

Suppose now X1 is arbitrary. Let K be a compact non-polar subset of X,

Vi, . . . , Vn the non-relatively compact components of X— K and v\ the com-

ponent of X1 - K which contains F, . The assertion follows using the preceding

results for the pairs (Vit V}), {VifX)t (V , X').

§ 6. Behaviour of harmonic maps on the ideal boundaries

6.1. All harmonic spaces considered in this paragraph are connected,

belong to φ U £> and the constants are Wiener functions.

A harmonic map φ : X~+ X1 is called a Fatou map if for any bounded

Wiener function f on X\f1oψ is a Wiener function on X A harmonic map X-*

X1 is a Fatou map if and only if it can be extended continuously into a map

X»-+X'%. If ψ X-+X1, ψ1 : X'-*X" are Fatou maps then φ'oφ is a Fatou

map. The inclusion map is a Fatou map.

THEOREM 6.1. Let ψ - X-* X1 be a harmonic map. If X, X1 e €> - $ or X, X1

e % then ψ is a Fatou map. / / I G $ and I ' G § - $ the following conditions

are equivalent-

a) ψ is a Fatou map,'

b^ either the constants are non-harmonic on X1 or there exists a continuous

non-constant non-negative function f on X' such that ff°ψ is a Wiener function

on X;

c) there exists a closed non-polar set F ' c Z ' such that R'fHF>) is a potential

This theorem follows from Theorems 3.7, 3.8, 3.9 remarking that b) asserts

that there exists a continuous non-harmonic non-negative function on X1 such

that composed with φ it becomes a Wiener function on X.

6.2. LEMMA 6.1. Let U be an open set in Δ-# and ψ be a continuous map

of X in a compact space Y. If there exists a polar set AcU such that ψ po&-
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sesses a limit at any point of U— A, then ψ possesses a limit at any point of U.

Since any compact space can be imbedded into a cube [0, 1]<; it is sufficient

to prove the lemma for a real function φ, 0 < ψ < 1. Let y e A and /0 be a

continuous real function on X*, 0 < / 0 < l , equal to 1 on a neighbourhood of y

and equal to zero on Δ - U. The function / = φf0 is continuous on X and pos-

sesses limits at any point of J — A. Let K be a compact subset of X such that

I - ^ G $ and s be a positive superharmonic function on X— K converging to

infinite at any point of A. Let a be a positive number and denote

V={x*=X-K\s(x)>cc}.

There exists a real continuous function g on X*, 0<g<l, equal t o / on X- V.

g is harmonizable on X-K and

Hence

a being arbitrary / is harmonizable on X-K. It is therefore a Wiener function

on X and possesses a limit at y. Since /0 is equal to 1 on a neighbourhood of

y, φ possesses a limit at y.

THEOREM 6.2. If X^ty, any continuous map of X in a compact space pos-

sesses a limit at any point of A#.

Any point of A possesses a polar neighbourhood.

LEMMA 6.2. Let U* be an open subset of X%. Any Wiener function on

ί / * Π I can be extended continuously on U*.

It is sufficient to prove the assertion for a Wiener function / on £7* Π X,

0< f<1. Let y&U*Γ\J and /0 be a continuous function on X*9 0 < / 0 < l ,

whose carrier lies in U* and equal to 1 on a neighbourhood of y. The function

/ ' on X equal to min (/, /0) on U* Π X and equal to 0 on X— £7* is a Wiener

function by Lemma 5.3. Hence it possesses a limit at y. Since / is equal to

/ ' on a neighbourhood of y f has a limit at y.

THEOREM 6.3. Let ψ : X-*X' be a harmonic map, I G ^ . We define <f*
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with respect to X% *} and denote

Then:
a) for any y e Δw — Δ#{φ)t ψ*(y) consists of a point;

b) J#(y>) is aw 0/>ew #wd closed stώset of /#/

c) */ £7* /s tftf (#*Λ sw&sef 0/ JY£ ύwtf U* Π Jf/((f)*φ then there exists a

component of U* 0 X on which ψ is not a Fatou map.

We may suppose X1 e ξ> — β̂ since otherwise ^ is a Fatou map and there-

fore may be extended continuously on X*.

Let £7* be an open subset of X*. Suppose that the restriction of ψ to any

component of U* Π X is a Fatou map. Let / ' be a continuous bounded function

on X1 *. Then / ' ° ̂  is a Wiener function on ί/^ΠZ and by the preceding

lemma it possesses a continuous extension on £7*. Hence ψ possesses a continu-

ous extension on £7* and the assertion c) is proved.

Let y^Δ — Δγ/iψ). Then y possesses a neighbourhood £/* such that

X' - ?>(£/* Π X) has interior points. By Theorem 6.1 the restriction of ψ to any

component of £7* Π X is a Fatou map. From the preceding considerations we

see that ψ possesses a continuous extension on £7*. Hence <p*(y) consists of a

point and J^iψ) is closed. By Theorem 6.2 it is a subset of Γ. Let us denote

G-Γ- Δψyiψ). By Corollary 5.2 G is open in Γ and G-G is polar and from

Lemma 6.1, ψ possesses a limit at any point of G. Hence G = G and Δ-^(ψ) is

an open subset of Γ.

6.3. Let ψ '• X^ X' be a harmonic map. We shall denote also by ψ its

extension to a continuous map X#- A-#(<p)-*X'w.

THEOREM 6.4. Let ψ : X-> X' fo? « harmonic map, I G $ . X' Π ψ{Γr/ - Δ#(<p))

is exactly the set of points at which ψ is not of type-BL

Let x1 & X'Γ) <ρ(Γ- Δπ(ψ)) and £7' be a neighbourhood of x1. There exists

a point y <ΞΞ Γ such that y&X-φ-W). From Theorem 5.11, ψ'Hϋ') does not

belong to ϊϊ. ^ is therefore not of type-Bl at x'.

Let x'$X'n<p{Γ-Δw(φ)). Since X'ΠφiΓ- ΔΛψ)) is a closed subset of X'

there exists a relatively compact neighbourhood £7; of x' such that

- 4#(φ)) = φ. If there would exist a point y e Γ - X-φ-iΊjJ') then

:;) see page 43.
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¥>*(.?) cZ7' which is impossible by the preceding theorem. Hence ^

and Xnφ^iU') e 9? by Theorem 5.11.

COROLLARY 6.1. If X'<^§-% ψ is of type-Bl if and only if 7> - J#(?>) is

empty.

If Γ—Δ#(φ) is empty, <? is type-Bl by the theorem. Suppose now >̂ is of

type-Bl. Then ψ(Γ— Δ#{φ)) c J' and the constants are harmonic on Z by

Theorem 3.11. Then J' is polar and Γ- Δ#(ψ) is of harmonic measure zero by

Theorem 4.10. Hence Γ—d#(φ) is empty since by Theorem 6.3 it is open.

COROLLARY 6.2. If I ' e ? , ^ is of type-Bl if and only if

If ψ(Γ) = P then f(Γ) Π X' is empty and ψ is of type-Bl. Conversely if ψ

is of type-Bl, then jP(Γ)cj', If ^(Γ) -P*ψ then there would exist an open

subset G of 7̂  such that f(G)cΛ'. This contradicts Theorem 4.10. Hence

ψ{Γ)c:P. Let / ' be a non-negative bounded continuous function on X'* equal

to zero on ψ(Γ). There exists a potential ί' on X' such that

Hence

Since /'°^ andi>'o<ρ are Wiener potentials h}' vanishes. It follows ψ (Γ) = P.

COROLLARY 6.3. 7/ /fee s£ί o/ polar points of Γψ/ is of harmonic measure

zero and if any point of X1 is polar, then ψ is of type-Bl. If ψ is also a Fatou

map then X' e $ and the set of polar points of Γ%, is of harmonic measure zero.

Suppose that φ is not of type-Bl. Then X* Π <f(Γ- J#(<p)) is not empty.

( Γ - Δffiψ)) Γiψ'^X') being open and non-empty in 7' it contains a non-polar

point x. This leads to a contradiction since <f(x) is polar (Theorem 4.10).

If φ is a Fatou map Δ#(φ) is empty. By Corollary 6.1, I ' e $ . Let A1 be

the set of polar points of P. At any non-polar point of Γ, ω{A')°φ converges

to zero since the image of such a point does not belong to A1 by Theorem 4.10.

Hence ω(A')°ψ and therefore ω(A') vanishes.

LEMMA 6.3. Let X, I ' e $ , φ : X-> X1 be an open harmonic map of type-

Bl and U be an open subset of X. Then for any # e 7>Π (u - X-U),
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φ(x) e Pw Π

We denote

Λ = {x e ΓΠ (jy - X-17)!?>(*) e= X'-φ(U)}.

By Corollary 6.2, ψ( A) c Γ' and by Theorem 5.8 and Corollary 5.5, Γ Π X'-φ'(U)

is an open subset of Γ\ Let us denote

Then

Hence by Theorem 3.10, α

/ϊuΌφ — U.

Since U<^φ~ι(φ(U))y A»i£, vanishes. Hence u'°φ = Rl~£?. From here and from

Lemma 4.3 we see that u'°φ converges to zero at any point of A. Hence,

A is empty, since φ is continuous on A and u1 converges to 1 at ψ(A).

THEOREM 6.5. Let X> J G $ and <f ' X->Xf be a harmonic map of type-

Bl, such that for any x'^Xf XΠφΉx1) contains at most n points (n<°°).

Then for any y' e Γ&, ψ"1(yf) Π Γ& contains at most n points. yf has a positive

harmonic measure if and only if all points of ψ~1{yl) Π Γψ/ have a positive har-

monic measure.

Being 0-dimensional ψ is open by Theorem 3.3. Let y e T̂  and yu . . . ,ym

be different points of <p~ι(y') Γ\T. There exists a system of pairwise disjoint

open sets U*t . . . , Um9 such that ^, e Ufii = 1, . . . , m). By the preceding

lemma yf e ψWf Π X) - Xf - ψ(U? Π X) for any *, \<i<m. Hence Γi ?(C7f Π X)
t = 1

is not empty. Let xf be a point of this set. We can find for any i, l<i<m,

a point Xi<=U? C\ XΓ\φ~ι(xf). Hence <f~ι(xf) contains at least m points and we

get m<n. The last assertion follows from Theorem 4.10 and Theorem 5.9.

COROLLARY 6.4. Let ψ be as in the theorem and u' be a harmonic minimal

function on X1. There exists harmonic minimal functions uly . . . ,.Uk ^

on X such that
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Let us divide the sheaf of harmonic functions on X (resp. X1) by u'°ψ (resp.

u1). ψ is also type-Bl with respect to these new harmonic spaces. The function

1 is harmonic and minimal on X1 and therefore P (constructed with respect

to the new sheaf) consists of a single point (Theorem 5.10). Γ consists of

k< n points xu . . . , Xk since Γcφ~ι(P) (Corollary 6.2). Let ω, denote the

harmonic measure of {#,}. We have

1 = Σω/
t = 1

The required equality follows multiplying this equality by u'°ψ.

COROLLARY 6.5. Let ψ be as in the theorem. If the dimension of the space

of pseudo-bounded harmonic functions on X1 is equal to d' (df<°°) then the

dimension of the space of pseudo-bounded harmonic functions on X is at most

equal to nd'.

If the dimension of this space is finite there exists a basis formed on mini-

mal functions.
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