A NOTE ON CONFORMAL MAPPINGS OF CERTAIN RIEMANNIAN MANIFOLDS

MINORU KURITA

The contents of this note were reported at a meeting of the Japan Mathematical Society five years ago, but it was not printed. Prof. K. Yano advised me to do so and it was as follows.

1. We take n-dimensional compact orientable Riemannian manifolds V and \bar{V}, and denote their line elements by $d s^{2}$ and $d \bar{s}^{2}$ and their scalar curvatures by R and \bar{R} respectively (Signs of the curvatures are taken in such a way that they are positive for the spheres). We consider a conformal homeomorphism f from V to \bar{V} and put

$$
f^{*}\left(d \bar{s}^{2}\right)=a^{2} d s^{2} \quad(a>0)
$$

where f^{*} means a mapping of differential forms dual to f. We take a neighborhood of any point of V and orthogonal frames on it. Then $d s^{2}$ can be written as $d s^{2}=\sum_{i} \omega_{i}^{2}$ with 1 -forms $\omega_{i}(i=1, \ldots, n)$. We put as usual

$$
\begin{gathered}
d(\log a)=\sum_{i} b_{i} \omega_{i}, \quad b^{2}=\sum b_{i}^{2}, \\
b_{i j}=\nabla_{j} b_{i}-b_{i} b_{j}+\frac{1}{2} b^{2} \delta_{i j},
\end{gathered}
$$

where ∇ means a covariant differentiation with respect to the Riemannian metric on V. Then we get a wellknown formula

$$
\begin{equation*}
R-\bar{R} a^{2}=2(n-1) \sum_{i} b_{i i} \tag{1}
\end{equation*}
$$

where we write \bar{R} briefly instead of $f^{*} \bar{R}$. We take a number s which shall be determined later and put

$$
\begin{equation*}
a^{s} d(\log a)=d c=\sum_{i} c_{i} \omega_{i} \tag{2}
\end{equation*}
$$

Then we have $c_{i}=b_{i} a^{s}$ and
Received October 19, 1961.

$$
\nabla_{j} c_{i}-(s+1) a^{s} b_{i} b_{j}+\frac{1}{2} a^{s} b^{2} \delta_{i j}=a^{s} b_{i j}
$$

For Laplacian $\Delta c=\sum_{i} V_{i} c_{i}$ of c we have

$$
\Delta c+\left(\frac{n}{2}-1-s\right) a^{s} b^{2}=a^{s} \sum_{i} b_{i i}
$$

If we choose such s that

$$
\begin{equation*}
s=\frac{n}{2}-1 \tag{3}
\end{equation*}
$$

we have

$$
\begin{equation*}
\Delta c=a^{s} \sum_{i} b_{i i} \tag{4}
\end{equation*}
$$

By (1) and (4) we get

$$
\begin{equation*}
\left(R-\bar{R} a^{2}\right) a^{s}=2(n-1) \Delta c \tag{5}
\end{equation*}
$$

Thus for s determined by (3) the relations (2) holds good when we take

$$
\begin{equation*}
c=\frac{2}{n-2} a^{(n / 2)-1} \text { for } n>2, \text { and } c=\log a \text { for } n=2 \tag{6}
\end{equation*}
$$

2. We denote a volume element of V and \bar{V} by $d v$ and $d \bar{v}$ respectively, each corresponding to the orientations of V and \bar{V}. Then we have

$$
\begin{equation*}
f^{*}(d \bar{v})=a^{n} d v \tag{7}
\end{equation*}
$$

Integrating (5) on the whole manifold V we obtain

$$
\int_{V} R a^{s} d v-\int_{V} \bar{R} a^{s+2} d v=2(n-1) \int_{V} \Delta c d v=0
$$

Hence we have by (7) and (3)

$$
\begin{equation*}
\int_{V} R a^{(n / 2)-1} d v=\int_{\bar{V}} \bar{R} a^{-((n / 2)-1)} d \bar{v} \tag{8}
\end{equation*}
$$

Thus we get
Theorem 1. We assume that V and \bar{V} are compact orientable Riemannian manifolds whose scalar curvatures are R and \bar{R} respectively, and \bar{V} is conformally homeomorphic to V with a magnification function a. Then a formula (8) holds good.
3. Next we assume that scalar curvatures R and \bar{R} are constant and will prove theorem 2. We take any differentiable function $\boldsymbol{u}=\varphi(c)$ with a function
c on V. Then $d u=\varphi^{\prime}(c) d c$ and when we put $d u=\sum_{i} u_{i} \omega_{i}, d c=\sum_{i} c_{i} \omega_{i}$, we get

$$
u_{i}=\varphi^{\prime}(c) c_{i} .
$$

By taking a covariant derivative with respect to the Riemannian metric on V we obtain

$$
\nabla_{j} u_{i}=\varphi^{\prime}(c) \nabla_{j} c_{i}+\varphi^{\prime \prime}(c) c_{i} c_{j}
$$

Contracting with respect to i and j

$$
\Delta u=\varphi^{\prime}(c) \Delta c+\varphi^{\prime \prime}(c) \sum_{i} c_{i}^{2} .
$$

We denote by $d v$ a volume element on V. By virtue of the relation $\int_{V} \Delta u d v$ $=0$ we have

$$
\begin{equation*}
\int_{r} \varphi^{\prime}(c) \Delta c d v+\int_{V} \varphi^{\prime \prime}(c) \sum_{i} c_{i}^{2} d v=0 \tag{9}
\end{equation*}
$$

If we can find such a function $\varphi(c)$ that

$$
\begin{equation*}
\varphi^{\prime}(c) \Delta c \geq 0, \quad \varphi^{\prime \prime}(c)>0 \tag{10}
\end{equation*}
$$

we have by (9) $\sum_{i} c_{i}^{2}=0$ and so $c_{i}=0$, and c is constant. We take such c that (6) holds good. Then for $n>2$

$$
a=\left(\frac{n-2}{2} c\right)^{2 /(n-2)} .
$$

We take $\varphi(c)$ in such a way that

$$
\begin{equation*}
\varphi^{\prime}(c)=R-\bar{R} a^{2} \tag{11}
\end{equation*}
$$

holds good, which is always possible as R and \bar{R} are constant. Then we have

$$
\varphi^{\prime \prime}(c)=-\bar{R} \frac{d a^{2}}{d c}=-2 \bar{R}\left(\frac{n-2}{2} c\right)^{-(n-6) /(n-2)}
$$

For $n=2$ we have $a=e^{c}$ by (6) and for $\varphi(c)$ determined by (11) we get

$$
\varphi^{\prime \prime}(c)=-\bar{R} \frac{d a^{2}}{d c}=-2 \bar{R} e^{2 c}
$$

In both cases we have by (11) and (5) $\varphi^{\prime}(c) \Delta c \geq 0$. If $\bar{R}<0$, we have $\varphi^{\prime \prime}(c)>0$, and (10) is satisfied, and so c and a are constant. If $\bar{R}=0$, we can deduce $R=0$ from (8), and we get $\Delta c=0$ and hence a is constant. Thus we get

Theorem 2. We assume that V and \bar{V} are compact orientable Riemannian
manifolds whose scalar curvatures R and \bar{R} are both constant and non-positive. Then a conformal homeomorphism between V and \bar{V} is homothetic, namely a magnification function is constant.

Next we consider the case $V=\bar{V}$. Then we have
Theorem 3. We assume that V is a compact orientable Riemannian manifold whose scalar curvature is a non-positive constant. Then a conformal homeomorphism of V onto itself is an isometry.

In fact a magnification function a is constant by theorem 2 and hence by the integration of (7) on the whole manifold V we get $a=1$.

Theorem 3 is an answer to a question raised by T. Sumitomo in [2] p. 118, the case of vanishing curvature being solved by himself.

References

[1] Bochner, S. and Yano, K.: Curvature and Betti-numbers, 1953.
[2] Sumitomo, T.: Projective and conformal transformations in compact Riemannian manifolds. Tensor, vol. 9 (1959), pp. 113-135.

Mathematical Institute

Nagoya University

