
INJECTΪVE MODULES OVER PRUFER RINGS

EBEN MATLIS

The purpose of this paper is to find out what can be learned about valu-

ation rings, and more generally Prufer rings, from a study of their injective

modules. The concept of an almost maximal valuation ring can be reformulated

as a valuation ring such that the images of its quotient field are injective.

The integral domains with this latter property are found to be the Prufer rings

with a (possibly) weakened form of linear precompactness for their quotient

fields. The Prufer rings with linearly compact quotient fields are found to be

exactly the maximal valuation rings, and may be characterized as those integral

domains R with quotient field Q such that the images of Q are injective and

HOΠTLR (Q/R, Q/R) = R', or, alternatively, as those integral domains for which

a torsion-free submodule S of rank one of a module B is a direct summand

whenever B/S is also torsion-free. We are able to rederive many of the results

of [2] and [4] by homological methods. Finally, among Noetherian integral

domains we characterize the Dedekind rings as those for which every finitely

generated torsion module is a direct sum of cyclic modules.

Notation and Definitions. Any ring considered will be commutative with

an identity element which acts as the identity operator on any module over the

ring. If A is any module, we will denote by E(A) the injective envelope of A

[6]. A module A is said to be indecomposable if it has no proper direct

summands. An ideal / of a ring is said to be irreducible, if it is not an inter-

section of two properly larger ideals. A module over an integral domain will

be said to be divisible, if multiplication by any non-zero element of the ring is

an epimorphism of the module onto itself and a module will be said to be

torsion-free, if any such multiplication is a monomorphism of the module into

itself.

A Prufer ring is an integral domain in which every finitely generated ideal

is invertible. A valuation ring is an integral domain in which every two ele-
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ments have a greatest common divisor which is equal to one of them. A valu-

ation ring is a local ring in the sense that it has a single maximal ideal. It is

easily seen that a ring is a valuation ring if and only if it is a local, Prufer

ring. It is also readily verified that an integral domain R with quotient field

© is a valuation ring if and only if the lattice of i?-submodules of Q (or of R)

is simply ordered. If R is a valuation ring and S a proper submodule of Q,

then there exists an element a # 0 in R such that aS is an ideal of R.

PROPOSITION 1. Let R be a valuation ring with quotient field Q. Then

1) E(RlI) is an indecomposabley injectiυe R-module for every ideal I of R,'

and every indecomposable, injectiυe R-module is of this form.

2) If I is a proper ideal of Rf then E{R/I) ^ E(QlI).

3) // / and J are proper ideals of R, then E{R/1) ^ E(R/J), if and only if

Proof. 1) Since the ideals of R are simply ordered, they are irreducible;

and the result follows from [6, Thm. 2.4].

2) As in 1) E(Q/I) is an indecomposable, injective i?-module. Since R/I

is a non-zero submodule of E(Q/I), it follows from [6, Prop. 2.2] that E(R/I)

3) If 7~/, then there exists q*0 in Q such that I=qJ. Hence Q/I^Q/J,

and by 2) E(R/I) ^ E(R/J). Conversely, if E{R/I) ^ E(R/J)f there exists

submodules A and B of E{R/I) such that A = R/I and B^R/J. Since E(R/I)

is an indecomposable, injective tf-module, A Γλ B * 0 [6, Prop. 2.2]. If x =* 0

^ A Π B, then the order ideal of x is isomorphic to / and to /. Thus I and /

are isomorphic.

It follows readily from Proposition 1 that if S and T are /?-submodules of

Q, then Q/S^ QIT, if and only if S = T. It is also an easy corollary of Propo-

sition 1 that if A is any injective i?-module, then any element of A is contained

in an indecomposable, injective direct summand of A. Thus if B is a finitely

generated ivNmodule, then E{B) is a finite direct sum of indecomposable, injec-

tive ivNmodules.

Definition. Let A be a module over a commutative ring R. A is said to

be linearly compact if every finitely solvable set of congruences:

x = xΛ (mod A*)
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(where xa e A, and the AΛ's are submodules of A) has a simultaneous solution

in A. (See [2] and [8]).

We say that A is semi-compact, if the above congruence condition holds

whenever the submodules A* are annihilators of ideals of R.

A is said to be linearly pre-compact, if every proper homomorphic image

of A is linearly compact.

A valuation ring R with quotient field Q is said to be maximal {almost

maximal), if Q is linearly compact (linearly precompact). It is easily seen that

a valuation ring R is maximal (almost maximal), if and only if R itself is

linearly compact (linearly pre-compact) as an /^-module.

PROPOSITION 2. Let C be an injective module over a commutative ring R.

Then C is semi-compact.

Proof. Let x = x* (mod CΛ) be a finitely solvable set of congruences, where

x* e C and Ca is the annihilator in C of an ideal I* of R. Let / be the ideal

of R generated by all of the Λ's. If a^I, then β e / ί l + + /*„. Let v e C

be a solution of the ^ congruences for the indices au . . , ««. We define an

/vNhomomorphism / : I -* C by f(a) = ay. It is easily verified that / is a well-

defined homomorphism. Since C is injective, there exists z^C such t h a t / ( α )

= az for every o e / , Then z is a solution of the congruences.

It follows from Proposition 2 that if C is an injective i?-module such that

every submodule of C is the annihilator of some ideal of R, then C is linearly

compact. In particular, if R is a commutative, complete, Noetherian, local ring,

with maximal ideal M, then E{R/M) is linearly compact [6, Thm. 4.2].

The following proposition is due to I. Fleischer [2, Lemma 1] but we

include a proof for the sake of completeness.

PROPOSITION 3. A divisible, semi-compact module D over a Prufer ring R

is injective.

Proof. Let / be an ideal of R and / : /-> D an i?-homomorphism. Let L

be a finitely generated ideal contained in /, and let Da be the annihilator in D

of Ia. Then by [1, prop. 7.3.4] there exists an element xa in D such that

f(a) =aXc for every a in /«. The set of congruences:

x = xa (mod Da)
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(ranging over all of the annihilators of finitely generated ideals contained in /)

is finitely solvable. Hence there exists a simultaneous solution y in D. Then

f(a) = ay for every a in /. Thus D is injective.

The proof of the 'if part of the following theorem was communicated to

me by I. Kaplansky.

THEOREM 4. Let R be a valuation ring with quotient field Q. Then R is

almost maximal, if and only if Q/R is an injective R-module. In this case Q/I

is an indecomposable, injective R-module for every ideal I of R; and if 7=*F R,

then Q/I^EiR/I).

Proof. If R is an almost maximal valuation ring, then the assertions follow

from Proposition 3 and Proposition 1.

Conversely, assume that Q/R is an injective i?-module. Suppose that the

following set of congruences is finitely solvable:

x = ra (mod 7«),

where ra & R, Ia is an ideal of R, and / = Π / t f ^ 0 . If 7P = I for some β, then

r? is a solution of the congruences. Hence we can assume that 7tf=¥7 for all a.

Take cφO in 7, and define / = {be R\bI^cR}. J is an ideal of R, and

for every b e / there exists an index ab such that bhh C cR. We define an R-

homomorphism / : / -> Q/cR by fib) = brΛ(J -f cR for every b <=/. Since Q/cR is

injective, there is an element q^Q such that fib) = bq + cR for every # e / .

We will show that q is a solution of the congruences.

Take any index a, and take d^h-I. Then c-dy for some y^R. In

fact, y^J. For if y$J, then yl^cR, c=yz for some z^Iy and then J = 2 e / ;

which is a contradiction. Now there exists an index β such that 7? C 7α, and

such that yr? + cR=fiy) -yq-\-cR. Thus yir? - q) - re = ryd for some r e i ? ,

and so r$ — q<Ξ h. Therefore, ra - q = (rα - τ>) 4- (τ> - q) <= I*. Hence # is an

element of R, and is a solution of the congruences. This proves that R is

linearly precompact, and thus is almost maximal.

As a consequence of Theorem 4 and Proposition 1 we see that if D is a

homomorphic image of an injective module over an almost maximal valuation

ring, then every element of D is contained in an indecomposable, injective

direct summand of D,
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THEOREM 5. Let R be an integral domain with quotient field Q. Then

every R-homomorphic image of Q is injective, if and only if R is a Prufer ring

and every R-homomorphic image of Q is semi-compact. In this case RM is an

almost maximal valuation ring for every maximal ideal M of R.

Proof. If R is a Prufer ring and every image of Q is semi-compact, then

every image of Q is injective by Proposition 3. Conversely, suppose that every

image of Q is injective. Then each of these images is semi-compact by Propo-

sition 2. We will prove that R is a Prufer ring.

Let A be any ̂ -module, and / an ideal of R. Suppose that Tor? (A, RID

# 0. Then there exists a maximal ideal M of R such that Horn* (Torf (A, R/I)>

Q/M) * 0. Now Horn* (R/I9 Q/M) = S/M, where S is an #-submodule of Q.

From the exact sequence:

0-»S/M->Q/M-*Q/S->0

we see that S/M has injective dimension one, or less. Therefore, by [1, Prop.

6.5.1], O = Ext2

R(A,S/M)^Ext2

R(Ay UomAR/I, Q/M)) ^ Horn* (Tor2

R {A, R/I),

Q/M). This contradiction shows that Torf (A, R/I) = 0. Hence w. gl. dim. R^ L

By [3, Thm. 2.1 R is a Prufer ring.

If ¥ is a maximal ideal of R, then w. gl. dim. RM ^ w. gl. dim. R ̂  1 and

so RM is a local, Prufer ring. Therefore RM is a valuation ring. From [1,

Prop. 6.4.1.3H we see that Q/RM is an injective Λu-module. Thus RM is an

almost maximal valuation ring by Theorem 4.

Remarks. 1) It can be shown that if R is a Noetherian integral domain,

then R is a Dedekind ring if and only if QII is injective for every ideal / of

R. However, it is not sufficient merely to assume, even for Noetherian local

domains, that Q/R is injective as the following example due to I. Kaplansky

shows. Let R be the ring of formal power series in one variable over a field

with the first degree term missing. Then Q/R is injective, but R is not a

Dedekind ring. / am indebted to A. Rosenberg and D. Zelinsky for the remark

that if R is Noetherian, gl. dim. R < oo, and Q/R is injective, then it follows

easily from [1, Ch. 6, Ex. 9] that R is a Dedekind ring.

2) The following questions remain unanswered. If RM is an almost maximal

valuation ring for every maximal ideal M of R, is it true that every image of

the quotient field of R is injective ? For a Prufer ring is the linear precompact-
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ness of it quotient field Q equivalent to the semi-compactness of every image

of Q ? Is a Prufer ring with linearly precompact quotient field either an almost

maximal valuation ring or a Dedekind ring? For similar questions concerning

maximal valuation rings we shall be able to provide the answers.

LEMMA 6. Let R be an integral domain with quotient field Q # R, and

K = QIR. Then Horn* (K, K) a- R, if and only if Exti ( © , # ) = 0. In this case

Exti (Q, I)=0for every ideal I of R.

Proof From the exact sequence:

we readily obtain first that Horn* (K, K) = ExtB (K, R), and then the exact

sequence:

0 -> R -* Horn* (K, K) -* Exti (Q, R) -* 0.

Thus if Ext i (0, R) = 0, then Horn* (Kf K) ^ R; whereas if Horn* (ϋf, K) ^ R,

then ExtJ? (Q, R) is cyclic, divisible, and torsion-free, and hence is zero. The

remaining assertion follows easily.

LEMMA 7. Let R be an almost maximal valuation ring with quotient field

Q and maximal ideal M. Let if = Q/R and E=Q/M (i.e., £ = E(R/M)). Then

Homfi {K, K)7£ /?, if and only if Horn* (£, E) ^ R.

Proof Assume that Horn* (£, E) ^ R. Then using [1, Prop. 7.2.3;

Prop. 6.5.1; Prop. 7.2.2] we obtain: Horn* (K, K) ^ ExtU#, R) s Extk {K,

HomB (JE, E))^ Horn* (Torf (/f, JB)f E) ^ HomB (£:, £:> ̂  i?.

Conversely, assume that Horn* (K, K) = R. If M is principal, the result

is trivial; hence assume that M is not principal. Then HomB (R/M, i Π = 0 .

Therefore, from the exact sequence:

0—>RIM—>E-^>K—>0,

where P is the canonical map, we obtain the exact sequence:

0 — > Horn* (R, K) -^> Horn* (Ef K) — > Horn* (R/M, K) = 0.

There is a natural monomorphism of R into Horn* (E, E) sending an

element of R into multiplication by that element. We will prove that the

mapping is onto. Let / e Horn* (£", E). Then Pf& Horn* (E, K), and thus
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from the above exact sequence Pf = gPf where g^UomR(K, K). Now g is

multiplication in K by an element r of R\ hence Pf=gP=Phy where h is

multiplication by r in E. Thus Im(f-h) C KerP= R/M. Therefore, since £

is divisible, / - h = 0, and Horn* (£, £) = R.

THEOREM 8. (Duality) Let R be an almost maximal valuation ring with

quotient field Q and maximal ideal M. Let K=Q/R, E = E(RIM) = Q/M, and

assume that Homβ (K, K) = R. If A (or I) is a submodule of E (or R)t let

A* (or /*) be the annihilator of A (or I) in R (or E). Then:

1) A** = A; and I** = /.

2) Horn* (ElA, E) ^ A* and Horn* (/?//, E) ^ /*.

3) Horn* (A, E) ^ /?/A*; and Horn* (7, E) = Ell*.

Thus HomB (HomB (B, E), E) = B whenever B is a submodule or factor module

of either R or E.

Proof. By Lemma 7 Horns (Ey E) = R. Then the proof is essentially the

same as [6, Thm. 4.2]. For a more general result see C7, Thm. 5.2].

Theorem 9 will show that Theorem 8 is a duality assertion for maximal

valution rings. For a discussion of duality for complete, discrete valuation

rings see [5].

THEOREM 9. Let R be an integral domain with quotient field Q 3F R and

K=Q/R. Then the following statements are equivalent:

1) R is a maximal valuation ring.

2) R is a Prufer ring with linearly compact quotient field.

3) All R homomorphic images of Q are injective; and HomB (K, K) = R.

4) R is an almost maximal valuation ring; and Horn* {K, K) = R.

5) Exti (A, S ) = 0 for A any torsion-free module and S any torsion-free

module of rank one.

Proof. 1) =* 2). Trivial.

2) =3 3). Every image of Q is injective by Proposition 3. There is a

natural monomorphism of R into YLomR(Ki K) sending an element of R into

multiplication by that element. We will prove that this mapping is onto. Let

f^KomR(K, K), and a^O^R. Let f(l/a +R) =q + R9 where q^Q. Then

aq = ra^R, and / agrees with multiplication by ra on the submodule of K
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generated by 1/a+R. Thus the set of congruences:

x = ra (mod aR)

is finitely solvable in R. Since R is linearly compact, there exists a simultane-

ous solution r in R. Thus / is multiplication by r and Horn*? (K, K) = R.

3) =* 4). It is sufficient to prove that i? is a valuation ring, for then 4)

will follow from Theorem 4. Let I be any ideal of R, Suppose that Qll is

not indecomposable. Then there exists a submodule S of Q, S * I, Qt such

that Si I is an injective module. From the exact sequence:

we derive the exact sequence:

0 = HomR (Q, S) - Horn/? (Q, SI I) -> Exti (0, /) .

By Lemma 6 Exti (©,/) = 0. Therefore, Horn* (ζ>, S//) = 0 which is a contra-

diction, since S/I is a non-zero injective module. Thus Qll is an indecomposa-

ble, injective module. By [6, Prop. 2.2] any two non-zero submodules of Qll

have a non-zero intersection. It follows that / is not the intersection of two

properly larger ideals. Thus the ideals of R are simply ordered, and R is a

valuation ring.

4) =» 5). If S= ©, then Exti (A, S) = 0. If S * ζ), then since i? is a valu-

ation ring, we can assume that SCR. From the exact sequence:

0-*A-+A®Q-+A®K-*0

we obtain the exact sequence:

Exti (A ® Q, S) -> Exti (A, S) - Exti (A ® if, S).

But Exti (A®Q9 S) - 0 by Lemma 6 and Ext« (A ® ϋΓ, S) = 0, since S has

injective dimension one by Theorem 4. Therefore, Exti (A, S) =0.

5) =» 3). Let £ be any /?-module and S an i?-submodule of <?. Consider

an exact sequence:

0 ^ A - * F - » £ - > 0 ,

where F is free. From this we obtain the exact sequence:

0 = Exti (A, S) - Exti (£, S) -> Exti (F, S) = 0.

Therefore, Exti (B, S) =0, S is of injective dimension one or less, and Q/S is
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injective. Since ExtL (Q, R) = 0 by assumption, Horn/? (K, K) = /? by Lemma 6.

4) =» 1). We must prove that R is linearly compact. Let

x = ra (mod h)

be a finitely solvable set of congruences, where ra^ R and the 7α 's are ideals

of /?. Since R is already linearly precompact, we can assume that Γ\ h - 0.

Now Q/M=E(R/M) = £, and Horn* (£, £) ^ i ? by Lemma 7. Let JBα be the

annihilator of Jα in £. Then HomB (2?β, E)^ R/h and U £* = £ by Theorem

8. Hence, i? a= HomΛ (E> E) = Lim Horn* (JB«, £ ) = Lim /?//«. The finite solva-

bility of the congruences says that (r*-f/β)β e Lim i?/Jα. Hence there exists

r e / ? such that (r+/*)« = (r*+ /<*)<*. Thus r is a solution of the congruences.

Therefore, R is linearly compact, and so R is a maximal valuation ring. This

concludes the proof of the theorem.

We note that Theorems 13 and 14 of [4] and Propositions 3 and 4 of [2]

now follow immediately from Theorem 9 : (5) and an easy induction.

PROPOSITION 10. Let R be a ring {not necessarily commutative), and {Ai}

a countable family of R-modules such that every homomorphic image of each Ai

is injective. Let B be a homomorphic image of Σ®Ai* Then B = ΣφBί-J

where Bi is a homomorphic image of Ai, and thus is an injective submodule of

B. Therefore, if the family is finite, every homomorphic image of Σ © Ai is

injective.

Proof. Let / : Σ φ At -> B be an /Miomomorphism onto B. Let d = f(Ai),

and Dn - C\ -f + C n . We will prove by induction on n that Dn = B\ 0 . . .

Θ Bny where Bi is an image of A;, and is therefore injective. Let Bi = d , and

assume that the assertion is true for n - 1 ^ 1. Thus Dn-ι = & © . . . @Bn-ι.

Since Dn-\ is injective, Dn = Dn-i Θ Bn, where Bn is a submodule of Dn. Thus

Bn = Dn/Dn-i = (Dn-i + CnVDn-i = Cn/(Dn-iΓιCn)l and so Bn is a homo-

morphic image of An and the induction is verified. Since the DnS are an

increasing sequence of submodules of B and B = UDΛ, it follows that B = ΣφBi.

Let i? be an integral domain with quotient field Q such that every image

of Q is injective. Let Qn denote a direct sum of n copies of Q, and Q™ a direct

sum of denumerably infinite number of copies of Q. Then by Proposition 10

every image of Qn (or Qα) is a direct sum of a finite (or a countable) number

of injective modules and thus every image of Qn is injective. It follows that
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every torsion free module of finite rank has injective dimension ^ 1. Therefore,,

every image of a torsion-free module of finite rank has injective dimension ^ 1

also. This generalizes [2, Lemma 4]. In general images of Qa are not injec-

tive, even though they are direct sums of injective modules, as will be seen

from the following proposition. But first we have a definition.

Definition. Let R be a valuation ring and / an ideal of R. We say that /

is Archimedean if al * I for every non-unit a&R. Clearly, every principal

ideal of R is Archimedean. The terminology stems from the fact that it can

be shown that if every non-zero ideal of R is Archimedean, then the value

group associated with R is Archimedean.

PROPOSITION 11. Let R be a non-discrete valuation ring. Let {In} be a

countable family of Archimedean ideals, En = E(R/In) and C = Eι®E2® . . . .

Then C is injective, if and only if the family is finite.

Proof. Assume that the family is infinite. Since R is not Noetherian,

there exists an ideal I of R which is generated by an infinite set of elements

in, r2, . . . } such that n+i properly divides n i.e. there exists non-units ai+i^R

such that ri = ai+in+\ for every /.

We define a mapping / from the generators of 7 to C by induction. Let

fin) = Xu be any non-zero element of 2?χ.. Assume that we have defined f(n)

for i = 1, 2, . . . , n such that:

1) f(n) =#i, + +χii9 where */,- # 0 e £ / .

2) aiXji = Xj,i-i for j = l, . . . , i - 1 and i = 2, . . . , n.

3) aiXii = 0 for ι = 2, . . . , n.

Since Ej is divisible, we can find Xj,n+i^Ej such that Xjn = an+iXj,n+i for .7 = 1,

. . . , n. Since 7«+i is Archimedean, we can find an element q^ (l/an+i)In+i

and q$In+i. Let xn+un+i = Q + In+ι^Q/In+iCEn+u and define f(rn+i) =#i.«+i +

* - - +#n+i,Λ+i. Then f(rn+i) satisfies the above three conditions. It is easily

verified that / induces an /Miomomorphism / from / to C. By construction

the image of / is not contained in any finite number of the fi's. Thus / can

not be extended to all of R, and so C is not injective.

As a consequence of Proposition 11 we see that if R is an almost maximal,

non-discrete, valuation ring with quotient field Q and K=Q/R, then a direct



INJECTIVE MODULES OVER PRUFER RINGS 67

sum of copies of K is injective if and only if the number of summands is finite.

LEMMA 12. Let R be an integral domain with quotient field Q. Let B be

on R-module with torsion submodule T of bounded order {i.e. rT = 0 for some

r^Q&R) and such that BIT is divisible. Then T is a direct summand of B.

Thus ExtUO, Γ ) = 0 .

Proof. It is clear that TΠrB = 0. Let x^B; then there exists y^B

such that x + T = r(y + Γ). Hence x er T0 rB, and s o ΰ = T θ rB.

Parts 1) and 2) of the following proposition are known for almost maximal

valuation rings and Dedekind rings [4].

PROPOSITION 13. Let R be an integral domain with quotient field Q such

that every homomorphic image of Q is injective. Let B be a module over R

with torsion submodule T. Then:

1) If T is finitely generated', it is a direct summand.

2) If T is of bounded order and R is a Dedekind ring, T is a direct

summand.

3) If T is a homomorphic image of a torsion-free module of finite rank,

•and if R is an almost maximal valuation ring, then T is a direct summand.

Proof. Let B/T-Sl then from the exact sequence:

0-->S-»ζ)(g)S-> QIR ® S -> 0

we derive the exact sequence:

Extk (Q (g) S, T) -* ExtL (S, T) -* Extβ {Q/R&S, T).

In the first two cases T is of bounded order; while in the third case, we can

assume without loss of generality that T is of bounded order also. Hence,

Extβ (ζ?ΘS, Γ) = 0 by Lemma 12. For cases 1) and 3) T has injective di-

mension ^ 1 by the remarks following Proposition 10. Thus in all cases

Ext«(Q//?®S, Γ ) = 0 . Therefore, Extk(S, Γ ) = 0 ; which proves the propo-

sition.

PROPOSITION 14. Let R be a valuation ring with quotient field Q\ let Ai,

. . . , An be (not necessarily proper) homomorphic images of Q; and let

A = Aι θ * θ An. Then if B is any finitely generated submodule of A, B is

a direct sum of cyclic modules.
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Proof. The proof will be by induction on n. If n = 1, then B is a cyclic

module. Assume the proposition is true for n - 1 ^ 1. Let xl9 . . . , xm be the

generators of B, where AΓ/= (ΛΓ}&)), xjk) ^ Ak. Without loss of generality we can

assume that the order ideal of Xι is equal to the order ideal of x{ι\ and that

there exist elements rj&R such that ry#ίυ = #}υ for / = 2, . . . , m. Let

yj = rjXi - xj, and C = {y2, . . . , ym). Then C C i42 Θ Θ AM, and hence, by

induction, C is a direct sum of cyclic modules. Clearly β = fe+C. If aXxΛ z

= 0 for a e i? and 2 e C, then α*ίυ = 0, and so ΛΛΓI = 0. Thus B = Rxi φ C is a

direct sum of cyclic modules.

We note that Theorem 14 [4] (i.e. any finitely generated module over an

almost maximal valuation ring is a direct sum of cyclic modules) follows

directly from Proposition 14 and Theorem 4. For Noetherian integral domains

this direct sum property for finitely generated torsion modules characterizes

Dedekind rings.

PROPOSITION 15. Let R be a Noetherian integral domain. Then every

finitely generated torsion R-modula is a direct sum of cyclic modulesy if and only

if R is a Dedekind ring.

Proof. If R is a Dedekind ring, the result is known [4]. For the converse

let M be any maximal ideal of R> E = E(R/M), and At be the annihilator in E

of M\ Now Ai is a finitely generated torsion module [6, Thm. 3.11] and

since E is an indecomposable, injective /^-module, Ai must be a cyclic module.

Therefore, M/M2 is one dimensional over R/M [6, Thm. 3.10], and hence RM

is a discrete valuation ring. Since gl. dim. R = sup gl. dim. RM = 1, we see that
M

R is hereditary and, therefore, R is a Dedekind ring.
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