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A RIGHT HEREDITARY RING WHICH

IS NOT LEFT HEREDITARY
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A ring R is said to be right (left) hereditary if every right (left) ideal in

R is protective, that is, a direct summand of a free i?-module. Cartan and

Eilenberg [3, p. 15] ask whether there exists a right hereditary ring which is

not left hereditary. The answer: yes.

THEOREM. Let V be a vector space of countably infinite dimension over a

field F. Let C be the algebra of all linear transformations on V with finite-

dimensional range. Let B be the algebra obtained by adjoining a unit element

to C. Let A = B®B (all tensor products are over F). Then A is right heredi-

tary but not left hereditary.

The proof that A is right hereditary is broken into four lemmas.

LEMMA 1. Let R be a regular ring (for any a there exists an x such that

axa — a). Then every countably generated right ideal I in R is projective.

Proof. It is known that any finitely generated right ideal in R can be

generated by an idempotent. Hence / can be expressed as the union of an

ascending sequence of right ideals generated by idempotents. Each of these is

projective and is a direct summand of its successor. Hence / is a direct sum

of projective ideals and is itself projective.

LEMMA 2. Let R be a ring, J a two-sided ideal in R. Suppose that in J and

R/J every right ideal is countably generated. Then the same is true in R.

Proof. Take a right ideal / in R. Using * for image mod /, we pick a

countable set {at) of generators for /*. Pick elements an& I mapping on at.
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Together with a countable set of generators for the right ideal IΠ / in /, these

give a countable generation of /.

LEMMA 3. In the ring A of the Theorem, every right ideal is countably

generated.

Proof. First let us contemplate the ring C. By [4, p. 91, Th. 1] every

right ideal in C consists of all linear transformations having range in a certain

subspace of V. (We are putting linear transformations on the left of vectors,

so Jacobson's "left" is replaced by "right"). Since V has countable dimension,

it follows that the right ideals in C are countably generated.

A similar argument applies to C$)C. First, since C is central simple over

F, the same is true of C®C [4, p. 114, Th. 1]. If e is a primitive idempotent

of C, then Ce®Ce is a minimal left ideal in C®C. But Ce, as a left C-module,

is isomorphic to V and hence has countable dimension over F. Therefore

Ce®Ce likewise has countable dimension. Now C®C is the algebra of all

linear transformations of finite-dimensional range on Ce(8)Ce, continuous rela-

tive to a certain dual space [4, p. 75]. By [4, p. 91, Th. 1] again, the right

ideals of C®C are countably generated.

Since C is an ideal in B with quotient isomorphic to F, the right ideals of

B are countably generated by Lemma 2. Then by two more applications of

Lemma 2 we climb from C®C to A', for C®C is an ideal in B®C with

quotient isomorphic to C, and B®C is an ideal in A = A® A with quotient

isomorphic to B.

LEMMA 4. The ring A of the Theorem is regular.

Proof. First, C®C is regular, for this is true for any simple ring with a

minimal one-sided ideal [4, p. 90, Th. 3]. Again we climb from C ® C to A in

several steps, this time making use of the following theorem [2]: if 7 is a

two-sided ideal in a ring R such that / and R/J are regular, then R is regular.

Lemmas 1, 3 and 4 combine to assert that every right ideal in A is pro-

jective. It remains for us to exhibit a left ideal in A which is not protective.

The underlying idea is that the left ideals in B are not countably generated.

This does not stop B from being left hereditary, but it does disturb the tensor

product B<8)B. This observation is in essence due to Zelinsky [5],

Select a vector space basis for V over F. Let eι denote the linear transfor-
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mation which is identity on the i'-th coordinate and 0 on all the others. Again,

select an uncountable set {/«} of primitive idempotents such that the left ideals

Bfa are independent, that is, their union is their direct sum. (Minimal left

ideals in B — or equivalently in C — correspond to one-dimensional subspaces of

the dual F* of V; since F* has uncountable dimension we are able to pick

such a set of /'s). Write # = l®e, , ft*=/*®l. Let K be the left ideal in A

generated by {&> hΛ}.

If K is projective there exist [3, Ch. VII, Prop. 3.1] A-homomorphisms ψi,

φa of K into A such that for any kEiK only a finite number of {ψi(k), ψΛ(k)}

are non-zero and *Σjψi(k)gi-i-'ΣφΛk)ha = k. There must exist at least one

index (indeed uncountably many indices) β such that 0p(gϊ)=O for all i. To

simplify the writing let us simply suppress this index β, writing /, ft, ψ for /p,

ftp, 0P. Now ψ(h) has a unique expression «- f ί®l where u&B(8)C, t e B.

We shall argue (1) f = 0, (2) f^O.

(1) Every element of C is a linear transformation with finite-dimensional

range, and hence is left-annihilated by 6, for / sufficiently large. Hence giu~θ

for large /. Then φ(gih) -giφ(h) =t'Έ)Ci. On the other hand φ(gih) = φUigi)

= ft0(#) = 0. Hence ί = 0.

(2) For any a we have a unique expression 0*(fe) =« α + ία®l, wαG B®C,

ία G £. In the equation

ft) ftα + φ(k)h

let us suppress the (B ®C) -component. The result is

or ( l~ί)/+Σίβ/ot = 0. But the left ideals β/d, Bf are independent. Hence

( l - ί ) / = 0 , t * 0. This completes the proof of the theorem.

Alex Rosenbery showed me that the left global dimension of A is exactly 2.

Since the adjunction of an indeterminate lifts dimension by one, we can exhibit

the combination n, n + 1 of right and left global dimensions for any n ^ 1.

It seems unlikely that any minor modification of the ring A can achieve

a difference of two or more. It follows from a theorem of M. Auslander [1]

that any regular ring of cardinal number ĥ has global dimension at most 2;

so, if we grant the continuum hypothesis, a regular ring with the cardinal

number of the continuum is useless.
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