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§ 1. Introduction

Let us consider a surface S of class C3 in Euclidean space Ez and

(1.1) s '^tf 'V, u2) (ι, j , A = l, 2, 3)

be its parametric representation of class C3. Then

(1.2) «* = ? ! & lί ( « . A r - l . 2 )

are the first and second fundamental tensors of the surface S. If we put

(1.4) |*U*i

and denote the unit normal vector of S by e\ then the functions x* satisfy the

derived equations

J^MIK (Gauss)
(1.5)

3 ^ = -ft,?xi, (Weingarten)

where | ? j's are ChristoffeΓs symbols constructed from ^v and

(1.6) * ί = # β T V

By virtue of the relation

we see that £>τ and Λ?r satisfy the following relations:
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Rhs = hr hs - h?δ ft?, (Gauss)
(1.8)

h?r, δ = h?s, r, (Codazzi)

where R*tδ is the Riemann's curvature tensor constructed from g?Ύ and h?y,δ is

the covariant derivative of ftβT with respect to gPr.

The converse of this fact is well-known as the fundamental theorem of

the theory of surfaces in Ez and is stated as follows:

I. Given a symmetric positive definite tensor g^riu1, u2) of class C2 and a

symmetric tensor h^iu1^ u) of class C1 so that they satisfy the Gauss and

Codazzi relations (1.8), then there exists a surface S in Ez which has the given

tensors g^ and ft«*τ as its first and second fundamental tensors respectively.

II. If two surfaces S and S in Ez have the same tensors g^(u, u2) and

h:yf(u\ u2) as their first and second fundamental tensors, then they are congruent

under the group of motions of Ez.

Usually the fundamental theorem is stated as a theorem and is not sepa-

rated in two. However, we divided the contents in two parts, Theorems I and

II above correspond to the first and second main theorems of the classical theory

of invariants.

We shall take up the Theorem I. In all classical books on Euclidean

differential geometry, as far as I know, the domains of definition of the tensors

gy;, h?r and the surface S are not given. In other words, all the authors

treated the theorem as a theorem in the small. In this paper, we shall formulate

Theorem I in a global form which can be done as an application of the theory

of distributions and the theory of fiber bundles. Our main results are Theorem

1 of § 4 and Theorems 3 of § 8.

A global formulation of Theorem II is given as Theorem 2 of §4 and

Theorem 4 of § 8.

Part I. The case where the domain of definition of the

tensors g?r and Λpτ is a connected and simply

connected domain in «1«2-plane

§ 2. The involutive distribution in D x F

Let us assume that a symmetric positive definite tensor g^ and a sym-

metric tensor h?r are given on a connected and simply connected domain D in

and they satisfy the Gauss and Codazzi relations (1.8) on D.
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Let /?i2 be a 12-dimensional real number space with the coordinates (x\ x\f

•x\, e*). Consider in Ri2 a submanifold K defined by

icy Λ\ X\ X\ X\

Xι Xz X3

and denote by F the complement of K in Ru, i.e.

(2.2) F=Rιz-K.

Let us consider the product space D x F with the natural topology and

denote the natural projection D x F-* D by π. D x F is a 14-dimensional

manifold. At every point (uΛ, x\ x\, Xu eι) oi D x F we can associate two

vectors ξ and η with the following components:

ξ : (l, 0, x\, {"^xi + hnέ, {"2}xi + hi2β\ -hϊxL),
(2.3)

V : (0, 1, ̂ ', .{ J )

They constitute two vector fields over D x F. As ς and -η are linearly inde-

pendent at every point of D x F , they span a two dimensional plane in the

tangent space at every point of D x F. Hence, the vector fields ξ and 7? de-

termine a 2-dimensional distribution over D x F.

LEMMA 1. The distribution determined by ξ and η in D x F is involutiυe.

Proof, In order to show that the distribution is involutive, it is sufficient

to show that the Poisson bracket [£, -ηl of ζ and -η is a linear combination of

ξ and η. Here we can prove that Zξ, -η] = 0.

Let us denote the components of vectors ξ, -η and [£, -η} in D x F by

.(f, r , & £2, ή) and so on.

First, it is evident that

because ξa and 7/ are constants. We shall note explicitly that

by definition.
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Secondly, replacing a by / in the last equation and noting that ξ% = x\ and

if = χ\, we get

because ξ\ = η\ = { ̂  | x* +

Thirdly, replacing αr in (2.4) by the index - and noting that

we get

f 1 \ 1 2 / + «\ 12 r

π Λ t j 1 \ i ( 2 1 , .

" " ) " Vl \ 11 ί " " V 2 i 11 ( 7?Δ/Zll

Putting the components (2.3) of £ and T? in the right hand side of the last

equation, we can easily transform it into the following form:

Hence, by virtue of (1.8), we see that

In the same way, we can verify without difficulty that

K, rfl = 0, K, rfί - 0.

Summing up these equations we get

(2.5) [£, ̂ ] = 0. Q.E.D.

§3. Homeomorphism of the domain D and the maximal integral mani-
fold D*

As the distribution in consideration is involutive, there exists a maximal

integral manifold of the distribution through every point of D x F. Let us

take the maximal integral manifold passing through the point A* («?, xl, x\0,

#20, el) (A(uo)^D) such that
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(3.1)

<

and denote it by D*. We shall show that D* is homeomorphic to D under the

natural projection π.

First we shall prove that D* is mapped onto D by π. To do so we take

a differentiate curve Γ starting from the point Aiut):

(3.2) u* = u*(t), Oέtέl U ? =

and consider the solution of simultaneous differential equations

dt

a \ i h r\.r

under the initial condition "for ί = 0, xι - x\, x\ = x\* and ^ = e\!y If we denote

the solution by ΛΓ'U), 4 ^ ) and e\t) (0 ^ f ^ 1), then (wα(ί), ^'(ί), *ίU), ̂ 5(ί),

^(ί)) (0 ^ t ^ 1) determines a curve Γ* in D x i?i2. we assert that the curve

Γ* lies in D x F. To show it, we first note that for the solution in consideration

the following equations hold good:

— ^ Γ ^ = [{^}(Σ^τ) 4-

Accordingly, Σ^ΛΓT, ΣΛJ^ 1 ' and ΣU 1 ' ) 2 are a set of solutions of the following

differential equations on Pα? = Ppα, Q? and R:

df
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On the other hand, if we replace P ? v, Q? and R by gy,-(u(t)), 0 and 1 respec-

tively, the last equations are satisfied identically. So if we note that Σ # P # T ,

Σ 4 ^ > Σte 1 ') 2 have same values as gyΛuo), 0 and 1 at ut by (3.1), we can see

that the relations

(3.3)

hold identically by virtue of the uniqueness of solutions of differential equations.

From (3.3) we see that on F*

χ\

xl
χl

χl

2

xl x\
xl xl

2
χ\

χ\

Xi

xl

2
gn

gl2

gl2

g22

Hence, F* lies in D x F.

Now, every tangent vector of Γ* is easily seen to be of the form ^f + ά2??,

so the curve Γ* lies on the integral manifold D*. This shows that every point

of the curve is the image of a point of Γ* on D* by π. As D is connected,

every point of D is bound with A by a differentiable curve. Hence, D* is

mapped onto D by π. We shall say that the curve F* is a K/ΐ of F through

the point A,

Conversely, every point of D* is the end point of the lift of a curve in D

starting from A.

LEMMA 2. Let Fo and Fi &£ to) differentiable curves having the same end

points A and B in the simply connected domain D. Then the lifts Fo* and F*

of Fo and 1\ respectively passing through the same point A* over A have the

same end point B*.

Proof. Let us denote vectors of natural frames of reference in D by e\

and e-i respectively. Then by the natural projection, it is clear that

πς = βu π7) — e«,

where ξ and -η are tangent vectors of D* defined by (2.3). Hence, by the

projection π, the vector space spanned by ξ and -η at P*(uΛ, x\ x\9 xl, eι) on

DΛi is mapped onto the vector space spanned by βι and e2 at P(ua) in D> which

shoλvs that the projection π is locally homeomorphic.

Accordingly, if we note that Fo is continuously deformable to F ;, we can
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easily show that Γ* and Γ* have the same end point JB*.

By Lemma 2, the inverse mapping π~ι : D ~> D* is one valued, hence the

natural projection D*' ->D is one to one and onto. Moreover, as we have

already seen, it is locally homeomorphic. Consequently, we can see that the

natural projection is a homeomorphism of D* onto D. Hence, we get the

following

LEMMA 3. For every maximal integral manifold Dr in D x F over a simply

connected domain D, the natural pro jection π is a homeomorphism of D* onto D.

§4. The fundamental theorems

By Lemma 3, we may choose ua as parameters of £>*, the point u* on D*

being the inverse image of the point ua in D by π. So the integral manifold

D* can be expressed by functions

(4.1) xHu\ u2), x[(u\ «2), x\(u\ u2), e\u\ u2)

defined on D.

Now, the tangents of zΛcurves and z/2-curves on this integral manifold

have components of the forms (δΐ, . . . ) and (δ?f . . . ) respectively, we see

that ξ, -η on the integral manifold are nothing but tangent vectors of ^-curves

and w2-curves. Hence the functions in (4.1) are solutions of the following

differential equations:

(4.2)

By virtue of (4.2), we may easily see, in the same way as in §3, that

(4.3)

hold identically on D.

Now, let us consider the mapping / of D* into ^3 defined by

iu\ x\ xi xi e{)^x\
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Then, the image S=fD*=f° π~λD:

(4.4) * fW(«\ u2) (u\ tί)EΞD

is a surface in Z?3 defined on D in the sense that the functions xι(uι, u2) is

differentiate and the Jacobians

d(x\ x*) d(x\ xι)_ d(x\ x2)

Γ
do not vanish simultaneously at every point of D. This implies that there exist

sufficiently small neibourhoods to every pair of corresponding points of D and

S such that they are homeomorphic with each other under / ° π~ι. We shall

say that the surface S is the /-image of D*.

By virtue of (4.2)ι, we see that x\ are tangent vectors of S and satisfy

the relations (4.3)i. Hence the given tensor g?r is the first fundamental tensor

of the surface S. And by (4.3)2,3 we see that e\u) is the unit normal vector

of the surface S. Moreover, (4.2)2 shows that the given tensor h?Ύ is the

second fundamental tensor of S. Accordingly, we get the following

THEOREM 1. Suppose that a positive definite tensor g^iu1, u") of class C2

and a tensor h^iu1, u2) of class C1 are defined on a connected and simply

connected domain D in the ιϊu-plane and they satisfy the Gauss and Codazzi

relations (1.8). Then, in E* there exists a surface S defined on D which is

the f-image of D* over D and have the given tensors g-π and h?r as its first

and second fundamental tensors.

If the surface has no self intersections or self contact points, then S is

homeomorphic with D. However, even if S has self intersections or self contact

points, under suitable conventions, we may regard them as homeomorphic in

an extended sense.

It is clear that the following theorem holds true as an immediate conse-

quence of the fact that there exists one and only one maximal integral manifold

passing through any given point A («?, xl, x\0, #20, el) in D x F.

THEOREM 2. If tivo surfaces S and S defined over a connected and simply

connected domain D of the uιu~-plane have the same tensors g?τ(u\ u2) and

hfiΛu1, ic) as their first and second fundamental tensors respectively, then they

are congruent in the large under the group of motions in £3.
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Part II. The case -where the domain of definition D

of the tensors £pτ and h?Ύ is a two dimensional

differentiate manifold

§ 5. Construction of a fibre bundle over D

Let {Ux} (λ E:J, J : a set of indices) be (simply connected) coordinate

neighbourhoods of class C3 which cover the given manifold Zλ Then for every

Ux we can construct a product space Ux x F as we have denned in Part I. We

shall show first that points of the product spaces UiX F (λ e / ) can be identified

so that all Ux x F constitute a fibre bundle over D.

To do so, let us consider linear transformations of F onto itself of the

following type:

(5.1)

xι = x\

x'Ί - CL\\X\ +

x\ — a ι\x\ -f

eι = e\

It is clear that all linear transformations of this type form a group which we

shall call G.

Now, suppose that U\ Π Uμ is not empty. Denoting the coordinates in Ux

and Uμ by if and ύa respectively, the coordinate transformation in Ux Π Uμ is

given by

(5.2) ϊta - wβ( M\ **2), (u\ u)^UλCΛ Uμ C Ux

or by

(5.2) ; u* - M ttt1, S2), (M1, ϊι2) e Γ7λ Π Z7μ C tfμ

equivalent to the former. Put

x ι = *f,

(5.3)

and let us identify points (ua, x\ x{, x\, e1') (u*E: Ux Π Uμ) of ΓΛ x F with

points (•/*"*, ϋί1', 3f{, x\, eι) of Γ7,t x F, where «* is related to ίία by (5.2) and x\
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*i, xl, and eι are related to x\ x{, xl> ex by (5.3). We shall denote the linear

transformation (5.3) by ψμλiu1, if). Then it is easily seen that for every set

of three neighbourhoods £/>., Z7α and Z7, such that ZΛ Γ\ ZJ.λΓ\ ίΛ is not empty,

Hence, all product spaces U*x F constitute a fibre bundle over D with the

director space F and the structural group G. We shall denote this fibre bundle

by 23 and the projection 23 -» D by π.

§ 6. unification of distributions defined in Uλχ F

Let us assume that a symmetric positive definite tensor gy: and a sym-

metric tensor hyf are given over the manifold D and they satisfy the Gauss and

Codazzi equations (1.8) over D.

Now, every product bundle Ux x F has a distribution defined in Part I.

We shall show next the following

LEMMA 4. All distributions in Uλ x F (λ £ / ) are unified to a two dimen-

sional distribution in 23 which is identical in U\X F with that in Uκ x F.

Proof. Let us first denote the components of the vector ξ of Z7λ x F in

π'HUxΠUu.) with respect to U", x\ x[, x\y eΊ by ξA (^, B = CC, i, *, *, *)

and the components of it with respect to (ΰa, x\ x\, x\, eι) by ξA. Let us also

denote the components of the vector ξ of Z7μ x F in π~ι(U\ Γ\ Uμ) with respect

to (ΰa, x\ x[, xl, eι) by ~ξA. And similarly we define ηA, yA and ηA. Of course

~ξΛ and 7jA have components given as follows:

(6.1)

Now, let us put

*• = u\ xi = ̂

for brevity. Then the transformations (5.2) and (5.3) can be written as

xA = xA(x*, x\ xi xί xί).

By virtue of the above notations, we see that
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(6.2)

^
We can easily verify that the matrix f ~*->τ) is given as follows:

\ ox /

dΰ*

0(6.3)

0 0 0 0

dΰr

0

0 0 0

du1 du2

0

i d2u*i du Bΰ du2

o o o δ) J

By virtue of the form of the matrix {-^wj we see first that

Secondly, we get

Thirdly, we get

du du du du du

Putting the components in the right hand side of the last equation by (2.3),

we see

d2u* dΰ [ a \
1 / 3 1 1

dii \ i du" i
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In the same way, we get

Summing up these results, we finally get

(6. 4) ζA = ~ j ?*4 -b K i VA>

Similarly, we get

(6.5) y/A — w 2 1 Λ + -pΓϊ~yA-

The last two equations show that the two dimensional plane spanned by ξ

and -η of Uχ x F in π~HU\Γ\ £7μ) is identical with the plane spanned by £ and

7? of ί / μ xF in TΓ^ίί/λΠC/μ). This shows that all distributions in UxxF U e / )

are unified to a unique two dimensional distribution in D.

§ 7. Properties of the maximal integral manifolds

In Part I, we defined lifts of curves in a simply connected domain in uιu2-

plane. However, the notion of lifts is easily extended to our fibre bundle 33

over the manifold D by virtue of Lemma 4. Let us consider the maximal

integral manifold D* passing through a point A* of 33 over a point A of D.

Then the end point £* of the lift Γ* passing through A* of a curve Γ with

the end points A and B lies on D* and every point of D* can be obtained in

this way. We can easily prove the following

LEMMA 5. Every maximal integral manifold £>* in 33 over a two dimen-

sional manifold D is a covering manifold of D.

Proof. First it is evident that the projection π : D^ -» D is onto. Now,

let us consider the intersection of D* and π'ΉUχ). In general, it is not arcwise

connected and has many arcwise connected components. By virtue of Lemma

3, every such arcwise connected component is homeomorphic with Uχ by the

projection π. Hence, if we denote the points on D* over P on Uλ by Pj, P2, . . .

then Pi, P2, . . . have homeomorphic neighbourhoods with a neighbourhood of

P by 7r. Accordingly, lf{ is a covering manifold of D,
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Corollary. For every maximal integral manifold D* in 3̂ over a simply

connected manifold D, the natural projection is a homeomorphism.

§8. The fundamental theorems

Now, we may introduce to every neighbourhood of D over Uχ the same

parameters (uι, u) as in § 4. Then we may apply the discussions given at § 4.

Analogous relations to (4.2) and (4.3) hold good over the whole D. Hence

if we consider the mapping / of D* into E* defined by

(u\ x\ x[, x\, ei)^xi

then, the image S = / D* = / ° τz~1D is a surface in Ez defined en D in the sense

that every piece of it which is the /-image of a portion of £)* corresponding

to Ux of D is a surface defined on Uχ in the sense of § 4.

If the surface S has no self intersections or self contact points, then it is

evident that S is homeomorphic with D* and hence S is a covering manifold

of D. (Especially, if D is simply connected, then S is homeomorphic with D.)

However, even if S has self intersections or self contact points, under suitable

conventions, we may regard S as a covering manifold of D in an extended

sense.

We shall state the final results as follows:

THEOREM 3. Suppose that a symmetric positive definite tensor g?r of class

C2 and a symmetric tensor h^- of class C1 are defined on a two dimensional

differentiable manifold D and they satisfy the Gauss and Codazzi relations (1.8).

Then in E* there exists a surface S defined on D, ivhich is the f-image of D'

over D such that any point P of S over an arbitrary point P of D has as its

first and second fundamental tensors the tensors g?r and h^ given first.

Finally we shall give a theorem corresponding to Theorem 2 for the case

where D is a manifold.

THEOREM 4. If tivo surfaces S and S in Ez ivhich are differentiably homeo-

morphic ivith each other have, at corresponding points, the same tensors g$r and

h?y as their first and second fundamental tensors respectively, then they are

congruent in the large under the group of motions in Ez.

Proof. Let D be a two dimensional differentiable manifold differentiably

homeomorphic with S and S. Then, Theorem 4 is an immediate consequence
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of the fact that there exists one and only one maximal integral manifold

passing through any given point A (wo, x\* AΓJ0, X\Q, el) in the fibre bundle 33.

N.B. It is highly probable that analogous theories will hold good for

subvarieties Sm (m^2) in Euclidean space En (n>m) and for the theory of

subvarieties in affine, projective and conformal differential geometries.
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