
FIXED POINTS OF ISOMETRIES
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1. Statement of Theorem

The purpose of this paper is to prove the following

THEOREM. Let M be a Riemannian manifold of dimension n and let ξ be

a Killing vector field {i.e., infinitesimal isometry) of M. Let F be the set of

points x of M where ξ vanishes and let F— U Vi, tvhere the Vi's are the con-

nected components of F. Then (assuming F to be non-empty)

(1) Each Vi is a totally geodesic closed submanifold (without singularities)

of M and the co-dimension of Vi (i.e., dim M—dim Vi) is even.

(2) The structure group of the normal bundle over Vi can be reduced to

GL(r, C), ivhere 2r is the co-dimension of Vi.

(3) // xE: Vi and y e Vj and i Φ j , then there is a 1-parameter family of

geodesies joining x and y provided M is complete hence x and y are conjugate

to each other.

(4) If M is, moreover, compact, then the Euler number of M is the sum of

Euler numbers of Vi }s:

7ΛM)=Σ7ΛVi)9

(the summation is well defined, as the number of connected components Vi is

finite).

Remarks. (2) implies that if M is orientable, then Vi is orientable.

If F consists of only isolated points, then (4) is a particular case of the

Index Theorem, as the index of a Killing vector field at an isolated zero point

is 1.

COROLLARY 1. Let L be an abelian Lie algebra of Killing vector fields of

M. Let F be the set of points x of M where every element of L vanishes. Then

the same statements as in Theorem hold.
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Remark. Let G be a torus group acting on a manifold M a s a differ -

entiable transformation group. Then we take a Riemannian metric on M

invariant under G and apply Corollary 1, thus obtaining the same results as

in Theorem.

COROLLARY 2. Under the same assumption as in Corollary 1, if M is a

symmetric space in the sense of E. Cartant so is each V\.

COROLLARY 3. Under the same assumption as in Corollary 1, // the sec-

tional curvature of a complete Riemannian manifold M is non-positive, then F

is either empty or connected.

COROLLARY 4. Let M be a compact manifold of dimension 2 m. Suppose

that a torus group of dimension m acts on M (differentiably and effectively).

Then the Euler number of M is zero or positive according as the fixed point set

F is empty or not. If M is orientable and F is non-empty, then the Euler

number of M is greater than or equal to 2.

2. Proof of Theorem

(1) Let x be any point of F and let TX(M) be the tangent space to M at

x. Then ξ induces an endomorphism of TX{M) and it is a skew-symmetric

matrix with respect to an orthonormal basis of TX(M). (In classical termino-

logies, it is an endomorphism defined by the covariant derivatives of ξ.) If we

choose a proper basis eu . . . , en, then this matrix can be reduced to the

following

0 aι

- « i 0 .

0 Or

-ar 0

0

The 1-ρarameter group of local isometries generated by ~ induces on TX(M)

rotations of the form
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cos id sin tάi

• sin tai cos tax

cos tar sin

- Sin tdr COS

where t is the parameter. If w~2r = 0, then # is an isolated zero of ξ and we

are done. Suppose n — 2r> 0. If & is a vector spanned by e2r+i> . . . , en, then

ϋ is invariant under this 1-ρarameter group. Hence the geodesic issued from x

to the direction of v is also left fixed (pointwise) by the group. In a certain

neighborhood U of x the set of these geojdesics forms an (n — 2 r) -dimensional

submanifold Uf of U. (Take, for instance, U to be a neighborhood of x such

that for every y of U there exists a unique geodesic in U joining x and y.)

Now we shall show that the zeros of ξ in U are exactly Uf. If jy is a zero of

f in U, then we take a geodesic in U joining y and x. Since both # and y are

left fixed by the 1-parameter group, this geodesic is also left fixed by the group.

Hence the tangent vector to this geodesic must be spanned by e2r+u . - - , en.

This shows that y is in Uf. Hence each Vi is a submanifold of M and its co-

dimension is even. The fact that F, is totally geodesic follows immediately.

In fact, let x and y be any points of Vi sufficiently close to each other so that

there is a unique shortest geodesic from x to y. Then this geodesic is left fixed

pointwise by the group. Hence the geodesic is contained in Vi.

Remark, As it can be seen from the proof, the statement that F, is a

totally geodesic submanifold of M is true not only for 1-parameter group of

isometries but also for any group of isometries.

(2)υ Let A be a non-singular linear transformation of the 2r-dimensional

vector space R2r with a positive definite inner product. By the inner product

we can identify A with a bilinear form on R2r. Assume that this bilinear form

is skew-symmetric. Then there is a unique decomposition of R2r into subspaces

Si, . . . , Sk such that

i) Each Si is invariant by the transformation A and if i\j then Si and Sj

are orthogonal to each other.

J) The result of (2) is due to A. Dold and R. Thorn. The proof presented here is a
modification of theirs.
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ii) Restricted to Si, A2 is equal to — b)I, where / is the identity transfor-

mation and bi is a positive real number. If i Φ j , then bi is different from bj.

Let a = 1/V̂ / Let C be a non-singular linear transformation of R2r defined

by the following two properties: (i) C maps each S, into itself, (ii) Restricted

on Si, C is equal to CiL Let / be the transformation CAC. Then / 2 = -/ .

We showed in (1) that the endomorphism of TX(M) induced by ς induces

a non-singular linear transformation, denoted by Ax, of the normal space to Vi

at x. Since Ax is skew symmetric with respect to the inner product on TX(M)

defined by the Riemannian metric, we define, by the above argument, a linear

transformation Jx of ΓX(M) such that /£= —/. It can be easily shown that Jx

is a differentiate field of linear transformations. Now, Jx defines a complex

structure on each normal space to Vi hence the structure group of the normal

bundle over Vi can be rebuced to GL(r, C).

(3) Let x&Vi, jy G Vj and i#/. Let g be any geodesic from x to v. This

geodesic can not be left fixed by the group generated by ξ. If it were left fixed,

then Vi and Vj would be the same connected component.

(4) Let ε be a small positive number. We define Sx to be the set of points

y in M such that there is a geodesic from x to y of the length not greater than

ε and normal to Vi at x. Thus, to every point x of Vi, we attach a solid sphere

Sx with center x and radius ε which is normal to Vi and has the dimension 2r

( =codimension of Vi). Let iV/= U Sx. Taking ε very small, we may assume

that JVi Π Nj is empty if / =* j and that every point in JV, is exactly in one Sx.

Let N= U M. Let ϋί be the closure of M-N. Then NΓ\ K is the boundary

dΛΓ of JV.

LEMMA. MM) =7ΛN)+ X(K)-7ΛdN).

Proof. Consider an exact sequence of vector spaces:

-> Ak -* Bk -* Ck -• Afe-i -» -βjfe-i -* . . .

Then it can be shown easily that

We apply this formula to the exact sequences of homology groups induced

by

K-*M-> (Af, K) and dN-* N-* (N, dN)
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and we obtain

X(K)-Z(M) + YΛM, K) = 0 and YΛdN) - YΛN) -t- YΛN, dN) = 0.

By Excision Axiom, (M, K) and (N, dN) have the same relative homology.

Hence

7ΛM, K)=YΛNy dN).

This completes the proof of Lemma.

The 1-parameter group generated by f has no fixed point in K nor dN.

By Lefschetz Theorem, YAK) = YΛdN) = 0. Hence X(M)=YΛN). As TV; is a

fibre bundle over F, with solid sphere S as fibre, we have

7ΛNi) = 7ΛVi)7ΛS) =7ΛVi).

Finally we obtain

3. Proof of Corollaries

Let ξ and -η be Killing vector fields on M commuting with each other. Let

F = U Vι be the zeros of ξ as before. Since the group generated by η commutes

with the group generated by ~, it maps F into itself. Since it is a connected

group, it transforms each F, into itself. Hence -η can be considered as a Killing

vector field on F, . Let Fι be the zeros of η on V% and let F, = UjWij be the

decomposition into the connected components. We apply Theorem to each Vt

and repeat this process and obtain Corollary 1.

Now, Corollary 2 follows from the fact that every totally geodesic sub-

manifold of a symmetric space is a symmetric space. Note that if M is locally

symmetric in the sense that the curvature tensor is parallel, then a simple

calculation shows that every totally geodesic submanifold of M is also locally

symmetric. Suppose M is globally symmetric. A symmetry of M around any

point of a totally geodesic submanifold of M maps the submanifold into itself

and induces a symmetry of the submanifold. Hence the submanifold is globally

symmetric.

Remark^ It is not known whether the homogeneity of M implies the

homogeneity of V, .

2) (Added in proof) We shall prove elsewhere that every totally geodesic sub-
manifold of a homogeneous Riemannian manifold is homogeneous Riemannian.
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Corollary 3 follows from (3) and the well known fact that a Riemannian

manifold of non-positive curvature has no conjugate points.

Before going into the proof of Corollary 4, we shall make the following

Remark. Suppose that a torus group of dimension m acts on a manifold

M of dimension n. Assume that the fixed point set F is non-empty. If 2 r is

the co-dimension of Vi, then m^r.

To prove this, take any Riemannian metric on M invariant by the torus

group G. Let XEL F, . Every element of G induces an orthogonal transfor-

mation of TX(M) which is trivial on Tx(Vi). Hence G can be considered as a

group of orthogonal transformations of the normal space to Vi at x. G being

abelian, dim G can not be greater than the rank of 0(2r), which is r.

The above remark shows than m *= n/2. It is therefore of interest to

consider the extremal case 2 m— n. The above argument shows that in this

case F consists of only isolated points, thus proving the first half of Corollary 4.

Suppose M is orientable and F consists of a single point x. If we take a

proper basis of TX(M), the group Gf considered as a group of orthogonal

transformations of TX(M), can be written as follows.

cos tx sin f i

- sin f i cos U

COS tm Sin tm

- Sin tm COS tm >

where Ui, . . . , tm) is a parameter of G. Let G' be a torus group of dimension

m- 1 depending on tίf . . . , tm-i. Let F1 be the fixed point set of G1 and let

V be the connected component of F' containing x. Then V is a manifold of

dimension 2 and is orientable by (2) of Theorem. The 1-parameter group

depending on tm maps V into itself. The fixed points of this 1-parameter group

on V are in F= {x}. Hence 7ΛV) is equal to 1. On the other hand, the Euler

number of a compact orientable surface is always even. This shows that F is

either empty or contains more than 1 point.
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