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§1. Introduction

Let X(A, ω), ωGβ, be Wiener process on the probability space (Ω, 33, P)

depending on a point A of an N dimensional Euclidean space EN. It is defined

by the following three conditions:

(1) For any positive integer n and any points A\, Aoy . . . , An in EN, the joint

distribution of {X(Aι)> X(A>), . . . , X(An)} is a non-degenerate n dimensional

normal distribution with mean vector O.

(2) E{X(A)X(B)} = {r(O, A) + r{Ot B) - r(A, B)}/2,

where r(At B) denotes the distance between A and B, and O denotes the origin

of EN.

(3) X(O, ω) = 0, for almost every ω e Ω.

Previously P. Levy studied this process in his book [13 and obtained many

properties of it. Concerning the uniform continuty, he proved the following:

If a > 1, for almost every ω £ i ? , there exists a positive number p - p(ω)

such that

(4) r = r(A, B)< p implies \X(Ay ω)-X(B, ω)\ ̂  ay/2Nr\logr\.

On the other hand> if a < 1, there exists no such p(ω). Here both A and B are arbi-

trarily chosen in the cube C = {A - (au a2, . . . , as) \ \a%\ ^ 1 , *'= 1, 2, . . . , N).

While T. Sirao [2] has proved a very precise continuity property of Wiener

process with a parameter space Ei. It is stated as follows:

If c > 5, there exists a positive number p = p(ω) such that

(5) r = |f'-f| < p implies \X(t, ω)~X(t', ω)\ ^ V2r( | logrH-clog|logr |),

with probability one. Here t and V are arbitrary numbers in the interval 10, ll.

But, for c < -1, there exists no such p(ω).
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The aim of the present note is to improve the Levy's result employing

the method used by Sirao [2]. Our result may be regarded as the extension

of the Sirao's result for the multidimensional parameter space. But, in our case

where the paramter space is EN, we shall consider the n-th bundle of lines

and every variation of X(A) relating to it as will be seen at the proof of

Theorem 1. Moreover, for the proof of Theorem 2 that gives the lower esti-

mation of our process, we shall use the lemma and the method of the proof

of Theorem 1 which appear in the paper written by K. L. Chung and

P. Erdos [3].

§2. Upper estimation

Before we state the theorem, some preparations are necessary. Generally

the direction of any straight line that runs through the origin is determined

by the ordered set of angles (θlt θ«, . . . , £v-i), 0 £ 0, < π, i= 1, 2, . . . , N- 1.

We consider nN~x straight lines the direction of which are given such as

Uiπ/n\ hπίn\ . . . , h-M), jk = 0, 1, . . . , n2 - 1, k = 1, 2, . . . , N- 1.

Taking one of those straight lines j£, we consider the hyper plane § that

is orthogonal to jS and contains the origin. On this hyper plane we take

(2Λ + 1VV~1 lattice points, the coordinates of which are such as iji/2n'\ jj2n'\

. . . , Λv-i/2""1), jk = O9 ±1, ±2, . . . , ±2n~\ & = 1, 2, . . . , iV-1, for suitably

chosen coordinate system. And then, for every one of those lattice points, we

consider a straight line that is parallel with jS and runs through that point.

The figure that consists of the hyper plane § and (2M-f-l)Λ*"1 straight lines

considered above will be called the n-th bundle of lines and will be denoted

by 8«.

In a similar way, we have ή2λ'2 n-th bundles of lines. The lattice point

of fin is defined as the point that lies on some straight line of ΰrt at the

distance of k/2n~ι {k is an integer and \k\ ί= 2n~ι) from the corresponding hyper

plane. Thus 2» has (2n-f-lVγ lattice points.

For any pair of lattice points Λι and Λ2 of 2« such that they lie on the

same straight line and r(Au Λ2) -l/2n~\ there corresponds the difference

JX(A) = X(Ai) - X(A2), which we shall call the variation of X{A) relating

to 2«.

Let us put
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It is easily seen that ψΛr) is monotone for small r > 0 and tends to 0 as

r -> -f 0.

Thus we may state the following theorem for Wiener process X(A),

when A runs in the unit sphere of EN with center O.

THEOREM 1. If c> 8N+ 1, for almost every ω, there exists a positive number

β = p{ω) such that

(6) r = r(A,B)<p implies | X(A) - X(B) \ ̂  φΛr),

Proof. Let us put c = 8Λf+l-f e with a positive number e. First we take

one of the straight lines belonging to 2«. The lattice points lying on it are

arranged as AQ, Au , A2» in a order of their position. It is noted that on

that straight line X(A) may be considered as a usual Wiener process with a

linear parameter.

We shall define an,m,ι as the probability that the inequality

(7) I X(Am+ι) - X(Aι) I > ψΛm!2n'ι)y m = 1, 2, . . . , in2 log w],

/ = 0, 1, . . . , 2* - 1 ,

holds. Since an,m,ι is independent of /, we may write simply an,?n. Then we

have

an,l = OCn,2 = « . . = OCnt[n2losn]

for sufficiently large n (See Sirao [2]).

Noting that X{A) - X(B) is a normal random variable with mean 0 and

variance r = r(At B), we have the following asymptotic relation.

(8) P(\X(A)-X(B)\>φΛr)) = O(l)

for sufficiently small r > 0. Therefore we have

(9) α».r»MπB»j = O ( l ) 2 - π Λ V ( 2 V f l + ε / 2 )

If we consider such a probability for every straight line belonging to 2«, in a

similar way, we have

(10) ΣΛ2-vΛ2w + l) W(logw)2 n{OU^

The w-th term of the left hand side of (10) is not less than the probability
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that there exists at least one straight line belonging to 2« and exists at least

one pair (m, I) satisfying the inequality (7). The convergence property of (10)

shows, by Borel-Cantelli's Lemma, that there exists a positive integer nQ = nQ(ω)

such that n>no(ω) implies the validity of (6) for every variation relating to

Sn with probability one. Hence the theorem is proved for the particular case

where both A and B are the lattice points lying on the same straight line

of £„ (n> no(ω)) and r(A, B) = m/2n'\ m = 1, 2, . . . , ίtflognl.

Next we shall prove the theorem in a general case. For any points A and

B in the unit sphere with center O, if r=r(Af B) is sufficiently small, there

exists a positive integer n such that

(11) in2 log nl/2n <r*=ί{n-l)2log (n - 1)]/2M"1.

Here r must be very small so that n > no(ω). Then there is some straight line

& belonging to one of the w-th bundles of lines that is the nearest one to the

segment AB. Let A\ and Bι be the projections of A and B on S respectively.

Then there are some lattice points A2 and B2 lying on A which are the nearest

ones to Ai and Bi respectively and satisfy the inequality r(A2, B2) ^ r(A, B).

These facts imply

(12) r(A2f B2) = m/2n~\

2) <c1logn/2n'1 and rB = r(B,B2) <c2logn/2n~\

where cι and c2 are absolute constants and m is an integer that is not less

than [2"Vlog(ra-D].

Let us put c* = c - e/2. Then c' > 8N+ 1. Since n > n^ω)> by using the

above conclusion for the particular case, we have

(13) I X(A2) - X(B2)\ ύ ψc(ml2n'γ) ^ ψcΛr).

The second inequality is derived from the monotony of ψc(r). Therefore we

can prove, from (4) and (13),

(14) I X(A) - X(B) I έ [ X(Az) ~ X(Bz) \ -f I X(A) - X(A2) \ -f | X(B)

-: ψc(r) -f a>j2N(\/rA | log rA I + y/rβ\log ¥B|)

< yJr(2N\logri -j-cf log! logr|) + bjnϊogn]2n,

where b is a constant determined by cu c2 and a. Noting that r is of order

(n* log n)/2n> we can easily prove by the simple computations that the last side

of (14) is less than ψc(r). Thus we have completely proved the theorem.



UNIFORM CONTINUITY OF WIENER PROCESS 57

§3. Lower estimation

Fist let us state the theorem.

THEOREM 2. If c < 1, for almost every o>, there exist infinitely many pairs

(Af B) in C such that the inequality

(15) \X(A)-X(B)\>ψc(r), (r=r(A,B)\

holds.

Before proceeding to the proof of this theorem, we shall state some simple

lemmas.

LEMMA 1. Let {F&}, k = 1, 2, . . . , n, be an arbitrary sequence of events

in (Ω, 23, P). Then we have, if Pi\JFk)> 0,

(16) 2 Σ P(FjDFk)^LP(U Fk)Tι(ΈP(Fk))2- ΈP(Fk).

The proof is found in K. L. Chung and P. Erdos [3].

LEMMA 2. Let AX(A) = X(A}) - X(A[) and J2X(A) = X(A2) - X(Aί) be

arbitrary variations relating to the n-th and (n+m)-th bundles of lines respec-

tively and assume that A\A[ and A2A'2 be parallel ivith each other. Then, if the

distance between tivo segments is longer than n/2n~\ the correlation coefficient

ri,2 of ΔιX(A) and J2X(A) is less than (λnλn+mV1. Here fa is defined by

(17) λk^^-Wtf

Considering the results obtained by P. Levy (See [1] §61), we can prove

this lemma by elementary considerations.

LEMMA 3. Let JιX(A) and Δ2X(A) be what were defined in Lemma 2 and

n be large. Let us put

(18) £Ί={ω AX(A)>ψc(lί2n-1)} and £k=<ω 42X{A) > ψc(l/2n+m'1)}.

Then, if riy2 < (Aŵ w+w)"*1, ive can find an absolute constant d satisfying

(19) P(EiΠE2) <dP(Eι)P(E2).

Andy if (λnλn+m)'1 *s T\t» ^ 1/2, we have

(20) PiEiDEo) ^O(l)e'ai'nbm)P(Eχ)

for some a > 0,
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Proof. By the asymptotic relation (8), it is proved that

(21) P(Ei) P(E2) = 0(1) {λnλn+m)-1e-{Kt+λa+wim.

Under the assumption 0 < n,o < QnΛn+m)~\ the left side of (19) becomes

(22) P(Ei Π E2) = (2τr)-1(l - rYm f Γ e'{χ2+y2'2rxy)m-r2) dxdy (r =

^ 0(1)λnϊme'λn^12 [ 3hi+

If rj,2 ^ 0, (19) is a trivial inequality. Thus, from (21) and (22), we can find

d satisfying the inequality (19).

If 7Ί,2 = 1/2, from the second equality of (22), we have

P(E1ΠE2) έ

^ O ( l ) ^ α ( M + 7 Π ) P ( £ ) , (αr>0),

which proves the inequality (20).

Proof of Theorem 2.υ For every variation JnjX(A), / = 1, 2, . . . , 2nN,

relating to the n-th bundle of lines,2) let us put

(23) Enj = {ω AnjX(A)>φc(l/2n-1)}, y = l, 2, . . . , 2rt(2Λ + DΛ'"1.

Then we have

(24) v V l / 2

n j n

from the assumption c < 1. Let us put

En = U £*,,- and £ m = U £«.
j n = m

In order to show that \imP{Bm) = 1, we shall prove that P(Bm) = 1 for everv ra.

Suppose P(£m) < 1 for some m. And let P(Bm) = 1 - 5 , (5 > 0). Then

we have

!> We owe the method of this proof to K. L. Chung and P. Erdδs. But we need
some modifications.

2) Hereafter, for every n, we take one of the n-th bundles of lines that contains the
same hyper plane.
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<25) P(Bϊn)=P( Π EC»)=0.
it - m

For any ε such that 1 - δ > ε > 0, there exists an integer / satisfying the follow-

ing inequality:

(26) P( U E) > l-δ-ε.
n-n*

I

If we write Gmj^Bm- U En, we have
n - vι

(27) P(Gm,ι) < ε.

i

As is easily seen, for the given event U En, there exists a large K( > m)

such that

(28) P(Ek,p\( U EnY) > I P(Ek.P)

holds for any k > K and any p > 0. Hence, from (24) and (28), we have.

k p

Therefore we can choose an integer K! > K such that

(29) 1 < Σ Σ P ( £ u Π ( U EnY) ̂  2,
k=K p n-m

where the sum Σ should be properly added when k = if or = iί'. Thus we

obtain, from (25), (28) and (29),

(30) ΈΈP(Ek,p)<4/δ.
k = K p

Furthermore we consider the following relation:

(31) Σ Σ P(Ek,p Π Ek p.) έ TίP(Ek,p Π Ek>,p>) + d^2P(Ek,P) P(Ek>,p>)
K~J«k'~Kr p,ρf

where Σ 1 or Σ 2 indicates the summation extending over those k, k\ p and p'

for which the corresponding correlation coefficient r satisfies the inequality

r< (λkλuΎ1 or 1/2^ r^(λkh')'1 respectively, and Σ 3 indicates the summation

of the rest, that is, the case r > 1/2.

The sum Σ 3 ivS not larger than 2 Σ ΣP(fi,/») < 2 > , since such a circum-
k-K υ 0
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stance may happen only in the case where one of the corresponding segments

is a sub-segment with half length of the other.

Concerning Σ2> the number of k appearing in the summand is at most

Min ([λ log ft], K9) with some λ > 0,3) and for each pair (ft, p) the number of

P appearing there is at most of order (2k'~kk)y, which is deduced from Lemma 2.

Hence we have

Kf λΓ+fλlogλr]

(32) Y?P(Ek,PnEk,,p.) ^ Σ Σ CΣ2P(Ek,PnEk,,p,))
h = K k'=k p,ρ'

K> k+[\logk)

Σ Σ (Έ2

k^K k'=k p,p'

= od)Σ Σ - „,
X' [λlogfe] _ .

Ar = X ' i = l

which is less than a certain absolute constant M Combining the obvious

inequality

' ju, ?/' K^k^K' y

we have

(33) Σ
K^k<k'^K' p, p'

Now let us put Fk,p = Ek,p Π ( U £«)'. U U f t ^ being the subset of

Gm,/> we have

(34) P ί U U F ^ X e .

From (29) and (30), we have

A'' K>
foςΊ I y *SΓ\ NΓ^ Ό( J? \ ^ "SΠ "SΓ* U( 7?, \ ^ Λ IH
\OD ) 1 \ ^ / / j ΪXΓh^p) == X t ̂ j JΓ \Jl>k,p) "^ *i/ 0.

k-K p k=K p

Applying the Lemma 1 to F*,/>, we obtain, from (34) and (35),

(36) J * Σ M , Σ P ( ^ ( ί Π £ * . f ^ ) ^ 2 ^ Σ ^ ; ΈP(Fk,p Π Λ ^ ) i j - j .

Since e may be chosen arbitrarily small, (33) and (36) are incompatible. This

3 ) λ may be taken as 3. In fact, we can easily prove that W < [λ log k] implies
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contradiction proves that 5 = 0. Hence P(B?n) = 1 for every m, which proves

the theorem for the particular case where both A and B are lattice points.

This completes the proof.
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