NOTE ON THE HARMONIC MEASURE OF THE
ACCESSIBLE BOUNDARY OF A COVERING
RIEMANN SURFACE

MAKOTO OHTSUKA

Introduction. The fcllowing relation was set up in [5] for an open cover-

ing Riemann surface # with positive boundary over an abstract Riemann sur-
face R:V

(1) 2(B, UR)) = u(P, AR)) 2 (P, AR 2 u(P, UR™)) = 0(P),

when the universal covering surface R’” of the projection is not of hyperbolic
type; when R'” is of hyperbolic type this relation is reduced to

(2) (P, A(R)) = p(P, A(RT)) = 0(P).

In the present note we shall give some contributions to the clarification of these
relations in two special cases.

1. We suppose first that R has a positive boundary, that R'” is not of
hyperbolic type, but that R covers a finite number of points {Pn} of R only in
finite times, where the universal covering surface (R —{P.})” is of hyperbolic
type. Under these hypotheses we shall show

3) 2(P, AR™)) = (P, AR™)).

For that purpose it is sufficient to prove (P, A(R™)) = u(P, A(R")) on account
of (1).

Map R® conformally onto U:|z] <1 and denote by f(z) the function which
corresponds to U-R">R->R. Let I be an image in U of any determining
curve of an accessible boundary point of R relative to R. If it is shown that

i) I terminates at a point on I':|z|=1;?

ii) f(2) has an angular limit at every point of E~— E;, where E is the
image on I of A(N) and E; is a set of linear measure zero;

iii) FE is linearly measurable;

then Lemma in [5] will give u(z, E) < (P, A(%”)). On the other hand, the

Received February 17, 1951.

1 We shall follow the definitions and notations in [5] and make use of results in:it without
proofs. )

2 This point is called an image of a point of A(R).
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same reasoning as in Theorem 1 of [5] yields u(z, E) = u(P, A(R”)). Thus
there will follow the required inequality x(P, A(R”)) =u(P, A(R")). In the
following we shall prove i), ii), iii) stepwise.

i) Suppose that ! oscillates in U, and let y be an open arc to which [/ clusters.
According to Theorem 3.5 of [4], the function mapping U onto R is univalent
in a sufficiently small vicinity of every regular point on I.¥ Hence f(z) does
not take { Pn} near it, because R covers { P»} only in finite times. On mapping
(R —{Px})” onto a circular disk and applying Koebe’s theorem, we see that
does not oscillate near any regular point. Therefore y consists of singular
points only. Since the case in which R is conformally equivalent to a sphere
minus three points is excluded at present, hyperbolic fixed points exist and are
dense in r. Let z, be any hyperbolic fixed point of y. An image of a closed
curve on R terminates at 2o and / intersects it in any neighborhood of zo. This
contradicts the fact that every determining curve of an accessible boundary
point of f tends to the ideal boundary of R. Thus it has been shown that I
terminates at a point on 7.

ii) If M is simply-connected, it is mapped conformally onto U. Since the
function f(z) does not take {P,} near I, it has always an angular limit at
every point of E.

Hence we suppose that R is not simply-connected. A Green’s function
G(P) exists on it, because it has a positive boundary. The function G(F(z))
considered in U has angular limit zero everywhere on I minus E; with linear
measure m(E;) =0. Let 2z, be any point of E— E;, and ! be the image, termi-
nating at z), of a curve determining a point of (R). This curve converges
to an ideal boundary component Pg of R.” We take a domain R of the de-
termining sequence of Pg such that R; does not cover {P»} and R —qT (N
=closure of ) is not simply-connected, and we denote its relative boundary
by C, which is a simple closed curve. Every image in U of R; is a simply-
connected domain bounded by some points on I and by cross-cuts of U which
are images of C.¥ Let A be any angular domain at z. Since G(P(z))-0 as
A D z- 2, the images in U of C do not intersect A near z. Further they
have no common point with / near z,. Therefore there exists a simply-con-
nected domain A;, whose closure contains parts near 2, of both A and / and is
contained in an image in U of R,. Since R; does not cover {Pn} and f(z)
tends to a value of R along /, f(z) tends to this value when z approaches z,
from the insideof any angular subdomain of A, with its boundary contained in
A. By the arbitrariness of A it is ccncluded that f(z) has an angular limit

%) For regular and singular points on [, see [4], Chap. III, §4.

4 For an ideal boundary component, see [4], Chap. III, §5.

S) Details of the boundary correspondence of ideal boundary components in the conformal
mapping will be found in a paper, which is now in preparation.
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at 2.

iii) Map the universal covering surface R of R onto D:lw| <1 or lw| < =
ot |w| £ «, and denote any branch of w(f(z)) by w(z). f(z) has a radial limit
at a point on I" if and only if w(z) has there a radial limit lying inside D. By
the aid of the theory of functions of real variables (cf. [2], pp. 270-175), the
set E; where w(z) has radial limits in D is linearly measurable. Since E — E,
CE: and m(E,) =0, E is measurable too. Thus the proof of (3) is completed.

2. Next consider the case in which R is a subdomain of R and has a posi-

tive boundary. Then R’ =R" and is clearly of hyperbolic type. We now want
to show

4) 2(P, AR)) = u(P, AUR™)).

When R is compact in R, R — R is of positive capacity on R. Hence R is
of F-type by a theorem due to R. Nevanlinna [3] (cf. Theorem 3.3 of [4]).
Therefore w(P) = p(P, A(RT)) = u(P, A(R)) =1 by (2).

In the fcllowing we assume that R is non-compact in R. If R—-R is of
capacity zero on R, it is shown that u(P, M(N)) =0 as follows. Cover R — N
by a sequence of neighborhcods {N:}, in each of which a local parameter is
defined. By Evans’ theorem [1] there is a harmonic function hx(P) >0 in every
R N N: such that he(P)—>+  as P> (R —R) N Nr. We can extend this to a
positive function Hi(P) on Rt by Theorem 2.1 of [4], because R has a positive
boundary by Lemma 1.3 of [4]. For an arbitrary point P,ER set H(P)
=1, H(P)
TSE H(R)'
as P-»R ~R. Therefore u(P, A(R)) £eH(P) for any ¢>0. By &->0 there
follows u(P, A(R)) =0. Thus #(P, WR”)) = (P, A(R)) =0 by (2).

We pass to the case when ® — R is of positive capacity on R. Let U(R)
be the class of all the non-negative continuous subharmonic functions {«(P)} on
R such that #(P) =<1 and lim #tP) =0 as i 3 P tends to the ideal boundary of
R, and denote the upper cover of W(N) by #(P, A(R)). This is harmonic on
R by Perron-Brelot’s principle. Similary as above, cover the boundary R of R
in R by {N:}. Replace any #(P) € W(N) in NtNR by the solution of the ordi-
nary Dirichlet problem with boundary value #(P) on NYNR and 1 on RN Ny,
where ﬁg denotes the boundary of N:. The replacing function still belongs to
11(N) and tends to 1 as the variable approaches every regular point of R N Ny.
Therefore also #(P, A(N)) has this property. Similarly as in Lemma 4.1 of [4]1
we can find a positive harmonic function in &t which tends to + « as P ap-
proaches every irregular point of R° M\ Nw. Then we obtain as above a positive

This function is positive harmonic in R and tends to + «

harmonic function H'(P) in 3t which tends to + <« as P approaches every ir-
regular point of R°. Therefore min(1, #(P, A(R)) +cH'(P)) for any >0 be-
longs to the upper class R(RN). ¢ being arbitrarily small, we have
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(5) 2(P, AR)) = p(P, AR)).

Let us take any #(P) € UW(N) and v(P) € B(N”) and put «(P)—v(P)
= 2,(P), where u(P) is considered on R*. 2 (P) is continuous subharmonic on
NR” and | im %(P) =0 as P-»U(R") or as the projection into R of P tends to
the ideal boundary of ®. Suppose u;(P))>0 at a certain point P, R", and
let D be any component of the open set {P;u(P)>wu(Py)} on R”. The pro-
jection of D into R is compact in R, and does not contain any points of ® — R,
which is of positive capacity. Therefore by Theorem 3.3 in [4] D is of F-type
relatively to R and hence is of D-type (cf. Theorem 4.2 of [4], or §6 in [5]).
Consequently #:(P) — u(Py) €0 in D, because every accessible boundary point
Q of D relative to R lies above R and so lim u;(P) = u;(Py) as P approaches
Q. But it contradicts the definition of D. Thus there holds #,(P)=0 every-
where on R”, that is, u(P)<v(P). Accordingly £(P, U(R)) = u(P, A(R")).

This inequality together with (2) and (5) yields (4).
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