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The purpose of this paper is to characterize the Riemann space whose line

element is given by

(1) ds* = a(otyg*tW)dx*dtf+giv{xi)d&dx»'.

Through the whole description we use the indices i, j , a, β9 γ, λ, μ, v when they

run as follows

*\ j = 1 , 2, . . . , n

a, ft r = l, 2, . . . , *

λ, μ, * = * + l , k+29 . . . , n

and a(x') and gχμ.(x*) shall mean to be functions of x\ . . . , xn, gap(xΎ) a func-

tion of x\ . . . , xk and gλμ(#v) a function of Λrfe+I

? . . . , xn. This Riemann space

(1) contains as special cases many important spaces such as a directly decom-

posable space, a conformally separable space and a space with torse-forming

vector field, K, Yano [1] characterized a conformally separable Riemann space

by umbilical surfaces contained in it and the proof of Theorem 1 of [1] leads

to the following:

THEOREM. The necessary and sufficient condition for an n-dimensional Rie-

mann space to have an arc-element given by (i) is that it has 7%—kparametric

family of k-dimensional totally umbilic surfaces and k-parametric family of n-k-

dimensional surfaces which are orthogonal to the former.

We characterize this space (1) from another point of view.

I. V/e begin by determining the Riemannian connection, namely the euclidean

connection without torsion, attached to (1). We can take k Pfaffians

(2) ωβ=J>βp(

such that
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Then, according to E. Cartan, Pfaffians ωαp satisfying the relations

(3) (Oa^ZcOfiCύpal, " V = — O)?a

are uniquely determined. Next we take

(4) πλ=p&

such that

Putting

(5)

we get from (1)

For these π,- there exist uniquely determined Pfaffians m, such that

(6) 7τ/ = [Try, τr/ i] , 7Γ/y = - τry, .

We get by (3) and (5)

Then by (β)

\_da9 ίoα]-f-β£ωp, ίtfβα]:

Taking (5) into consideration we have

L α> a «•» •

As 7rβ's and πχ's are linearly independent, we can put

(7\ * da _n

where

(9) C*ij = C*ji.

As ωαβ's and TΓ '̂S are skew symmetric with respect to indices a and β we get

for αr^β

(10) Cα^ί-fCβαi^O (αr=^/9).

For αr#/9Φr we get by (9) and (10)

Hence

(11) Cα,τ = 0

For α = j3 we obtain by (7)
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da_

As τr, 's are linearly independent da/a can be written uniquely as a linear combi-

nation of 7r, 's. So Cααi's depend only on i and not on or. We put Ca*i = Ci and

we have

(12) ?- = C ^

By (9) and (10)

(13)

and by (7)

= ~ C e = — Caaa

Taking (11) and (13) into consideration we have

( 1 4 ) TΓαβ = ίί>αp ~ Cp 7Γα

Next by (6) and (8) we have

Considering (2) and (4) and remarking that the terms [dxa, dx$~\ appear only

in Ctfλ?[>α, 7r,0 we get Caxp = CPxa. Then by (9) Ca(u = CPax, while according to

(10) Cαpλ+CpαΛ=0, and we get

Then by (8)

As Cααλ = C λ we have

( 1 5 ) 7?αλ= —'Cλ7Γα —

Thus we obtain the following relations by (12), (14), (15) and Caiu

(A)

2. Now we introduce a Riemannian connection into our space by

dA = 7Γj e;, dei
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and develop the tangent euclidean spaces on a euclidean space. Then for

point A = A-\-tχβχ we have

(16)

When we develop along the ^-dimensional surfaces #λ = const, we have by (4)

7rλ = 0. Then </A = 7ταetf and

Now we assume a{x{) contains at least one ΛΓ\ In this case, owing to (12),

there exists among Cχ's at least one Cx which is not zero, and consequently

there exist tx's such that

(17) l-fCλ*λ = 0.

When we develop along ^-dimensional surfaces #λ = const, we get for the point

A satisfying (17)

(18) rfA=(Λλ+fμ7rμλ)eλ.

The points A-A+tλeχ for tx's satisfying (17) generate w-&-l-dimensional plane

Po in the tangent euclidean space at A of the Riemann space (1). (18) indicates

that when we develop along the ^-dimensional surfaces #λ=const A is a fixed

point or describes a curve touching to the ^-dimensional plane P spanned by

the vectors efe+l3 . . . , en with A as their origin. Now we take en on the perpen-

dicular from A to Po. Then any point Ik on Po can be represented by

where p runs from k+l to n—l and tp's are arbitrary numbers, while t is a

fixed function of x*'s. For the frame thus chosen the relations (A) hold and

along surfaces #λ=const we have (18) and (17), and so

holds for any tp9s (p = k-\-I, . . . , n-1). Thus

Hence we get from (A)

\ir— t

If we put Λr^const, we get 7rα=0 and so dA=πχβχ and —- = ~ τ ^ Thus

we obtain
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THEOREM 1. Let the square of arc-element of a Riemann space be given by

(1), where a(x{) actually contains at least one xx. Then there exist in the tan-

gent euclidean space at any point A of the Riemann space an n-k-dimensional

plane P through A and an n — k — 1-dimensional plane Po lying on Pand not passing

through A, which have the following property

1°. If ive develop along the k dimensional surfaces #λ = const, A describes

an arc perpendicular to P at every instant and any point on Po is either a fixed

point or describes an arc touching to P,

2°. If we develop along n- k-dimensional surfaces #α = const, A describes an

arc touching to P, and when we denote the length of the normal from A to Po

by t and the orthogonal component of an arc-element of A in the direction of

this normal by πn9 7τn/t is a total differential of a certain function of #λ's.

3. Before stating the inverse of theorem 1 we prove a lemma.

LEMMA. Let ωa (# = 1, , k) be linearly independent Pfaffians with n vari-

ables. If there exist Pfaffians ωa? such that

then by a suitable choice of variables x* (/=1, . . . , n) we have ωa=p
and for these variables Σ(ω*) 2 does not contain xλ {λ = &-f 1, . . . , ή)9 namely

The proof, which is quite natural, runs as follows. By Frobenius's theo-

rem [2] p. 193 variables stated in the lemma exist. Writing the condition

o>̂  = [>p, ω?oe] more fully we have

dωa(δ) -δωa(d) =ωt{d)ωpa(δ) -ωz(δ)ω?a(d).

Let the symbols d and δ be such that

(dx\ . . . , dxk, 0, . . . , 0) and (0, . . . , 0, δxk+\ . . . , 9xn).

Then

And we have

This shows Σίω<*)2 d ° e s n o t contain #\

Now the inverse of theorem 1 is

THEOREM 2. If an n dimensional Riemann space has coordinate system xι in

which the conditions Γ and 2° in theorem 1 hold, then the square of the arc-

element of the space is of the form (2), a(x') containing at least one of xλ's.
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Proof. In the tangent euclidean space at A of the Riemann space we take

a component eΛ of an orthonormal system of vectors ej, . . . , e n on the perpen-

dicular from A to Pΰ9 and components eλ (λ = k+l, . . . , n) on P. Let the

Riemannian connection be given by dA — πiej, ctei = πijGj. By the condition 1°

we have dA=πΛeΛ, which leads to τrλ=O. So in general

(19) τr

For A = A + f λ e λ we have by (16)

The latter half of 1° shows that d~A does not contain e β for # λ =const and so

As A moves on Po, tn-t is constant, while tk+i, . . , tn-\ vary freely. So

7rα+ίτrrttf=O, 7rα/>=0 (p=k+l, . . . , n-1). In general owing to (19) we obtain

for suitable Caχμ

( 2 0 ) ^αλ = #Mλ—£—CαλμTΓμ.

From the condition 2° <2A=7rλeχ along the surfaces #*=const, and so 7rΛ=0.

In general

(21) π9=p.ι(#)Λfi.

By the latter half of 2° for x«-const there exists a function a=a{jxϊ) such that

πn/t= -da I a. So in general

(22)

where a = a(x') and C/s are suitable functions.

Let ωa = πΛ/a. Then

By (20)

A s 7r^=C7Γι7rιβ], w e h a v e

(23) Λ < = [7Γβ, TΓpJ-CpCTΓp, 7Γα]-hCαλμ[7Γλ, 7Γμ].
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Here by (21) and πa~aωa there are not terms Zdxλ, dxμ1 on the left side aω'a
-Qijldx1, dχi~\, while on the right side CαλμOλ, 7rμ3 = nμ[/fo\ dχV\\. So the last

terms must be zero, namely Cα λ μ = Cα μ λ. We have by (23)

Then putting

(24)

we have

As ωap are shew symmetric with respect to indices a and β, we have by lemma

K Thus

By (22) a(xι) contains at least one of *λ 's.

4. Now we return to 2 and treat the case in which a(x*) in (1) does not

contain any xλ. This case reduces to the case a(xi)=l. When a(x*)=l, we

have by (12) C, =0 and by (15) τrαλ= -Cβλμ7rμ. Along surfaces #λ = const we

have 7rax = 0 and consequently tfee = 7rePep. Hence

THEOREM 3. If the square of arc element of an n~dimensional Riemann space

is for a suitably chosen coordinate system xι

then there exists in a tangent euclidean space at any point A of the Riemann

space an n — k-dimensional plane P satisfying the following conditions:

i°. // we develop along k-dimensional surfaces xλ~ const, A describes an

arc which is perpendicular to P at any instant, and P moves parallel to a fiixed

n—k-dimensional plane.

2°. If we develop along n-k-dimensional surfaces xa -const, A describes an

arc which is parallel to P.

The inverse of this theorem is also true.

THEOREM 4. // two conditions Γ and 2° in theorem 3 hold for suitably

chosen coordinates x* of an n-dimensional Riemann space, then the square of arc

element of our space is of the form

Proof. In the tangent euclidean space at A of our Riemann space we take

eλ (λ = k+l, . . . , n) on the plane P. Then by the condition 1° we have 7τλ = 0
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along surfaces xx = const, and in general

(25) 7Γλ=ίλμ(Λf')ώfμ.

The latter half of 1° indicates deλ = 7rλμeμ along ΛΓλ = const and consequently

παλ~0. So in general

(26) 7Γαλ=~Cαλμ7Γμ.

By the condition 2°

(27) πΛ=p*(χi)ώfl.

By (26) and (6)

Taking (25) and (27) into consideration we get Cαλμ[τrλ, 7τμ]=0 and we have

< = D ^ ? ^α] and by lemma *Σ(πΛy=g9p(xr)dx*dx*.

Remark. In place of 1° and 2° in theorem 4 we take the following two

conditions:

1°. If we develop along ^-dimensional surfaces #λ=const, P moves parallel

to a fixed n- ^-dimensional plane.

2°. If we develop along n~^-dimensional surfaces #α = const, P moves paral-

lel to a fixed n — ̂ -dimensional plane.

Then by 1° 7rαλ = 0 for #λ = const and by 2° τrαλ=O for xa= const So in

general 7rαλ = O, and by (6)

7Γμλ].

Then by lemma *Σ(π*)2:=g<xϊ(yr)dyady? for suitably chosen coordinates y'^y'

and Σ(7Γλ)2=<§
rλμ(2v)ί/2λί/2μ' for suitably chosen coordinates 2l# = 2f'(#'"). If we take

)9 uλ=zλ(x*) as coordinates we get

This space has been treated by many authors.

5. Now we treat the special case ft=/ί —1. In this case the condition 2° in

theorem 2 is unnecessary. The second part of 2°, namely the condition that

Ίinjt is a total differential for xa = const, is always satisfied. We will prove the

first part of 2° is also satisfied under the condition 1°. By 1 the equations (20)

hold, which in this case reduce to 7rtfW = 7rα/ί-Cα^M7rw. Consequently

1 7tn9 —'-
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πn^Lπ*) JTtttt] = J7Γ(ί> ~r~ —Cannon l — CannLftn, <Tα].

By Frobenius's theorem [2] p. 193 for suitably chosen coordinates y*~ya(χi) and

ynzzyn(%3) we have

As 7τ«-0 for xn~ const by (19), yn is a function of only one variable xn. For

coordinate system yi thus chosen the first part of 2° is satisfied, and we have

THEOREM 5, The necessary and sufficient condition for an n-dimensional

Riemann space to have an arc element which can be writen in the form

(or, A r = l, 2, . . . , Λ - 1 )

is f/zatf fAer£ £#ιsfs # jpOMif Po in the tangent euclidean space at any point A of

the Riemann space which has the property that, if we develop along any hyper-

surface of one-parametric family of hyper surfaces^ A describes an arc perpendicular

to APo and PQ describes an arc which touches the straight line AP0 or is a

fixed point.

Especially we treat the case gnn{x{)~gnn(xn), which reduces to gnn(xi)=l>

Then in 2 we have πn = dxn and consequently πf

n-[πa, 7r«w]=0.

By (B) we have rr(X« = 7Γα/ί-Cαn«7Γn. So ~C t f r tn[X ? τrn] = O and hence Cα M n = (λ

Thus

(28) π** = ψ.

By (16) we have

(29) </(A-f ten) = (7Γα-*7r*Λ)eβ+ {πn+dt)en.

So on account of (28)

(30) d(A+ten) = (*n+dt)en.

Thus by development the point P0 = A-fίe« is a fixed point or describes an arc

touching to AP0.

Conversely we assume there is a point Po in the tangent euclidean space of

any point A of Riemann space which has the property that by development Po

is a fixed point or describes an arc touching to APOβ Then (30) holds and (28)

holds by virtue of (29). Consequently 7r̂  = [>«a? τ:«] = 0 and πn is a total differ-

ential of a certain function. Putting πn~dxn we proceed as in the proof of theo-

rem 2. Hence
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THEOREM 6. The necessary and sufficient condition for a Riemann space to

have an arc-element such that

ds^a{xiγg^{xΐ)dxΛdx^{dxny (a, β, r = l, 2, . . . , w-1)

is that there is a point Po in the tangent euclidean space at any point A of the

Riemann space such that by development PQ is a fixed point or describes an arc

touching to AP0.

This case has been proved by K. Yano (the so-colled Riemann space with

torse-forming vector field). If Pa is a fixed point we have by (30) πn-\-dt=Q and

then by 2 (B) da/a=dt/t+Caπa, namely a = ct, c being a function of x*. So

this case reduces to the case a{xi)=xn. The inverse is also true.

If k = n~l in theorem 4, the condition 2° is also unnecessary. Hence

THEOREM 7. The necessary and sufficient condition for the Riemann space

to have an arc-element given by

d&=8.ι(xΊ)άx*ά3fi+gfm(#){d3pγ (or, & r = l , 2, . . . , n-1)

is that there exists a direction P in the tangent euclidean space at any point of

the Riemann space such that if we develop along any hypersurface of one-pa-

rametric family of hypersurfaces P moves parallel to a fixed direction.

The special case in which gnn{xi):=zgnn{xn) holds reduces to the case gnnίx*)
= 1, which is treated in the remark of theorem 4.
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