CHARACTERIZATION OF CERTAIN RIEMANN
SPACES BY DEVELOPMENT

MINORU KURITA

The purpose of this paper is to characterize the Riemann space whose line
element is given by

%)) ds®= a(%') gap(57) dx* dxb -+ gy, (xF) da* dxt.

Through the whole description we use the indices 7, j, «, 8, 7, 4, #, » when they
run as follows

i.j =12 ...,n
a, B, r=1,2, ...,k
A, oy, v=k+1, k+2, ..., n

and a(x') and g,.(s7) shall mean to be functions of %', . . ., 2%, g.:(x") a func-
tion of %, . .., x* and g,.(x") a function of x**, . .., x”. This Riemann space
(1) contains as special casés many important spaces such as a directly decom-
posable space, a conformally separable space and a space with torse-forming
vector field. K. Yano [1] characterized a conformally separable Riemann space
by umbilical surfaces contained in it and the proof of Theorem 1 of [1] leads
to the following:

TueorReM. The necessary and sufficient condition for an n-dimensional Rie-
mann space to have an arc-element given by (1) is that it has n—k-parametric
family of k-dimensional totally umbilic surfaces and k-parametric family of n—Ek-
dimensional surfaces which are orthogonal to the former.

We characterize this space (1) from another point of view.

1. We begin by determining the Riemannian connection, namely the euclidean
connection without torsion, attached to (1). We can take k Pfaffians

(2) Wo=Pap(x7)dx?
such that
Gap(xT)dxdx* =3 (wq)™
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Then, according to E. Cartan, Pfaffians w.s satisfying the relations
(3) 0 =[wpwse],  Wap= —Wpa

are uniquely determined. Next we take

4) =P (&) dx
such that

G (2 dxrdxr =S (m)%
Putting
(5) zs=a(x')wq

we get from (1)
ds*=(mi)>
For these n; there exist uniquely determined Pfaffians r;; such that
(6) ni =[nj, mjil, Tij= —Tji.
We get by (3) and (5)
e =(aw.)’ =[da, w.]1+aw, =[da, w.]+alws, ws.]-
Then by (6)
[da, w.]+alws, wsel=[rs, mpal+[7r, 7aal.

Taking (5) into consideration we have
[Buﬁ‘(fzﬁ'*'waa"”cﬁ. ﬁg]'i'[—frax, m]1=0.

As rmy’s and 7)’s are linearly independent, we can put

(7) 6¢5'%‘a‘+w¢g—”aﬁ=caﬂi”i
(8) —H¢A=C¢xin’i
where

9 Ciij=Coaji.

As wq’s and 74’s are skew symmetric with respect to indices @ and 8 we get
for axp
(10) CupitCpoi=0 (axp).
For axfBxr we get by (9) and (10)
Ca(w-“—’ "Caar= —C(Wa:CTM:CYuﬂ: "'Ca'm: "Ca.”".’-
Hence
(11) Copr=0 (axp=x7).
For a=/ we obtain by (7)
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da
‘;’ =Cauiti.

As w’s are linearly independent da/a can be written uniquely as a linear combi-
nation of n;’s. So Cg.i’s depend only on ¢ and not on a. We put C..;=C; and
we have

(12) %"f: Ciri.

By (9) and (10)
(13) Copp= —Cpap=—Cppa=—Co=—Coax (axf),
and by (7)
Tap=Wep— CopiTi.
Taking (11) and (13) into consideration we have
(14) Tap=Wep—C3ma+Comg— Cagati.
Next by (6) and (8) we have
o =[re, tal+[rw, 7wl

=[7q, =Carpme—Convmvl+ [y, mun]

=—=Cau:lme, 751 = Counvlmas I+ [mus 7wl
Considering (2) and (4) and remarking that the terms [dx¢, dx*] appear only
in Caxl7a, ma] we get Caxg=Csra. Then by (9) Cupn=Csar, while according to
(10) Cupr+Csaa=0, and we get

Couir=0 (a=xp).
Then by (8)
o= =Canimi= — Caxgmp = Corumy
=—=Corema—Carpmp
= =Coarta—Carpp.

As Cyar=C) we have
(15) Tar=—Camte—Corpm,.
Thus we obtain the following relations by (12), (14), (15) and Cean=0;

Tap = Wap— C,Rnu'*‘ CaTiﬁ

(A) ma= —Cima—Carpmy
—‘-ia—r_—_C,‘m.
a

2. Now we introduce a Riemannian connection into our space by

dA=mr;e;, dei=rije;
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and develop the tangent euclidean spaces on a euclidean space. Then for a
point A=A+te, we have

(16) dA =dA+dhert+hdex=niej+dhert+hme;

= (et tmre)€at (Mt dir+Eumun)en.
When we develop along the k-dimensional surfaces x*=const, we have by (4)
m=0. Then dA=rm.e, and
Tet e =Ta+ I (Cata+ Carpmy) = (14 Corta) 7a.
Now we assume @(x’) contains at least one x*. In this case, owing to (12),

there exists among C,’s at least one C, which is not zero, and consequently
there exist £\’s such that

17) 1+Citr=0.

When we develop along k-dimensional surfaces x*=const, we get for the point
A satisfying (17)

(18) dA = (dh+tumpa)en.

The points A =A+1%,e, for ¢)’s satisfying (17) generate n—k—1-dimensional plane
P, in the tangent euclidean space at A of the Riemann space (1). (18) indicates
that when we develop along the k-dimensional surfaces x*=const A is a fixed
point or describes a curve touching to the k-dimensional plane P spanned by
the vectors ep,,, . . ., e, with A as their origin. Now we take e, on the perpen-
dicular from A to P,. Then any point A on P, can be represented by

A=A+1,eptte,
where p runs from k+1 to n#—1 and #,’s are arbitrary numbers, while ¢ is a
fixed function of x'’s., For the frame thus chosen the relations (A) hold and
along surfaces x*=const we have (18) and (17), and so
1+ Citi=1+4Cplp+Cut=0
holds for any ty’'s (p=k+1, ..., n—-1). Thus

1
C»=0, neE =g

Hence we get from (A)

Tap= ""Capp,fl'p., ﬂan=“7£;‘ -Caml.”ll.
(B) d
== FHCre.
If we put x*=const, we get 7,=0 and so dA=mex and @g:——’?. Thus

we obtain
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TueorReM 1. Let the square of arc-element of a Riemann space be given by
(1), where a(x') actually contains at least one x*. Then there exist in the tan-
gent euclidean space at any point A of the Riemann space an n-—k-dimensional
plane P through A and an n—k—1-dimensional plane P, lying on P and not passing
through A, which have the following property;

1°. If we develop along the k-dimensional surfaces x*=const, A describes
an arc perpendicular to P at every instant and any point on Py is either a fixed
point or describes an arc touching to P.

2°. If we develop along n—k-dimensional surfaces x*=const, A describes an
arc touching to P, and when we denote the length of the normal from A to P,
by t and the orthogonal component of an arc-element of A in the dirvection of
this normal by wn, ma/t is a total differential of a certain function of x’s.

3. Before stating the inverse of theorem 1 we prove a lemma.

Lemma. Let w, (a=1, ..., k) be linearly independent Pfaffians with » vari-
ables. If there exist Pfaffians w,; such that

(l);=[(1)g, wﬁ“]’ Wap = ~ Wpa,
then by a suitable choice of variables #* (i=1, ..., #n) we have w,=ps(x')dx®,
and for these variables >)(aw.)? does not contain x* (A=k+1, ..., n), namely

SHwq)?=gop(x7)dx*dxP.

The proof, which is quite natural, runs as follows. By Frobenius’s theo-
rem [2] p. 193 variables stated in the lemma exist. Writing the condition
o, =[ws, ws.] more fully we have

dwy(0) —0ws(d) = ws(d)wsa(0) — ws (8) wsa(d).
Let the symbols 4 and ¢ be such that

(v, ...,dx%0,...,0) and (0,...,0, ox**, ..., ox").
Then
—0wa(d) = wp(d) wpa(0).
And we have
0 (SN wa)?) =23 0ebwe= —~2D 0. wp0pe=0.
This shows S)(w,)® does not contain x*,
Now the inverse of theorem 1 is

TuarEOREM 2. If an n-dimensional Riemann space has coordinate system x in
which the conditions 1° and 2° in theorem 1 hold, then the square of the arc-
element of the space is of the form (1), a(x’) containing at least one of x"s.
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Proof. In the tangent euclidean space at A of the Riemann space we take
a component e, of an orthonormal system of vectors e;, . . ., e, on the perpen-
dicular from A to P,, and components e, (A=k+1, ..., n) on P. Let the
Riemannian connection be given by dA=m;e;, de;=m;je;. By the condition 1°
we have dA = e,, which leads to 72=0. So in general
19) mv=Pa (%) dxk.
For A=A+te\ we have by (16)

dA = (e+ hra) €+ (mat+di+E,man) er.
The latter half of 1° shows that JA does not contain e, for x#*=const and so
mat+tmae=0. _

As A moves on P, t,=t is constant, while 41, . . ., {4y vary freely. So
Tattmne=0, mep=0 (p=k+1, ..., n—1). In general owing to (19) we obtain
for suitable Cqay

(20) Tar= 671}‘“—; - Ca)\un'y,-

From the condition 2° dA=me, along the surfaces x*=const, and so z=0.
In general

(21) Ta=Pap (xi)dxﬂ-

By the latter half of 2° for x*=const there exists a function a=a(x?) such that
ma/t=—dal/a. So in general

(22) T 98 Com

where a=a(x) and Cy’s are suitable functions.
Let w,=ny/a. Then

= =[da, w1+ aw;=[da, fai]+aw;
= [_{1;1 , za]+aw; = [ - %ﬁ +Cs7s, 7:,] + aw!,.

By (20)

[7i, miel=[rs> msal+[mr, mrel
=[7fﬁ, nﬁa] +[7T)\, Cc).uxy.—ank%]
=[.’T;x, 71'ﬁa]+cam[7:,\, Tfu]"‘zlt‘[n'n, 7T¢].

As 7!, =[n;mi.], we have

(23) awy=[rs, m3a]—Colms, mal+Carulmr, mul.
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Here by (21) and m.=aw. there are not terms [dx*, dx*] on the left side aw’,
=qi;[dx?, dv’], while on the right side Cau[m, 7,]=7.[d**, dx*]. So the last
terms must be zero, namely Coyu=C,u. We have by (23)
ol =[ws, ] —Colws, 7al.
Then putting
(24) Wpe=mpa—Cimat Cary
we have
wl,=[ws, 0ze].
As w,p are shew symmetric with respect to indices @ and 8, we have by lemma
S (we)?=gus (x7)dx*dx*. Thus
ds*=3)(mi)*=30(me)"+ 2} (7) *= 23(awe)*+ 35 (m)*
=a(x')*gap(X7) dx*dx® + g1 (x7) d* dx.
By (22) a(x') contains at least one of x*’s.

4. Now we return to 2 and treat the case in which a(x?) in (1) does not
contain any #*. This case reduces to the case a(x’)=1. When a(x’)=1, we
have by (12) C;=0 and by (15) maa=—Cuyumy. Along surfaces x*=const we
have 7,,=0 and consequently de.=r,;€;. Hence

TuEOREM 3. If the square of arc element of an n-dimensional Riemann space
is for a suitably chosen coordinate system '

ds®=gqs (x7)dx°dx®+ g (x7) dx* dx*,
then there exists in a tangent euclidean space at any point A of the Riemann
space an n—k-dimensional plane P satisfying the following conditions :
I°. If we develop along k-dimensional surfaces x*=comst, A describes an

arc which is perpendicular to P at any instant, and P moves parallel to a fiixed
n—k-dimensional plane.

2°. If we develop along n—k-dimensional surfaces x®=const, A describes an
arc which is parallel to P.

The inverse of this theorem is also true.

THEOREM 4. If two conditions 1° and 2° in theorem 3 hold for suitably
chosen coordinates x' of an n-dimensional Riemann space, then the square of arc
element of our space is of the form

ds?=gup(x7)dx*dx®+ g, (x7) dx> dx.

Proof. In the tangent euclidean space at A of our Riemann space we take

e, (A=k+1, ..., n) on the plane P. Then by the condition 1° we have =0
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along surfaces x*=const, and in general
(25) =D (27) dxt.

The latter half of 1° indicates dex=m.e, along x*=const and consequently
mar:=0. So in general

(26) Tar™= _Cu)‘uﬂu-
By the condition 2°
27 7o =Pas(x?)dx3.

By (26) and (6)
al,=[ns, msal+[mr, mrel =75, mped+Courplm, ml.

Taking (25) and (27) into consideration we get Cqu[m, m,]1=0 and we have
7! =[ms, 73] and by lemma S)(7.)?=gus(x7)dx*dx".

Remark. In place of 1° and 2° in theorem 4 we take the following two
conditions :

1°. If we develop along k-dimensional surfaces x*=const, P moves parallel
to a fixed »—k-dimensional plane.

2°. If we develop along #— k-dimensional surfaces x*=const, P moves paral-
lel to a fixed n—k-dimensional plane.

Then by 1° ma=0 for x*=const and by 2° z,=0 for x*= const. So in
general m, =0, and by (6)

my =i, mial=[np, msad+[mr, mrad=Lrp, mpal

b =[ri, il =7, ] +[7e, mad=[my, mal.
Then by lemma 3(7.)?=g.;(y")dy*dy® for suitably chosen coordinates y'=y'(x7)
and S)(m) =g\.(2¥)dz*dz* for suitably chosen coordinates zi=2z(x7). If we take
u*=y*(%7), u*=2*(x7) as coordinates we get

ds?=S\(mi)? = Gos (u7) Au® Are® + g, () due* dus
This space has been treated by many authors.
5. Now we treat the special case k=7n—1. In this case the condition 2° in

theorem 2 is unnecessary. The second part of 2°, namely the condition that
za/t is a total differential for x*=const, is always satisfied. We will prove the

first part of 2° is also satisfied under the condition 1°. By 1 the equations (20)
hold, which in this case reduce to men=ms/t—Cannmn. Consequently

ﬂf,:[”ﬁ’ ﬂﬁa]"‘[ﬂn, ﬂ'na]=[7fﬁ, ”66]"’[7771, ""“/_a'i'caml??n]
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T
77;,=[7Ta, Wan:l:[”u, f"—cannﬂ-'n];’cunn[ﬂ'n, 7l

By Frobenius’s theorem [2] p. 193 for suitably chosen coordinates y*=y=*(x/) and
y*=9"(x7) we have

Ta=Pap (yi)dyﬂ’ Ta=p (3 )dy*.

As n,=0 for x”=const by (19), »” is a function of only one variable x*. For
coordinate system »’ thus chosen the first part of 2° is satisfied, and we have

TueOREM 5. The necessary and sufficient condition for an n-dimensional
Riemann space to have an arc element which can be writen in the form

ds* = a(x')°gus (x7) dx*AX® + gnn( %) (dx™)?
(a, B, r=1,2, ..., n=1)

is that there exists a point P, in the tangent euclidean space at any point A of
the Riemann space which has the property that, if we develop along any hyper-
surface of one-parametric family of hypersurfaces, A describes an arc perpendicular
to AP, and P, describes an arc which touches the straight line AP, or is a
fixed point.

Especially we treat the case gnn(x*) =gun(x"), which reduces to gun(x')=1.
Then in 2 we have 7z,=dx" and consequently 7, =[me, 7sx]=0.
By (B) we have nen=ne/t=Canntn. S0 —Cunn[7e, 7s1=0 and hence Cann=0.
Thus

(28) n,,,:-’;z.

By (16) we have
(29) d(A+tes) = (o —tnan)ea+ (ﬂn+dt)en-

So on account of (28)
(30) d(A“}“ten) = (777;+dt)en.

Thus by development the point Py=A+te, is a fixed point or describes an arc
touching to AF,.

Conversely we assume there is a point P, in the tangent euclidean space of
any point A of Riemann space which has the property that by development Py
is a fixed point or describes an arc touching to AP,. Then (30) holds and (28)
holds by virtue of (29). Consequently #},=[7ne, 7.]=0 and =, is a total differ-
ential of a certain function. Putting 7,=dx" we proceed as in the proof of theo-
rem 2. Hence
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THEOREM 6. The necessary and sufficient condition for a Riemann space to

have an arc-element such that

dsg__:a(xi)2g¢p(x’r)dxadx3+(dxn)'-’ (a’ By T=1, 2: e e ey 71‘—1)
is that there is a point P, in the tangent euclidean space at any point A of the
Riemann space such that by development P, is a fixed point or describes an arc
touching to AP,

This case has been proved by K. Yano (the so-colled Riemann space with
torse-forming vector field). If P, is a fixed point we have by (30) 7,+dt=0 and
then by 2 (B) da/a=dt/t+Cure, namely a=ct, ¢ being a function of x* So
this case reduces to the case a(x’) =x” The inverse is also true.

If 2=n-1 in theorem 4, the condition 2° is also unnecessary. Hence

THEOREM 7. The necessary and sufficient condition for the Riemann space
to have an arc-element given by

ds*=gep (¥7)dX°dXP + nn (%) (d¥™)?  (a, B, 7=1,2, ..., n—1)
is that there exists a direction P in the tangent euclidean space at any point of
the Riemann space such thal if we develop along any hypersurface of one-pa-
rametric family of hypersurfaces P moves parallel to a fixed direction.

The special case in which gnn(%f) =gnn(%") holds reduces to the case gnn(x’)
=1, which is treated in the remark of theorem 4.
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