SOME CONSEQUENCES OF MARTIN'S AXIOM AND THE NEGATION OF THE CONTINUUM HYPOTHESIS

JUICHI SHINODA

§0. W. Sierpisnki [3] demonstrated 82 propositions, called C_1--C_{82}, with the aid of the continuum hypothesis. D. A. Martin and R. M. Solovay remarked in [2] that 48 of these propositions followed from Martin's axiom (MA), 23 were refuted by $\text{MA} + 2^{\omega_1} > \aleph_1$ and three were independent of $\text{MA} + 2^{\omega_1} > \aleph_1$. But the relation of the remaining eight propositions to $\text{MA} + 2^{\omega_1} > \aleph_1$ has been unsettled.

In this paper, we shall show at least five of them (C_8, C_{13}, C_{61}, C_{62}, and C_{70}) are also refuted by $\text{MA} + 2^{\omega_1} > \aleph_1$.

The following table gives the relation of C_1--C_{82} to $\text{MA} + 2^{\omega_1} > \aleph_1$.

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>×</td>
<td>×</td>
<td>×</td>
<td>×</td>
<td>×</td>
<td>×</td>
<td>×</td>
<td>×</td>
<td>×</td>
<td>O</td>
</tr>
<tr>
<td>20</td>
<td>O</td>
</tr>
<tr>
<td>30</td>
<td>O</td>
<td>O</td>
<td>O</td>
<td>×</td>
<td>O</td>
<td>O</td>
<td>O</td>
<td>O</td>
<td>O</td>
<td>O</td>
</tr>
<tr>
<td>40</td>
<td>O</td>
<td>O</td>
<td>O</td>
<td>O</td>
<td>O</td>
<td>O</td>
<td>O</td>
<td>?</td>
<td>?</td>
<td>O</td>
</tr>
<tr>
<td>50</td>
<td>O</td>
</tr>
<tr>
<td>60</td>
<td>O</td>
</tr>
<tr>
<td>70</td>
<td>O</td>
</tr>
</tbody>
</table>

By O, we denote the propositions following from MA, by \times the propositions refuted by $\text{MA} + 2^{\omega_1} > \aleph_1$, by \triangle the propositions independent of $\text{MA} + 2^{\omega_1} > \aleph_1$ and by ? the propositions whose relation to $\text{MA} + 2^{\omega_1} > \aleph_1$ we do not know about at present.

Let $\mathcal{P} = \langle P, \leq \rangle$ be a partially ordered set. A subset X of P is said to be dense in \mathcal{P} if, for every $p \in P$, there is $q \in X$ such that $p \leq q$. If \mathcal{F} is a collection of dense subsets of P, a subset G of P is said to be an \mathcal{F}-generic filter on \mathcal{P} if G has the following properties:

Received February 7, 1972. Revised August 24, 1972.

* The author wishes to express his gratitude to Professors T. Tugué and K. Namba for their valuable suggestions and encouragement.
(1) if \(p, q \in P \), \(p \in G \) and \(q \leq p \), then \(q \in G \);

(2) if \(p, q \in G \), then there is \(r \in G \) such that \(p \leq r \) and \(q \leq r \);

(3) if \(X \in \mathcal{F} \), then \(X \cap G \neq 0 \).

If \(p, q \in P \), then \(p \) and \(q \) are said to be compatible if there is \(r \in P \) such that \(p \leq r \) and \(q \leq r \). \(P \) is said to have the countable chain condition if every collection of pairwise incompatible elements of \(P \) is countable.

Martin's axiom (MA) is the following statement:

If \(\mathcal{P} = \langle P, \leq \rangle \) is a partially ordered set having the countable chain condition and \(\mathcal{F} \) is a collection of dense open subsets of \(P \) of cardinality \(< 2^{\aleph_0} \), then there exists an \(\mathcal{F} \)-generic filter on \(\mathcal{P} \).

§ 1. In this section, we shall show \(C_8, C_9, C_{60} \), and \(C_{62} \) are refuted by MA + \(\neg \text{CH} \). From [2], we quote the following lemma.

Lemma 1. Let \(A \) and \(B \) be collections of subsets of \(\omega \), each of cardinality \(< 2^{\aleph_0} \), such that if \(x \in B \) and \(K \) is a finite subset of \(A \) then \(x - \bigcup K \) is infinite. If we assume MA, then there exists a subset \(t \) of \(\omega \) such that \(x \cap t \) is finite if \(x \in A \) and infinite if \(x \in B \).

Let \(\omega^\omega \) be the set of all functions from \(\omega \) into \(\omega \), (more generally, \(x^y \) be the set of all functions from \(x \) into \(y \)). Following Sierpinski [3], we define a partial ordering \(< \) on \(\omega^\omega \) as follows:

\[f < g \leftrightarrow (\exists k \in \omega)(\forall n \geq k)[f(n) < g(n)] \]

The following lemma is due to K. Kunen [1].

Lemma 2. Let \(F \) be a subset of \(\omega^\omega \) of cardinality \(< 2^{\aleph_0} \). If we assume MA, then there exists \(g \in \omega^\omega \) such that if \(f \in F \) then \(f < g \).

From Lemma 2, we have the following proposition, which is the negation of \(C_9 \).

Proposition 1 (Assume MA and \(2^{\aleph_0} > \aleph_1 \)). Let \(E \) be an uncountable subset of \(\mathbb{R} \), the set of reals, and \(\langle f_n : n \in \omega \rangle \) be a convergent sequence of functions from \(E \) to \(\mathbb{R} \). Then there exists an uncountable subset \(N \) of \(E \) such that \(\langle f_n : n \in \omega \rangle \) is uniformly convergent on \(N \).

Proof. We may assume \(E \) is of cardinality \(\aleph_1 \). Let \(f \) be the limit of \(\langle f_n : n \in \omega \rangle \). Then for any \(x \in E \) and \(m \in \omega \), there is \(k \in \omega \) such that if \(n \geq k \) then \(|f_n(x) - f(x)| < 1/m + 1 \). Take such \(k \in \omega \) and denote it by \(\varphi_x(m) \). Then we can define \(\aleph_1 \) functions \(\varphi \) from \(\omega \) into \(\omega \). Using
Lemma 2, we can find $\varphi \in {}^\omega \omega$ such that $\varphi_x < \varphi$ for all $x \in E$. For each $x \in E$, let k_x denote the least $k \in \omega$ such that $\varphi_x(m) < \varphi(m)$ for all $m \geq k$. Since E is uncountable, there is $k \in \omega$ and an uncountable subset N of E such that if $x \in N$ then $k_x = k$. Then for any $x \in N$ and $m \geq k$, if $n \geq \varphi(m)$ then $|f_x(x) - f(x)| < 1/m + 1$. This means $\langle f_n : n \in \omega \rangle$ converges uniformly to f on N.

Since C_8 and C_9 are equivalent, C_8 is also refuted by $\text{MA} + 2^{\aleph_0} > \aleph_1$.

Recall that an F_σ-set is the union of a countable family of closed sets and a G_δ-set is the intersection of a countable family of open sets.

Lemma 3. Let X be a separable metric space of cardinality $< 2^{\aleph_0}$. If we assume MA, then every subset of X is F_σ and G_δ in X.

Proof. Let D be any subset of X and $\{B_i : i \in \omega\}$ be a basis for open sets of X such that all B_i are non-empty. For each $x \in X$, let $s_x = \{i \in \omega : x \in B_i\}$. If we put $A = \{s_x : x \in X - D\}$ and $B = \{s_y : y \in D\}$, then A and B are of cardinality 2^{\aleph_0}. It is easily checked that if $y \in D$ and $x_1, \ldots, x_n \in X - D$ then $s_y - (s_{x_1} \cup \cdots \cup s_{x_n})$ is infinite. By Lemma 1, we can find a subset t of ω such that $s_x \cap t$ is finite if $x \in X - D$ and $s_y \cap t$ is infinite if $y \in D$. For each $n \in \omega$, let

$$K_n = \bigcup_{i > n} B_i.$$

And let $K = \bigcap_{n \in \omega} K_n$. Then K is a G_δ-set of X. In order to prove that D is a G_δ-set of X, it suffices to prove the following (1) and (2):

1. $D \subseteq K$
2. $(X - D) \cap K = 0$.

Let y be an arbitrary element of D and $n \in \omega$. Since $t \cap s_y$ is infinite, there is $i \in t \cap s_y$ such that $i > n$. Then $y \in B_i$ and $B_i \subseteq K_n$, so $y \in K_n$. Since y and n are arbitrary, we have (1). Let x be any element of $X - D$. Since $t \cap s_x$ is finite, there is $n \in \omega$ such that if $i \in t$ and $i > n$ then $i \in s_x$. For such $n \in \omega$, we have $x \notin K_n$, and so $x \notin K$. Thus we have (2).

Replacing D with $X - D$, we have that $X - D$ is a G_δ-set of X. Hence D is an F_σ-set of X. Therefore D is F_σ and G_δ in X.

This lemma is a slight generalization of that of J. Silver.
The following proposition is the negation of C_{62}.

PROPOSITION 2. (Suppose MA and \(2^{\aleph_0} > \aleph_1\)). Let \(E\) be any uncountable set of reals and \(f\) be any function from \(E\) into \(\mathbb{R}\), the set of reals. Then there exists an uncountable subset \(N\) of \(E\) such that \(f \upharpoonright N\), the restriction of \(f\) to \(N\), is continuous on \(N\).

Proof. We may assume \(E\) is of cardinality \(\aleph_1\). Let \(F\) be an arbitrary closed set in \(\mathbb{R}\). Then, by Lemma 3, \(f^{-1}(F)\), the inverse image of \(F\), is a \(G_\delta\)-set of \(E\). Thus \(f_n\) is Baire function of class \(\leq 1\). As is well-known, every Baire function of class \(\leq 1\) whose range is a subset of \(\mathbb{R}\) is the limit of a sequence of continuous functions. Let \(\langle f_n : n \in \omega \rangle\) be a sequence of continuous functions from \(E\) to \(\mathbb{R}\) which converges to \(f\). Then, by Proposition 1, there exists an uncountable subset \(N\) of \(E\) such that \(\langle f_n : n \in \omega \rangle\) converges uniformly to \(f\) on \(N\). Since each \(f_n \upharpoonright N\) is continuous on \(N\), so is \(f \upharpoonright N\).

This proposition implies the following proposition, which is the negation of C_{61}.

PROPOSITION 3. (Suppose MA and \(2^{\aleph_0} > \aleph_1\)). There is a subset \(F\) of \(\mathbb{R}\) of cardinality \(2^{\aleph_0}\) such that if \(g \in \mathbb{R}\) then for some \(f \in F\) the set \(\{x \in \mathbb{R} : f(x) = g(x)\}\) is uncountable.

Proof. Let \(F\) be the set of Baire functions from \(\mathbb{R}\) into \(\mathbb{R}\). Then clearly, \(F\) is of cardinality \(2^{\aleph_0}\). By Proposition 2, if \(g \in \mathbb{R}\), then there exists an uncountable subset \(N\) of \(\mathbb{R}\) such that \(g \upharpoonright N\) is continuous on \(N\). The following is a well-known theorem.

Let \(X\) be an arbitrary metric space, let \(Y\) be a complete separable space and \(A\) be a subset of \(X\). Then every Baire function from \(A\) to \(Y\) can be extended to a Baire function from \(X\) into \(Y\).

Since \(f \upharpoonright N\) is a Baire function on \(N\), by this theorem, there exists \(f \in F\) such that \(f \upharpoonright N = g \upharpoonright N\). Thus the set \(\{x \in \mathbb{R} : f(x) = g(x)\}\) includes \(N\), and is uncountable.

\(§2\). Let \([\omega]^{\aleph_0}\) denote the set of all infinite subsets of \(\omega\). We define a relation \(\subseteq^*\) on \([\omega]^{\aleph_0}\) as follows:

\[a \subseteq^* b \leftrightarrow a - b \text{ is finite, where } a, b \in [\omega]^{\aleph_0}. \]

Intuitively \(a \subseteq^* b\) iff \(a \subseteq b\) almost everywhere.
LEMMA. Suppose MA. Let Θ be an ordinal such that $\Theta < 2^{\omega_1}$, and let $\langle a_\alpha : \alpha < \Theta \rangle$ be a sequence of elements of $[\omega]^{\omega_1}$ such that if $\alpha < \beta < \Theta$ then $a_\beta \subseteq^* a_\alpha$. Then there exists $a \in [\omega]^{\omega_1}$ such that if $\alpha < \Theta$ then $a \subseteq^* a_\alpha$.

Proof. Let $A = \{ \omega - a_\alpha : \alpha < \Theta \}$ and $B = \{ a_\alpha : \alpha < \Theta \}$. Then clearly, A and B are of cardinality $< 2^{\omega_1}$. If $a, a_1, \cdots, a_n < \Theta$, then

$$a_\alpha - \bigcup_{i=1}^{n} (\omega - a_\alpha) = a_\alpha \cap a_{a_1} \cap \cdots \cap a_{a_n}.$$

It is easily checked the intersection of finite elements of B is an element of $[\omega]^{\omega_1}$. Thus A and B satisfy the condition of Lemma 1 of § 1. Therefore there is a subset a of ω such that $a - a_\alpha$ is finite and $a \cap a_\alpha$ is infinite for any $\alpha < \Theta$. For such $a \subseteq \omega$, we have $a \in [\omega]^{\omega_1}$ and $a \subseteq^* a_\alpha$.

From this lemma, we obtain the following proposition, which is the negation of $C_{13.}$

PROPOSITION. (Assume MA and $2^{\omega_1} > \aleph_1$). Let $\langle f_n : n \in \omega \rangle$ be a sequence of functions from \mathbb{R} to \mathbb{R}. Then there exists a sequence $\langle m_k : k \in \omega \rangle$ of natural numbers such that $m_0 < m_1 < \cdots < m_k < \cdots$ and the set $\{ x \in \mathbb{R} : \langle f_{m_k}(x) : k \in \omega \rangle$ converges to a finite or infinite value $\}$ is uncountable.

Proof. For each $a \in [\omega]^{\omega_1}$, let a' denote the sequence $\langle n_k : k \in \omega \rangle$ such that $n_0 < n_1 < \cdots < n_k < \cdots$ and $a = \{ n_k : k \in \omega \}$. By the limit of the sequence $\langle f_n(a) : n \in \omega \rangle$, we mean the limit of the sequence $\langle f_{m_k}(x) : k \in \omega \rangle$ in the usual sense, where $\langle n_k : k \in \omega \rangle = a'$. Let E be a subset of \mathbb{R} of cardinality \aleph_1. Order E into a transfinite sequence of type ω_1 as follows:

$$x_0, x_1, \cdots, x_\alpha, \cdots \quad (\alpha < \omega_1)$$

By transfinite induction on α, we define a sequence $\langle a_\alpha : \alpha < \omega_1 \rangle$ of elements of $[\omega]^{\omega_1}$ such that $a_\beta \subseteq^* a_\alpha$ if $\alpha < \beta < \omega_1$ and the sequences $\langle f_n(x_\alpha) : n \in a_\alpha \rangle$ with $\alpha \in \omega_1$ are convergent. The sequence $\langle f_n(x_\alpha) : n \in \omega \rangle$ includes a convergent subsequence $\langle f_{m_k}(x_\alpha) : k \in \omega \rangle$, whose limit is finite or infinite. So, we define a_α to be $\{ n_k : k \in \omega \}$. Assume that a_β with $\beta < \alpha$ are defined and $a_\gamma \subseteq^* a_\beta$ if $\beta < \gamma < \alpha$. Then, by the above lemma, we can find $a \subseteq [\omega]^{\omega_1}$ such that $a \subseteq^* a_\beta$ for all $\beta < \alpha$. The sequence $\langle f_\iota(x_\alpha) : \iota < \alpha \rangle$:

\footnote{It was pointed out by the referee that this lemma could be proved from Lemma 2 of § 1.}

\footnote{This proof was suggested to the author by Professor Kanji Namba.}
$i \in a$ includes a convergent subsequence $\langle f_k(x_k) : k \in \omega \rangle$. So, we define a_n to be $\{i_k : k \in \omega\}$.

By the lemma of this section, let b be an element of $[\omega]^\omega$ such that $b \subseteq^* a_n$ for all $\alpha < \omega_1$. For every $\alpha < \omega_n$, since $b \subseteq^* a_n$, the sequence $\langle f_m(x) : m \in b \rangle$ is convergent. If we put $\langle m_k : k \in \omega \rangle = b'$, then the set $\{x : \langle f_{m_k}(x) : k \in \omega \rangle \text{ is convergent} \}$ includes E, and is uncountable.

§3. Let E be a subset of \mathbb{R} and $a \in R$. By $E(a)$ we denote the set $\{x + a : x \in E\}$.

Without MA, we can prove the following proposition.

Proposition. (Suppose $2^{\aleph_0} > \mathfrak{c}$.) If E is an uncountable subset of \mathbb{R} such that its complement is of cardinality 2^{\aleph_0}, then there exists $a \in \mathbb{R}$ such that $E(a) \triangle E$, the symmetric difference of $E(a)$ and E, is uncountable.

Proof. Suppose, on the contrary, that for any $a \in \mathbb{R}$, $E(a) \triangle E$ is countable. Let N be a subset E of cardinality \aleph_0. Then we show $\bigcap_{x \in N} [R - E(-x)] \neq 0$. If $\bigcap_{x \in N} [R - E(-x)] = 0$, then $R = \bigcup_{x \in N} E(-x)$.

On the other hand
\[
\bigcup_{x \in N} E(-x) = \bigcup_{x, y \in N} [E(-x) \triangle E(-y)] \cup \bigcap_{x \in N} E(-x).
\]

Therefore,
\[
A = \bigcup_{x \in N} E(-x) = R,
\]
where $A = \bigcup_{x, y \in N} [E(-x) \triangle E(-y)]$.

Since A and $\bigcap_{x \in N} E(-x)$ are disjoint, we have $R - \bigcap_{x \in N} E(-x) = A$. Let x be an arbitrary element of N. Then we have $R - E(-x) \subseteq A$. Note that each $E(a) \triangle E(b)$ is countable because $E(a) \triangle E(b) = J(a) \cup K(b)$, where $J = E(b - a) \triangle E$, $K = E(a - b) \triangle E$. Therefore A is of cardinality $\leq \mathfrak{c}$. This contradicts the hypothesis that the complement of E is of cardinality 2^{\aleph_0}. Thus $\bigcap_{x \in N} [R - E(-x)] \neq 0$.

Let $a \in \bigcap_{x \in N} [R - E(-x)]$, then $N \subseteq R - E(-a)$ because $a \in E(-x)$ iff $x \in E(-a)$. Therefore $E(-a) \triangle E$ includes N, and is uncountable.

The following corollary is the negation of C_{\aleph_0}.

Corollary. (Suppose MA and $2^{\aleph_0} > \mathfrak{c}$.) Let E be a non-measurable set of reals. Then for some $a \in \mathbb{R}$, $E(a) \triangle E$ is uncountable.

Proof. If we assume MA, then every set of reals of cardinality...
<2^{\kappa} is of Lebesgue measure 0 ([2, § 4]). Hence, if \(E \) is non-measurable, the \(E \) and its complement are of cardinality \(2^{\kappa} \). Thus \(E \) satisfies the condition of the proposition.

§ 4. A set \(E \) of reals is said to have the property \((M)\)\(^\dagger\) if, for any collection \(\mathcal{U} \) of open sets satisfying the condition

\[(\forall x \in E)(\forall \varepsilon > 0)(\exists U \in \mathcal{U})[\delta(U) < \varepsilon \land x \in U] \]

where \(\delta(U) \) is the diameter of \(U \), there is a sequence \(\langle U_n : n \in \omega \rangle \) of elements of \(\mathcal{U} \) such that \(E \subseteq \bigcup_{n \in \omega} U_n \) and \(\lim_{n \to \omega} \delta(U_n) = 0 \).

As a direct application of MA, we have the following proposition.

Proposition. (Suppose MA). Every set of reals of cardinality \(< 2^{\kappa} \) has the property \((M)\).

Proof. Let \(E \) be a set of reals of cardinality \(< 2^{\kappa} \), and \(\mathcal{U} \) be a collection of open sets satisfying the condition \((*)\). For each \(n \in \omega \), there is a sequence \(\langle U_{nm} : m \in \omega \rangle \) of elements of \(\mathcal{U} \) such that \(E \subseteq \bigcup_{m \in \omega} U_{nm} \) and \(\delta(U_{nm}) < 1/n + 1 \) for all \(m \in \omega \). We define a partially ordered set \(\mathcal{P} = \langle P, \leq \rangle \) as follows:

\[
P = \{ p : p \text{ is a finite function with } \text{dom}(p) \cup \text{rang}(p) \subseteq \omega \},
\]

\[
p \leq q \iff p \subseteq q.
\]

Then clearly, \(\mathcal{P} \) satisfies the countable chain condition. For each \(x \in E \), if we put \(X_x = \{ p \in P : x \in \bigcup_{n \in \text{dom}(p)} U_{np(n)} \} \), then \(X_x \) is dense in \(\mathcal{P} \). Let \(\mathcal{F} = \{ X_x : x \in E \} \). Then \(\mathcal{F} \) is of cardinality \(< 2^{\kappa} \), so there is an \(\mathcal{F} \)-generic filter \(G \) on \(\mathcal{P} \). If we put \(f = \bigcup G \), then \(f \) is a function with \(\text{dom}(f) \subseteq \omega \) and \(\text{rang}(f) \subseteq \omega \). We define \(U_n \) as follows:

\[
U_n = \begin{cases}
U_{nf(n)} & \text{if } n \in \text{dom}(f) \\
U_{n0} & \text{otherwise}
\end{cases}
\]

Then, clearly, \(U_n \in \mathcal{U} \) and \(\lim_{n \to \omega} \delta(U_n) = 0 \). Let \(x \) be an arbitrary element of \(E \). Since \(X_x \cap G \neq 0 \), there is \(p \in G \) such that \(x \in \bigcup_{n \in \text{dom}(p)} U_{np(n)} \). Since \(P \in G \), we have \(\bigcup_{n \in \text{dom}(p)} U_{np(n)} \subseteq \bigcup_{n \in \omega} U_n \), so \(x \in \bigcup_{n \in \omega} U_n \). Therefore \(E \) has the property \((M)\).

\(^\dagger\) See [3, p. 48]
§ 5. A set E of reals is said to have the property (λ) if every countable subset of E is a G_δ-set of E.

In this section, we shall show there is a non-measurable set of reals of cardinality 2^{\aleph_0} with the property (λ).

A set E of reals is said to have the property (S^*) if, for every set N of Lebesgue measure 0, $E \cap N$ is of cardinality $< 2^{\aleph_0}$. If a set E is measurable and has positive measure, then E includes a set of measure 0 and cardinality 2^{\aleph_0}. If we assume MA, then every set of reals of cardinality $< 2^{\aleph_0}$ is of Lebesgue measure 0. Therefore every set of reals of cardinality 2^{\aleph_0} with the property (S^*) is non-measurable. The existence of a non-measurable set of reals of cardinality 2^{\aleph_0} with the property (λ) follows from the following proposition.

Proposition. (Suppose MA). There is a set E of reals of cardinality 2^{\aleph_0} with the property (S^*) such that every subset of E of cardinality $< 2^{\aleph_0}$ is G_δ in E.

Proof. Order the set of all G_δ-sets of measure 0 into a transfinite sequence of type 2^{\aleph_0} as follows:

$$N_0, N_1, \ldots, N_t, \ldots, (\xi < 2^{\aleph_0}).$$

By transfinite induction on α, we define a sequence $\langle x_\alpha: \alpha < 2^{\aleph_0} \rangle$ of reals and a sequence $\langle K_\alpha: \alpha < 2^{\aleph_0} \rangle$ of G_δ-sets of measure 0. Let $K_0 = N_0$ and x_0 be an arbitrary element of \mathbb{R}. Suppose x_β and K_β with $\beta < \alpha$ are defined, and let

$$S_\alpha = \bigcup_{\beta < \alpha} K_\beta \cup \{x_\beta: \beta < \alpha\} \cup N_\alpha.$$

Then, by MA, S_α is of measure 0, so $R - S_\alpha \neq 0$. Let x_α be an arbitrary element of $R - S_\alpha$ and K_α be the first N_α such that $S_\alpha \cup \{x_\alpha\} \subseteq N_\alpha$.

Let E be the set $\{x_\alpha: \alpha < 2^{\aleph_0}\}$. Then we have

1. E is of cardinality 2^{\aleph_0};
2. for each $\alpha < 2^{\aleph_0}$, $E \cap N_\alpha$ is of cardinality $< 2^{\aleph_0}$;
3. $K_\alpha \subseteq K_\beta$ if $\alpha < \beta < 2^{\aleph_0}$.

From (1) and (2), E is a set of cardinality 2^{\aleph_0} with the property (S^*).

Let D be an arbitrary subset of E of cardinality $< 2^{\aleph_0}$. Since 2^{\aleph_0} is a regular cardinal, there is $\alpha < 2^{\aleph_0}$ such that $D \subseteq \{x_\beta: \beta \leq \alpha\}$. Put

1) See [3, p. 94]

2) Cf. [3, p. 81]
$X = \{ x_\beta : \beta \leq \alpha \}$. Then, by Lemma 3 of § 1, D is a G_δ-set in X. Since $X = E \cap K_\alpha$ and K_α is G_δ in R, X is G_δ in E. Therefore D is a G_δ-set in E.

REFERENCES

Nagoya University