H. MorikawaNagoya Math. J.Vol. 48 (1972), 183-188

A NOTE ON HOLOMORPHIC VECTOR BUNDLES OVER QUOTIENT MANIFOLDS WITH RESPECT TO NILPOTENT GROUPS

HISASI MORIKAWA

1. A holomorphic vector bundle E over a complex analytic manifold \mathcal{D} is said to be simple, if its global endomorphism ring $\operatorname{End}_{\mathcal{C}}(E)$ is isomorphic to C. Projectifying the fibers of E, we get the associated projective bundle P(E) of E. If we can choose a system of constant transition functions of P(E), the projective bundle P(E) is said to be locally flat.

In the present note we shall prove the following the theorem:

THEOREM 1. Let Γ be a finitely generated nilpotent subgroup in the group of automorphisms of a complex analytic manifold \mathscr{D} . Assume that Γ acts properly discontinuously on \mathscr{D} without fixed points. Let E be a holomorphic vector bundle over the quotient manifold \mathscr{D}/Γ such that i) the inverse image of E with respect to the natural map $\mathscr{D} \to \mathscr{D}/\Gamma$ is trivial, ii) the associated projective bundle P(E) is locally flat and iii) E is simple. Then there exists a subgroup Δ of finite index in Γ and a line bundle L over the quotient \mathscr{D}/Δ such that E is isomorphic to the direct image of L with respect to the natural map $\mathscr{D}/\Delta \to \mathscr{D}/\Gamma$.

A complex nilmanifold is defined as the quotient of simply connected nilpotent complex Lie group G with respect to a discrete subgroup Γ of G. The finiteness of dim G implies the finite generation of Γ , and G is biholomorphic to a complex vector space. Hence, applying Theorem 1 to $\mathscr{D}=G$, we conclude that

THEOREM 2. Let Γ be a discrete subgroup in a simply connected nilpotent complex Lie group G. Let E be a holomorphic vector bundle

Received January 19, 1972. Revised May 30, 1972.

over the nilmanifold G/Γ such that i) the associated projective bundle P(E) is locally flat and ii) E is simple. Then there exists a subgroup Δ of finite index in Γ and a line bundle L over G/Δ such that E is isomorphic to the direct image of L with respect to the natural map $G/\Delta \to G/\Gamma$.

2. We need two algebraic lemmas.

LEMMA 1. Let Γ be a finitely generated nilpotent group and let Z be its center. If the exponent of Z is finite, then Γ is a finite group.

Proof. First we show that the exponent of Γ is finite. Denote by

$$Z^{\scriptscriptstyle (r)} = \Gamma \supset Z^{\scriptscriptstyle (r-1)} \supset \cdots \supset Z^{\scriptscriptstyle (1)} \supset Z^{\scriptscriptstyle (0)} = \{1\}$$

the upper central series of Γ . By the assumption the exponent of $Z^{(1)}/Z^{(0)}$ is finite. Assume that the exponent of $Z^{(s)}/Z^{(s-1)}$ is finite, say n. Since $(\Gamma, Z^{(s+1)}) \subset Z^{(s)}$ and $(\Gamma, Z^{(s)}) \subset Z^{(s-1)}$, it follows that for $a \in Z^{(s+1)}$ and $b \in \Gamma$

$$a^{-1}b^{-1}a = (a,b)b^{-1}$$
, $(a,b) \in Z^{(s)}$, $a^{-1}(a,b)a \equiv (a,b)$ $\operatorname{mod} Z^{(s-1)}$.

Hence

$$a^{-n}b^{-1}a^n \equiv (a,b)^nb^{-1} \equiv b^{-1} \mod Z^{(s-1)}$$
,

and thus

$$a^n b \equiv b a^n \mod Z^{(s-1)}$$
.

This means that $a^n \in Z^{(s)}$ for $a \in Z^{(s+1)}$ and the exponent of $Z^{(s+1)}/Z^{(s)}$ is finite. Therefore the exponents of $Z^{(s)}/Z^{(s-1)}$ $(1 \le s \le r)$ are finite and consequently the exponent of Γ is finite. To prove the finiteness of the order of Γ , we need the lower central series

$$\Gamma = \Gamma_{\scriptscriptstyle (0)} \supset \Gamma_{\scriptscriptstyle (1)} \supset \cdots \supset \Gamma_n = \{1\}$$
 .

Since $\Gamma/\Gamma_{(1)}$ is a finitely generated abelian group and its exponent is finite, the group $\Gamma/\Gamma_{(1)}$ is a finite group. Assume that $\Gamma/\Gamma_{(s)}$ is a finite group. It is enough to show that $\Gamma/\Gamma_{(s+1)}$ is also a finite group. Let $\{\bar{a}_1, \cdots, \bar{a}_m\} = \Gamma/\Gamma_{(s)}$ and $\{\bar{b}_1, \cdots, \bar{b}_l\} = \Gamma_{(s-1)}/\Gamma_{(s)}$. Let $\{a_1, \cdots, a_m\}$ and $\{b_1, \cdots, b_l\}$ be representatives of $\{\bar{a}_1, \cdots, \bar{a}_m\}$ and $\{\bar{b}_1, \cdots, \bar{b}_l\}$ in $\Gamma/\Gamma_{(s+1)}$. Since $\Gamma_{(s)}/\Gamma_{(s+1)}$ is contained in the center of $\Gamma/\Gamma_{(s+1)}$, the commutators (a_i, b_j) $(1 \le i \le m, 1 \le j \le l)$ do not depends on the choice of the repre-

sentatives. This shows that $\Gamma_{(s)}/\Gamma_{(s+1)}$ is an abelian group generated by (a_i,b_j) $(1 \le i \le m, 1 \le j \le l)$ and its exponent is finite. Hence $\Gamma_{(s)}/\Gamma_{(s+1)}$ is a finite group, and thus $\Gamma/\Gamma_{(s+1)}$ is a finite group. This completes the proof of Lemma 1.

LEMMA 2. Let $\tilde{\Gamma}$ be a nilpotent subgroup in GL(n,C) and let \tilde{Z} be its center. Assume that $\tilde{\Gamma}/\tilde{Z}$ is finitely generated and the commutor of $\tilde{\Gamma}$ in $(C)_{n\times n}$ consists of scalar matrices. Then i) $\tilde{\Gamma}/\tilde{Z}$ is a finite group, ii) $\tilde{\Gamma}$ is an irreducible matric group and iii) $\tilde{\Gamma}$ is equivalent to a matric group whose elements are monomial matrices.

Proof. Denote by

$$ilde{Z}^{\scriptscriptstyle (r)} = ilde{arGamma} \supset ilde{Z}^{\scriptscriptstyle (r-1)} \supset \cdots \supset ilde{Z}^{\scriptscriptstyle (2)} \supset ilde{Z}^{\scriptscriptstyle (1)} \supset ilde{Z}^{\scriptscriptstyle (0)} = \{I\}$$

the upper central series of $\tilde{\Gamma}$. We mean by $\chi(\tilde{\alpha}, \tilde{a})$ $(\tilde{\alpha} \in \tilde{\Gamma}, \tilde{a} \in \tilde{Z}^{(2)})$ the scalars such that

$$(\tilde{\alpha}, \tilde{a}) = \chi(\tilde{\alpha}, \tilde{a})I$$
 . $(\tilde{\alpha} \in \tilde{\Gamma}, \tilde{a} \in \tilde{Z}^{(2)})$.

Since

$$(\tilde{\alpha}\tilde{\beta},\tilde{a}) = \tilde{\beta}^{-1}(\tilde{\alpha},\tilde{a})\tilde{\beta}(\tilde{\beta},\tilde{a})$$
, $(\tilde{\alpha},\tilde{a}\tilde{b}) = (\tilde{\alpha},\tilde{b})\tilde{b}^{-1}(\tilde{\alpha},\tilde{a})\tilde{b}$

and

$$\det\left(ilde{lpha}, ilde{a}
ight)=1 \qquad (ilde{lpha}, ilde{eta}\in ilde{arGamma}\,;\, ilde{a}, ilde{b}\in ilde{Z}^{ ilde{\scriptscriptstyle (2)}})$$
 ,

it follows that

This shows that $\tilde{\alpha}\tilde{a}^n=\tilde{a}^n\tilde{\alpha}$ ($\tilde{\alpha}\in \Gamma,\tilde{a}\in \tilde{Z}^{(2)}$), namely $\tilde{a}^n\in \tilde{Z}^{(1)}$ for $\tilde{a}\in \tilde{Z}^{(2)}$. Applying Lemma 1 to the quotient group $\tilde{\Gamma}/\tilde{Z}^{(1)}$. We conclude that the order of $\tilde{\Gamma}/\tilde{Z}^{(1)}$ is finite. Denote by Γ the quotient group $\tilde{\Gamma}/\tilde{Z}^{(1)}$ and choose a system of representatives $\{\tilde{\alpha}\,|\,\alpha\in\Gamma\}$ in $\tilde{\Gamma}$, where $\tilde{\alpha}$ corresponds to $\tilde{\alpha}$. Then we get a 2-cocycle η of Γ with coefficients in the multiplicative group C^\times such that

$$\tilde{\alpha}\tilde{\beta} = \eta(\alpha,\beta)\tilde{\alpha}\tilde{\beta} \qquad (\alpha,\beta\in\Gamma)$$
.

Since Γ is a finite group, multiplying non-zero scalars λ_{α} to $\tilde{\alpha}$, we have a system of matrices $\{\mu_{\alpha} = \lambda_{\alpha}\tilde{\alpha} \mid \alpha \in \Gamma\}$ such that $\mu_{\alpha\beta} \, \mu_{\beta}^{-1} \mu_{\alpha}^{-1} \ (\alpha, \beta \in \Gamma)$ are roots of unity, Denote by Γ^* the matric group generated by the matrices $\mu_{\alpha}(\alpha \in \Gamma)$. Then Γ^* is a finite group of matrices such that the commutor of Γ^* in $(C)_{n \times n}$ consists of scalar matrices. This means that Γ^* is an irreducible matric group. Since Γ^* is a finite nilpotent group, the irreducibility of Γ^* implies that Γ^* is equivalent to a matric group whose elements are monomial matrices¹⁾.

3. We now prove Theorem 1. Let \mathscr{D} be a complex analytic manifold and let Γ be a finitely generated nilpotent subgroup in the group of automorphisms of \mathscr{D} such that Γ acts properly discontinuously on \mathscr{D} without fixed points. Let φ be the natural map $\mathscr{D} \to \mathscr{D}/\Gamma$ and let E be a holomorphic vector bundle over \mathscr{D}/Γ such that i) the inverse image $\varphi^*(e)$ of E is trivial, ii) the associated projective bundle P(E) is locally flat, and iii) E is simple. The inverse image $\varphi^*(E)$ can be identified with $\mathscr{D} \times C^n$ and the automorphisms $\alpha \in \Gamma$ of \mathscr{D} induce bundle automorphisms

$$(z,v) \rightarrow (z\alpha,v\mu_{\alpha}(z)) \qquad (\alpha \in \Gamma)$$
,

where $\mu_{\alpha}(z)$ ($\alpha \in \Gamma$) are holomorphic $n \times n$ -matric functions such that

- 1) det $\mu_{\alpha}(z) \neq 0$ everywhere on \mathcal{D} ,
- 2) $\mu_{\alpha}(z)\mu_{\beta}(z\alpha) = \mu_{\alpha\beta}(z), \ (\alpha, \beta \in \Gamma)$

The local flatness of P(E) is equivalent to

3) $\mu_{\alpha}(z) = \mu_{\alpha} \xi_{\alpha}(z)$ ($\alpha \in \Gamma$) with scalar functions $\xi_{\alpha}(z)$ and constant $n \times n$ -matrices μ_{α} .

The simplicity of E is equivalent to

4) the commutor of $\{\mu_{\alpha} | \alpha \in \Gamma\}$ in $(C)_{n \times n}$ consists of scalar matrices. Let $\tilde{\Gamma}$ be the matric group generated by $\{\mu_{\alpha} | \alpha \in \Gamma\}$ and let \tilde{Z} be its center. Then from 2) and 3) the quotient group $\tilde{\Gamma}/\tilde{Z}$ is isomorphic to a quotient group of Γ , and thus $\tilde{\Gamma}/\tilde{Z}$ is finitely generated. Therefore by virtue of Lemma 2, $\tilde{\Gamma}$ is a matric group such that i) $\tilde{\Gamma}/\tilde{Z}$ is a finite group, ii) $\tilde{\Gamma}$ is an irreducible matric group and iii) $\tilde{\Gamma}$ is equivalent to a group of monomial matrices. After suitable change of the base of the vector space C^n , we may assume that $\mu_{\alpha}(\alpha \in \Gamma)$ are monomial matrices. Denote by μ_{α}^* the $n \times n$ -matrix obtained by replacement of non-zero entries of μ_{α} with 1. Then $\Gamma^* = \{\mu_{\alpha}^* | \alpha \in \Gamma\}$ form a group of

¹⁾ See [1] VII 52. 1.

permutation matrices. Since the matric group $\tilde{\Gamma}$ is irreducible the permutation group Γ^* is transitive. If we denote by Δ the subgroup of Γ consisting of α such that

$$\mu_{\scriptscriptstylelpha}^* = egin{pmatrix} 1 & 0 \ 0 & * \end{pmatrix}$$
 ,

then from the transitivity we can conclude $[\Gamma:\Delta]=n.$ If we decompose $\mu_r(z)$ as

$$\mu_{m{ au}}(z) = egin{pmatrix}
u_{m{ au}}(z) & 0 \\
0 & \mu_{m{ au}}^{(1)}(z) \end{pmatrix} \qquad (\gamma \in \Delta) \ ,$$

then the group \varDelta acts on $\mathscr{D} \times C$ and $\mathscr{D} \times C^{n-1}$ as follows

$$(z, u) \rightarrow (z\gamma, u\nu_r(z))$$

and

$$(z,v) \rightarrow (z\gamma,v\mu_r^{(1)}(z)) \qquad (\gamma \in \Delta)$$
.

Using these actions of Δ we get a line bundle L and a vector bundle $E^{(1)}$ of rank n-1 over \mathcal{D}/Δ as the quotients

$$L = \mathscr{D} \times C/\Delta$$

and

$$E^{\scriptscriptstyle (1)} = \mathscr{D} \times C^{n-1}/\Delta$$

such that

$$\psi^*(E) = L \oplus E^{\scriptscriptstyle (1)}$$
 ,

where ψ is the natural map $\mathscr{D}/\varDelta \to \mathscr{D}/\Gamma$. Taking the direct images of of both sides, we have

$$E \overset{n}{\bigoplus} \cdot \cdot \cdot \oplus E = \psi_* \psi^*(E) = \psi_*(L) \oplus \psi_*(E^{(1)})$$
.

Since $[\Gamma:\Delta]=n$ and the linear hull of $\{\mu_{\alpha}|\alpha\in\Gamma\}$ is the full matric ring $(C)_{n\times n}$, $\psi_*(L)$ is simple and $\psi_*(L)=n$. By the Krull-Remark-Schmidt theorem for vector bundles,

$$E \simeq \psi_*(L)$$
.

REFERENCES

- [1] Curtis and Reiner, Representation theory of finite groups and associative algebras, New York/London, 1962.
- [2] H. Morikawa, A note on holomorphic vector bundles over complex tori, Nagoya Math. J. Vol. 41 (1170), 101-106.

Nagoya University