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AMPLE VECTOR BUNDLES ON CURVES

ROBIN HARTSHORNE1)

Introduction

In our earlier paper [4] we developed the basic sheaftheoretic and

cohomological properties of ample vector bundles. These generalize the

corresponding well-known results for ample line bundles. The numerical

properties of ample vector bundles are still poorly understood. For line

bundles, Nakai's criterion characterizes ampleness by the positivity of certain

intersection numbers of the associated divisor with subvarieties of the am-

bient variety. For vector bundles, one would like to characterize ampleness

by the numerical positivity of the Chern classes of the bundle (and perhaps

of its restrictions to subvarieties and their quotients). Such a result, like

the Riemann-Roch theorem, giving an equivalence between cohomological

and numerical properties of a vector bundle, may be quite subtle. Some

progress has been made by Gieseker [2], by Kleiman [8], and in the analytic

case, by Griffiths [3].

Even on a complete non-singular curve over a field k, the problem is

non-trivial. A line bundle is ample if and only if its degree is positive.

The degree of an ample vector bundle on a curve is positive. Any quotient

of an ample vector bundle is ample, and so its degree is also positive. This

leads us to the following

QUESTION: Let X be a complete non-singular curve over a field k~

Let E be a vector bundle, all of whose quotient bundles (including E itself)

have degree positive. Then is E ample?

In our earlier paper, we found an answer to this question for bundles

of rank 2 [4, 7.6 and 7.7]. In that case E is ample provided that either
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char, k = 0, or char, k = p and deg £ > (2/p) {g — 1). In this paper we show
(for bundles of any rank) that E is ample, if X is an elliptic curve (§ 1),
or if k is the complex numbers (§ 2), but not in general (§ 3). In a fourth
section of the paper, independent of the others, we show that a curve
generating an abelian variety has an ample normal bundle. This has ap-
plications to the theory of formal-rational functions and cohomological
dimension.

To prove our theorem for elliptic curves in characteristic zero, we use
Atiyah's classification of vector bundles and his explicit description of the
multiplicative structure. For elliptic curves in characteristic p, we use a
theorem of Oda which gives conditions for the frobenius map on cohomology
to be injective. For curves of genus g^2 over the complex numbers, we
use a theorem of Narasimhan and Seshadri relating stable vector bundles to
unitary representations of the fundamental group. In §3 we give a counter-
example of Serre, which is a bundle of rank 2 on a curve of genus 3 over
a field of characteristic 3. In this example the Hasse-Witt matrix of the
curve is identically zero.

We have not been able to find a satisfactory criterion for ampleness
on curves in characteristic p. Would the above result hold, for example,
on a curve whose Hasse-Witt matrix is non-singular?^ The elucidation of
this question calls for a more profound study of extensions of vector bundles,
and their behavior under frobenius.

§ 1. Bundles on elliptic curves

In this section we show that an indecomposable bundle on an elliptic
curve is ample if and only if its degree is positive. Atiyah [1] has classified
vector bundles on an elliptic curve. In characteristic zero he has also
described the multiplicative structure: for indecomposable bundles Et and
E2, he gives the indecomposable direct summands of Ei0E2. The idea of
our proof, in characteristic zero, is to calculate E®n for large n, using
Atiyah's explicit description. It is then easy to see when E is ample.

In characteristic p9 we prove our theorem by descending induction on
the degree of E. The crucial step is to replace E by its frobenius pullback
f*E, which has larger degree. We need to know that certain extensions

*} Added in proof; Recently Sumihiro and Tango, and independently Oda, have given
examples which show that the Question of the introduction is false, even for curves with
non-singular Hasse-Witt matrix.
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of vector bundles do not split when pulled back by frobenius. For this we

use a theorem of Oda, which gives conditions for the induced action of

frobenius, f*:Hι{E) >Hί{f^E), to be injective.

We begin by recalling the classification of vector bundles due to Atiyah.

Fix an elliptic curve X over an algebraically closed field k. For any r, d9

let i?(r, d) be the set of indecomposable bundles on X of rank r and degree

d. Then one can choose one bundle E(r9 d) e g^r, d), for each r, d9 such

that any other bundle £ei f(r , d) is of the form E{r,d)(g)L for some Leg*(l,0).

In particular, we choose E{r,0) to be the unique element of ξf{r,0) with

H° ψ 0, and we denote it by Fr. We will use this notation, and other

results of Atiyah's paper as needed.

LEMMA 1.1 Let E be indecomposable of degree d. If d > 0, we have

dim H\E) = d

Hι(E) = 0.

If d < 0, we have

H°(E) = 0

iE) = d.

Proof If d > 0 the result follows from [1, Lemmas 8, 15]. If d < 0,

consider E, which has degree > 0, and use duality.

PROPOSITION 1.2 Let E be any bundle on the elliptic curve X, Then the

following conditions are equivalent:

(i) each indecomposable direct summand Et of E has degree > 0.

(ii) every quotient line bundle L oj E has degree > 0.

(iii) every quotient vector bundle Ef of E has degree > 0.

Proof (i) = > (ii) Let E = Y^E% with Et indecomposable, and let L be

a quotient line bundle of E. Then for some i, Horn (Ei9 L) ψ 0. In other

words H° (Hom(Ei9L)) ψ 0. But Hom{Ei9L) is indecomposable, so by the

lemma, its degree must be >̂ 0. This degree is r* deg L — deg Eif where

Ti = rank Ei9 so we have deg L ̂  —— deg Et > 0.

(ii) —> (iii). We may assume Er is indecomposable, and thus we

reduce to showing if E is indecomposable and satisfies (ii), then degE>0.

Suppose not. Then deg£:<0. If d e g £ < 0 , then E has a non-zero
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section, by the lemma, and hence it has a sub-line bundle M of degree ^ 0 .
But then Mis a quotient line bundle of E of degree:<0, which is impos-
sible.

If deg E = 0, then E = Fr®L for some line bundle L of degree 0. Thus
E has L as a sub-line bundle [1, Thm. 5], so E has L as a quotient line
bundle, which is impossible.

(iii) —> (i) is trivial.

NOTE: It is easy to show that these equivalences fail on a curve of
genus g > 1.

THEOREM 1.3* A vector bundle E on the elliptic curve X is ample if and

only if it satisfies the equivalent conditions of the proposition.

If E is ample, then every quotient invertible sheaf L of E is ample, so
has degree >0 , so E satisfies the conditions of the proposition. For the
converse, we will separate cases according to the characteristic of k.

PROPOSITION 1.4 Assume char, k = 0, and let E be indecomposable of rank

r and degree d. Then for any n — rs, s > 0 , we have

where each Ei = Fn for some ri9 and where the Li are all line bundles of the same

degree {necessarily ds).

Proof. We will use Atiyah's results on the multiplicative structure of
bundles on X in characteristic zero [1, Part III]. First note that E=E(r, d)®L
for some Leg*(l,0). Thus it is sufficient to treat the case E = E{r,d). We
will use induction on r, the case r = 1 being trivial.

Step 1. Reduction to the case {r,d) = 1. Let (r,d) = h. If h > 1 , we

have

where r' = rjk, and d' = d\h [1, Lemma 24], and by induction we may
assume the statement true for E{r'9 d

f). Given n = rs, we have n = r's' with
5' = sh, so

where each E[ = Fn for some rif and the L are all line bundles of the
same degree. Therefore

* This theorem has also been proved independently by Gieseker [2, Thm. 2.3].
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E(r9 d)®" = f

Now by [1, Thm. 8], any tensor product of bundles of the form Fr is a

direct sum of such bundles again, so we have the result for E(r, d).

Step 2. Assume (r,d) = 1, and let r = Πr* be the factorization of r into

prime powers. Then there are integers d± such that

where d\r = Σ(d JrJ, and (ri9 dt) = 1 for each i [1, Lemma 29]. By induc-

tion, we may assume the statement true for each E{ri9 di), so again using

[1, Thm. 8], we deduce the result for E{r9d). Thus we reduce to the case

where r = pe is a prime power.

Step 3. Assume (r, d) = 1, and r — pe with φ prime. First we show by

induction on t, for 0 < t < p, that

This is trivial for t = 1. For t > 1 , we write t = {t — 1) + 1, and use the

induction hypothesis. Thus

E(p% d)& = (Σ£(P% (t - l)d))®E(p% d) = Σ£(?Λ td)

by [1, Thm. 14].

Now by the same method, we find that

, (V - l)d))®E{V\ d) = (ΣL<)®E(p-1, d)9

where the Li are suitable line bundles of degree 0. By induction we may

assume the proposition true for E(φe~ι

9d)9 and so we conclude also for

E(pe

9d).

Proof of theorem in characteristic 0. It is sufficient to show that any E

indecomposable of rank r and degree d > 0 is ample. Take s = 1 in the

Proposition. Then

where each Ei = FTi for some ri9 and each Li is a line bundle of degree

d >0.

First we show, by induction on r9 that Fr®L is ample, if L is a line

bundle of degree > 0. For r = 1 it is trivial, For r > 1 we use the exact
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sequence

0 >& >Fr >Fr^ >0

[1, Thm. 5], Tensoring with L, and using the fact that an extension of

ample bundles is ample [4,3.4], we find Fr®L is ample.

Thus in the direct sum above, each E&Li is ample. Therefore E®r

is ample, so its quotient Sr(E) is ample, and so E is ample [4,2.4],

In characteristic p, we will need the following theorem of Oda. For

a curve X over a field k of characteristic p, we define the frobenius morphism

f : X—> X as the identity on the underlying topological spaces, and the

pth power homomorphism on the structure sheaves.

THEOREM (Oda [10, Thm. 2.17]): Let E be an indecomposable bundle of

negative degree on the elliptic curve X. Then the induced action of frobenius on

cohomology,

f* : H\X, E) — > H\X, f*E)

is injective.

Proof of theorem in characteristic p > 0. Using condition (ii) of Proposition

1.2, it is sufficient to show if E is a bundle such that every quotient line

bundle L has degree > 0, then E is ample.

We use induction on the rank r of £ If r = 1, then E is a line

bundle of positive degree, hence ample. For indecomposable bundles of

fixed rank r, we will also use descending induction on d — deg E. For

d >0, E is ample by [4, 7.2].

By the induction on r, we may assume E is indecomposable. Then

by "Proposition 1.2, d e g £ > 0 , and so by Lemma 1.1, H°{E)=ρO. Hence

there is a non-zero map Λr — > E, which determines a sub-line bundle M

of E such that either d e g M > 0 or M=έ?x. Let E' be the quotient, so we

have an exact sequence

0 >M—>E >Ef—>0.

Since every quotient line bundle of E' is also a quotient line bundle of E,

E' also satisfies our hypothesis, and so by induction on r, E' is ample.

If degM>0, then M is ample, and so E is ample [4, 3.4]. So we

have only to consider the case M = <?7X. The extension E of E' by & is

classified by an element c&Hι(E').. And since by hypothesis, & cannot be
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a quotient of E, the extension is non-trivial, so c ψ 0. Now E' being

ample, is a direct sum of indecomposable bundles E[ of degree > 0 . So

έ ^ Σ έ ; , with the E't indecomposable of degree < 0. By the theorem of

Oda, the frobenius map

/* : Hι(E') —> H\f*Ef)

is injective. In particular, f*(c) ψ 0, which implies that the sequence

0—>&x—>f*E—>f*E'—>0

does not split.

Note that rank f*E=r, and deg f*E=p.deg E > deg E, since degE>0.

Furthermore, every quotient line bundle L of f*E has positive degree.

Indeed, let f*E—>L be a quotient line bundle. This induces a map

ψ ' &χ — > L. This map cannot be an isomorphism, because then the

sequence would split. If ψ ψθ, then deg L > 0. If φ = 0, then L is a

quotient line bundle of f*E\ But f*E' is ample since E' is [4, 4.3], so L

is ample, and deg L > 0.

Now if f*E is decomposable, we conclude it is ample by induction on

r. If it is indecomposable, we conclude it is ample by induction on d.

Therefore E is also ample [4,4.3], q.e.d.

§ 2. Ample vector bundles on curves over the complex numbers.

Here we will prove that a bundle i o n a complete non-singular curve

X over C is ample, if and only if deg E' > 0 for every quotient bundle E'

of E (including E itself). First we reduce to the case of a stable bundle,

in the sense of Mumford. Then we use a theorem of Narasimhan and

Seshadri to deduce that all the symmetric powers of a stable bundle are

semi-stable. At this point we must work over the complex numbers. Now

to prove that E is ample, we look at the tautological line bundle L on P(E),

and we show that L is ample, using a new criterion for an ample divisor,

due to Seshadri.

Recall that a bundle E on a curve X is stable if for every proper sub-

bundle EΏE we have

' < deg£
rank E' rank E

The bundle E is semi-stable if only the weak inequality < holds.
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PROPOSITION 2.1 Let X be a complete curve over a field k. Then the fol-

lowing conditions are equivalent:

(i) Every stable bundle of positive degree is ample.

(ii) Every bundle, all of whose quotients have positive degree, is ample.

Proof: (i) =^> (ii). Assume (i), and let E be a bundle, all of whose

quotients have positive degree. We use induction on the rank r of E. If

r = 1, E is a line bundle of positive degree, and so is ample.

In general, let E have rank r. First suppose that E has an ample

subbundle Er, and let E" be the quotient E\Er. Then every quotient

bundle of E" has positive degree, and rank E" < rank E, so by the induc-

tion hypothesis, E" is ample. But then E is an extension of ample bundles,

and so is ample itself.

Next we will show that if E has no ample subbundles, then E is stable.

Hence by (i) we conclude that E is ample. To show that E is stable, we

will show that every subbundle EΏE has degree < 0 . We use induction

on s = rank£'. If 5 = 1, then E' is a line bundle. We must have

degis '^O, for otherwise Er would be ample. In general, let E' be a sub-

bundle of rank s. Suppose deg £ ' > ( ) . Then for any quotient E" of E\

we have also deg £ " > 0 . Indeed, let E0 = ker(E'—> E"). Then rank

E0<s, so by induction d e g £ o < 0 . Hence deg E" ^ deg E' > 0. But now,

since rank Er < rank E, we can conclude by our first induction hypothesis

that Er is ample. This is a contradiction, because we are assuming that

E has no ample subbundles. Therefore deg£':<0, as required.

(ii) =ί> (i) If E is a stable bundle of positive degree, then every quo-

tient bundle has positive degree also. Indeed, let

0 >E' >E >E" >0

be an exact sequence. Then

deg E" = deg E - deg Er.

But the stability of E implies that d e g £ ' < d e g £ . So d e g £ " > 0 . We

conclude by (ii) that E is ample.

PROPOSITION 2.2 Let X be a complete non-singular curve of genus # i>2 over

the complex numbers C. Let E be a stable vector bundle on X. Then the symmetric

powers Sn{E) are semi-stable for all n^l.
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Proof. We will use some results of Narasimhan and Seshadri [9] relat-

ing stable vector bundles to certain group representations. Given integers

<g, iV;> 1, we define a group π by generators al9 bl9 , ag, bg, c and relations

fliMΓ^Γ1 * * φ agbg(Zgιbgιc = 1

cN = 1.

If X is a compact Riemann surface of genus g, then π can be realized

as the group of cover transformations of a branched covering / : Y > X,

where Y is a simply connected Riemann surface, and where / is ramified

over a single point xo^X, and has ramification order TV over x0. For any

w ^ l , if

P :π—>GL(n,C)

is a representation of π, then we define the associated vector bundle E on X

as follows: let π act on &\ via p, and let E be the subsheaf of /*(^y)

consisting of sections stable under π. Then E is a vector bundle of rank n

on X

A representation p is called special if p{c) — λl, where 2 G C , f = 1, and

/ is the identity matrix. The results we need are

a) [9, Prop 10.4]. If p is a special, unitary representation of π, then

the associated bundle E is semi-stable.

b) [9, Thm. 2]. For the case n — N, the operation "associated vector

bundle55 gives a one-to-one correspondence between the equivalence classes

•of special, irreducible, unitary representations of π and the isomorphism

classes of stable vector bundles E on X of rank n, with — ?z < deg £ ^ 0.

Now for the proof of the proposition, let E be a stable vector bundle

•on X, of rank n. Let L be a line bundle on X, such that — n < degZs(x)L;<0.

Then E(g)L is also stable. Furthermore, Sn(E(g)L) = Sn{E)(S)Ln

1 so to prove

Sn(E) is semistable, it is sufficient to prove Sn(E(g)L) semistable [9, Prop.4.2].

Thus we reduce to the case

— n < deg E ^ 0.

By the result (b) above, E is associated to a special, irreducible, unitary

•representation p of π, where N= n = rankE. Then Sn(E) is associated to

the symmetric power Sn(p) of the representation p. Sn{p) is a special,

•unitary representation (not necessarily irreducible). By the result (a) above.

:Sn{E) is semi-stable.
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Now we will need a criterion for an ample divisor, due to SeshadrL

For any integral curve C, let m{C) — max multP(C). Note that m{C) ^ 1.
p<=c

THEOREM. (Seshadri; for proof see [6, Thm. 1.7.1]): Let X be a com-

plete scheme over a field Jc, and let D be a Cartier divisor on X. Then D is ample

if and only if there is an ε > 0 such that for every integral curve C in X,

(D.C) >εm{C).

PROPOSITION 2.3 Let X be a complete non-singular curve over a field k. Let

E be a vector bundle of positive degree, all of whose symmetric powers Sn{E) are

semi-stable. Then E is ample.

Proof Let E have rank r, and degree d > 0. We consider the as-

sociated projective bundle P{E), and the tautological line bundle L=^F(E){1).

To show that E is ample on X is equivalent to showing that L is ample

on P(E) [4, 3.2], We will use the criterion of Seshadri to show that L is

ample on P{E). Thus we must find an ε > 0 such that (L.C)>εm{C) for

every integral curve CQP(E).

Let π : P(E)—>X be the projection. If *τ(C) is a point, then C is

contained in a fibre of JΓ, which is a projective (r — l)-space. In this case

{L.C) is the degree of C as a curve in Pr~ι. Clearly degC^m(C), so we

have (L.C)^m(C).

Now suppose that π(C) = X. Let m be the degree of the finite morph-

ism π : C—>X. Considering C as a closed subscheme of P{E), we have an*

exact sequence of sheaves

0—>I a —><?HB)—>^c—>0 9

where Ic is the sheaf of ideals of C Tensoring with Ln, we have an exact

sequence

0 > Ic®Ln >Ln — > έ?c®Ln — > 0.

For n sufficiently large, the functor JΓ* will be exact, since L is relatively

ample for π. So we have an exact sequence of sheaves on X

0 > π*{Ic®Ln) > π*(Ln) > π*{έ?c®Ln) > 0.

These are all locally free sheaves; the middle one, π*(Ln), is just SΛ{E),.

because of our construction. So we can apply the hypothesis that Sn{E) is

semi-stable. Note, by the way, that a vector bundle E is semi-stable if and

only if for every quotient bundle E" of E, one has
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deg£ ^ d e g £ "
rank E rank£" '

This follows immediately from the definition.

In our case, we have rank E — r, and deg E — d > 0. An easy calcula-

tion 'shows that

and

Since π : C — > I is a finite morphism of degree m9 we have

rank^(^(x)LTO) = m.

If M is any invertible sheaf on C, then one sees easily that

degjr*M=: degM+ d e g π * ^ .

In our case, deg^7c(x)£n = n(L.C), so we have

deg π*{<ί?o®Ln) = n{L. C) + deg π*έ?Ό.

Now since Sn{E) is semi-stable, and π*{tf>

c®Ln) is its quotient, we have

dn ^
r m

Dividing by n, and multiplying by m, we have

-f- m ̂  (L. C) + -±- deg π * ^ .

This is true for all n sufficiently large, so we conclude that

On the other hand, since X is non-singular, m^m{C)9 so we have

Now if we take 0 < ε < m i n Γ l , — j we will have {L.C)>εm{C) for all cur-

ves C^P{E), which proves that L is ample. Hence E is ample on X.
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T H E O R E M 2.4. Let X be a complete non-singular curve over the complex

numbers C. Let E be a vector bundle on X. Then E is ample if and only if every

quotient bundle of E has positive degree.

Proof. If E is ample, every quotient bundle Er of E is also ample, and

so has positive degree. Conversely, to show that every bundle, all of

whose quotients have positive degree, is ample, it is sufficient by Proposition

2.1 to consider only stable bundles. But if E is stable, and X is of genus

at least 2 over C, then all the symmetric powers Sn(E) are semi-stable, by

Proposition 2.2. It follows from Proposition 2.3 that E is ample. For

curves of genus 1, the result was proved in the previous section, and for

curves of genus 0 it is trivial.

§3. An Example of Serre

In this section we give an example, due to Serre, of a non-singular

curve X of genus 3 over a field of characteristic 3, and a bundle E of rank 2

on X, of degree 1, such that every quotient bundle of E has positive degree,

but E is not ample. In this example, the Hasse-Witt matrix of X is iden-

tically zero.

Let k be an algebraically closed field of characteristic 3. Let X^P\ be

the curve given by the homogeneous equation

xzy + yzz -f z3x = 0.

One verifies easily that X is non-singular. Being a plane curve of degreee

4, it has genus 3.

LEMMA 3.1 The Hasse-Witt matrix of X is identically zero, i.e., the action

of frobenius on H^X^x) is 0.

Proof. Let g = x3y + yzz + z3x. Then we have an exact sequence

9
0 — > έ?A-4) — > <7P—>6?x — > 0,

which gives rise to an isomorphism

(1) HKX, έ?z) — > H*(P, aTpi-4)).

This latter vector space, according to the explicit calculations of cohomology

on protective space, has a basis consisting of the "negative monomials" of

degree 4 namelydegree 4, namely
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1
x2yz9 xy2z9 xyz2

Under the isomorphism (1), the action of frobenius on H1(Xf &x) becomes

the composition

/ * 92

H2(P, έ?p(-4)) > H2(P, έ?P(-l2)) > H2(P, ^W-4))

of frobenius on P2 with multiplication by g2. Now frobenius takes our

three monomials into their cubes,

x*y*z* xάybzό xόyάzδ

Every monomial of g2 contains either xb or ys or z3. Hence g2lxBy3z'ά = 0

in H2{P, <^p(—4)). By symmetry, g2 also kills the other two monomials, so

we find that frobenius on H\Xy£?x) is 0.

EXAMPLE 3.2 A bundle E of rank 2 on X, such that every quotient

bundle of E has positive degree, but E is not ample.

Let p&X be a point, and consider an extension oί sheaves on X,

0 >έ? >E ><<?(p) >09

classified by an element ξ<=H\X,&>(-$)). By Riemann-Roch, H\X,tf{-P))

has dimension 3. The degree of E is 1. If ζ ψ 0, then every quotient line

bundle L of E has positive degree. Indeed, consider the composed map

&x > E—> L. If it is zero, then ^X(P)QL, SO deg L >. 1. If it is non-zero,

but not an isomorphism, then deg L > 0. If it is an isomorphism, then &x

is a direct summand of E, so ξ = 0, a contradiction.

Now consider the action of the frobenius morphism / on the extension

above. We have a new extension

0 > <? • f*E ><?(3P) > 0

classified by the element f*{ξ)^H1(X9^
>(—3P)). We have a commutative

diagram

W{X, &{ -3P)) > HKX, (?) > 0.

By Riemann-Roch, dim HKX, έ7χ{-3P)) = 5. Now frobenius is 0 on H\X,
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So by counting dimensions, there is a ξ ψ 0 in Hι{X,έ?x{-P)) with"/*(£) = 0.

Let E be the corresponding bundle. Then every quotient bundle of E

has positive degree (as we have seen), but E is not ample, because f*E has

&x as a quotient, and so cannot be ample. On the other hand, E is ample

if and only if f*E is ample, by [4, 4.3],

Remarks. 1. The same construction would work on any curve X of

genus g, over a field of characteristic p > 0, such that the rank σ of the

Hasse-Witt matrix of X satisfies σ < g — p + 1.

2. The bundle E constructed above is stable, but its third symmetric

product SZ{E) is not semi-stable. The stability of E is obvious. Since

f"EQS3(E), we have also &x{dP)<^SKE). Now S3(£) has rank 4 and degree

6, so it is not semi-stable.

3. It would be interesting to know, for which curves in characteristic

p is it true that the# symmetric powers of a stable bundle are semi-stable.

In the same vein, one can ask, when is it true that E stable implies f*E

semi-stable ?

4. In the example above, we have an ample line bundle L, namely

έ?x{P), such that the frobenius map f*:Hι{L)—> H^f^L) is not injective.

However, the theorem of Oda (see § 1) says that if E is an ample bundle

on an elliptic curve, then /* : H^E)—> Hι(f*E) is injective. Thus we may ask,

for which curves X in characteristic p is it true that /* : Hι{E) — > Hι{f*E)

is injective for all ample bundles E? Is it sufficient that the Hasse-Witt

matrix of the curve be non-singular?

§4. Curves in Abelian Varieties

Let X be a subvariety of an abelian variety A. We say that X generates

A if the set of differences {xλ — xz\xl9 x2^X] generate A as a group.

In this section we show that if X is a non-singular curve in an abelian

variety A, which generates A9 then the normal bundle to X in A is ample.

In fact, our result is more general: it applies to any non-singular variety X

in an abelian variety A, such that every curve in X generates A. We also

give two applications.

We need the following result of Gieseker:

THEOREM (Gieseker [2, Prop. 2.1]): Let X be a complete scheme over a

field k. Let E be a vector bundle on X which is generated by its global sections.
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Then E is ample if and only if for every curve CQX, and for every quotient line

bundle L of E\C9 d e g L > 0 .

PROPOSITION 4.1 Let X be a non-singular variety, contained in an abelian

variety A. Assume that every curve in X generates A, Then the normal bundle N

to X in A is ample.

Proof Since A is an abelian variety, its tangent bundle TA is trivial.

Thus the normal bundle to X, being a quotient of TA\Z, is generated by

global sections. To apply the criterion of Gieseker, we must show that for

every curve C in X, and for every quotient line bundle L of N\c, d e g L > 0 .

Suppose to the contrary there is a C and an L with deg L :< 0. Now L is

also generated by global sections, so we would have deg L — 0 and in fact

L~^7c Therefore the dualJVΊe has a subbundle isomorphic to θc, and in

particular, H°(N\C) ψ 0. Now we have an exact sequence

0 >N\c >Ω1AIO >Ωιχ\c >0

of sheaves on C, where Ω1 denotes the sheaf of differential forms. O n the

other hand, there is a natural map of sheaves ΩA\C—>Ωι

C9 which factors

through Ωιχ\c Since C generates A, the map of global sections

is injective. So the map

is also injective, and hence H°(N\C) = 0. This is a contradiction. So we

conclude by the criterion of Gieseker that N is ample on X.

Remark. This result applies m particular whenever X is a non-singular

curve which generates A, or whenever X is a non-singular variety of any

dimension in a simple abelian variety A.

EXAMPLE. It is not sufficient in the Proposition to assume merely that

X generates A. For example, let X^AX and X2^A2 be non-singular curves

which generate the abelian varieties Ax and A2. Then their normal bundles

Nι and N2 are ample. Let X= XxxX2<^A = AxxA2. Then X generates A.

However, the normal bundle to X is iV= P*Nι®φ*N29 which is not ample.
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COROLLARY 4.2. Let X and A be as in the proposition. Then the field K{Λ)

of formal-rational functions on the formal completion A of A along X is a finite

extension field of K(A). (We say that X is G2 in A. This is a special case

of a theorem of Hironaka and Matsumura [7, Thm. 4,2], which says that

whenever X generates A, it is G2 in A.)

Proof This follows immediately from [5, Cor. 6.8].

COROLLARY 4.3. Let X and A be as in the proposition. Assume furthermore

that the characteristic of the ground field k is 0. Then Hi{A — X9F) is finite-

dimensional over k, for all coherent sheaves F, and for all i ;> codim {X, A).

Proof This follows immediately from [5, Cor. 5.5].

EXAMPLE. It is not sufficient in this Corollary to assume merely that

X generates A. We take the same example as above. Let Hx be a hyper-

plane section of Ax which does not contain Xx. Then HiΓ\Xχ is a finite set

of points.

Let Ho,A be ftι{Hx). Let H be the formal completion of H along HΓiX,

and let ί)1 be the formal completion of Hλ along Hx Π Xι. Then there is a

natural map of formal schemes H—> Hx. But Hx consists of a finite number

of points, so H°{£7ft ) is infinite-dimensional. This is included in H°{^7^)9

which is also infinite-dimensional. Therefore, by [5, Prop. 4.3] there is a

coherent sheaf F on H such that Hn~2(H— HπX,F) is infinite-dimensional.

Here we let dim A = n, so dim H = n — 1. But F is likewise a coherent

sheaf on A — X, so Hn~2(A — X,F) is infinite-dimensional.

PROBLEM. Find necessary and sufficient conditions on a subvariety X

of an abelian variety A for the result of the Corollary to hold.
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