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ON HOLOMORPHIC EXTENSION FROM

THE BOUNDARY

KIYOSHI SHIGA

0. Introduction

Let D be a bounded domain of the complex n-space Cn(n^2), or

more generally a pair {M9D) a finite manifold (c.f. Definition 2.1), and we

assume the boundary 3D is a smooth and connected submanifold. It is well

known by Hartogs-Osgood's theorem that every holomorphic function on a

neighbourhood of 3D can be continued holomorphically to D. Generalizing

the above theorem we shall prove that if a differentiable function on 3D

satisfies certain conditions which are satisfied for the trace of a holomorphic

function on a neighbourhood of 3D, then it can be continued holomorphi-

cally to D (Theorem 2-5). The above conditions will be called the tangential

Cauchy Riemann equations.

Using the above result, we shall determine the condition for a diffeomor-

phism of 3D to be continued to a holomorphic automorphism of D (Theo-

rem 3-3). Finally as its corollary the analogy to functions holds for cross-

sections of a holomorphic vector bundle. (Theorem 3-5)

In preparing this paper, I have received many advices from Professor

M. Ise and Professor T. Nagano. I would like to express my cordial thanks

to them.

1. Tangential Cauchy-Riemann equations

Let N be an ^-dimensional complex manifold. From now on we always

assume n >̂ 2. Let M be a real smooth submanifold of N. We denote by

TP{M) the real tangent space of M at p. Let / be the complex structure

of N.

Cp = Tp(M)ΓlJT,(M)

is the maximum complex subspace of TP(M)9 and we denote its complex

dimension by m(p) and we assume wι(p) is constant on M.
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Then TP{M) (x) C is decomposed to

TP(M) ® C = Hp + Hp + Lp (direct sum)

where Hp = {X<=TP(M) <g) C; X is a j / - l eigen vector of /}

/ / p = {X<ΞTP(M)®C; X is a - / - I eigen vector of /},

and Lp is a complemental subspace of Hp + Hp. We call an element of Hp9

Hp, holomorphic and anti-holomorphic tangent vector respectively. It is

evident that (Hp) — Hp, where the upper bar means complex conjugate with

respect to TP(M), and that dimcHp = dimcHp = m(p). Now we define

DEFINITION 1-1. Let / be a complex valued differentiate function

defined on a neighbourhood of peM. If Xf — 0 for every X^HP, we call

that / satisfies the tangential Cauchy-Riemann equations at p.

If / satisfies the tangential Cauchy-Riemann equations at every point

of the domain of /, we call / satisfies the tangential Cauchy-Riemann

equations (in short, T — C — R equations).

In the following we consider only the case when M is a real hypersurface

of N. In this case we define

DEFINITION 1-2. Let M be a real hypersurface of N. We call a real

valued differentiate function φ a defining function of M if it satisfies the fol-

lowing conditions.

1). M = {Z<BN; φ{z) = 0}

2). grad φ does not vanish on M.

Let ψ be a defining function of M and p0 & point of M. Let {zl9 , zn)

be a local coordinate system at p0. Since grad ψ does not vanish on M, then

we can assume φJn: = ^f does not vanish on some neighbourhood U of

p0. We can choose a base of Hp, Hp, and Lp at peC/ as following
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LP: ^

It means H= U Hv, H= u i are subbundles of T(M)®C.
pt=M p<=M

2. Holomorphic extension of functions.

Let M be a Stein manifold and D be a domain of M. Now we intro-

duce the following definition.

DEFINITION 2-1. A pair (M,D) is called a finite manifold, if the following

conditions are satisfied.

0). M i s a Stein manifold and

1). D is a connected relatively compact domain of M.

2). the boundary of D, denoted by 3D, is a connected smooth real

hypersurface of M.

Let {M,D) be a finite manifold. We use the following notations.

C°°(D) = {a differentiate function on D]

H(D)~ {/eC°°(5); f\D is a holomorphic function}

where f\D is the restriction of / to Zλ

We choose a defining function φ of 3D such that

D= {z;φ(z)<0} and M-D=

Since φ is a defining function, grad φ does not vanish on 3D.

It is convenient to express the T — C — R equations in another way.

Let / be a differentiate function on 3D. There exists F^C°°{D) so that

F\3D=f.

LEMMA 2-2. A differentiable function f on 3D satisfies T — C — R equations

if and only if 3F Λ 3ψ = 0 on 3D, where F is a differentiable function on D as

above and 3 is the Cauchy-Riemann operator.

Proof is clear from Definition 1-1.
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LEMMA 2-3. (Hormander [1] p . 137) Let M be a Stein manifold and a

a (0,1) type lform of class Ck. If da = 0, there exists a k — n time differentiable

function u such that du — a.

We shall prove the following corollary, using the above lemma.

COROLLARY 2-4. Let a be a (0,1) type I form of class Ck on a Stein mani-

fold M. If da = 0 and K= supp a is compact and M—K is connected, there

exists k — n time differentiable function u so that du— a and supp uczK.

Proof There exists a -k — n time differentiable function v such that

dv = a by lemma 2-3. Since dv = 0 on M— K, υ is holomorphic on M—K.

By Hartogs-Osgood's theorem (Kasahara [2]) v\M-κ c a n be continued to a

holomorphic function w on M. We put u = v—w, it follows that du — dv—dw

= dv — a, and supp uaK. Q.E.D.

We shall prove the following theorem by the method of Hormander

[1].

on

THEOREM 2-5. Let (M, D) be a finite manifold, and f a differentiable function

dD. If f satisfies T—C—R equations, there exists f(=H{D) such that f\dD=f.

Proof (1-st step) We construct by induction a differentiable function

Uk^C°°(D) for every positive integer k which satisfies the following conditions;

(2-1) Uk\dD=f and 3 ^ = 0 ^ * ) .

We extend / to a function on D as an element of C"(5), and we denote it

by / also. By lemma 2-2 df Λ dφ = 0 on dD. Then we can decompose df

as

df = hxdφ + φh2

where h^C'φ) and h2 is a differentiable (0,1) type 1-form. We write it

by A2eCΓ0,i)(5) in the following.

By simple calculation we have

d(f - hlΨ) =df- (dhjφ - hxdψ

= φh2 - (dhγ)φ

= φ{h2 — dhi).

Put Uίi = / — φhl9 then U1\dD= f and dUx = 0{φ). We have thus constructed
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Now we assume that C7Λ-i is constructed, i.e.

Then we can write Wk-X= φ^h, hf=C%>ti:>(D). Then

ddUt-ί = 0

= (fc - l)φ*"*dφ Λh + φK-'dh

= φk-2((k - l)3φ Λh-\-φ dh)

vanishes on dD, so that hHence (fc — l)dφ Λ h + ^d/z = 0. However

must satisfies dφ /\ h = 0 on 3D.

This imples that A = dφ Λ A2*-i + pλ2*> where /z2A;-ie C"(δ), /z2A;e CΓO.D (5).

Put C7A: = C7jb_i — (-r- ^ f c ) &2*-i We see that the function i/A satisfies the

condition (2 — 1), because

. We define ^ECfO(O)(M) with

VjfcU-s = 0.

(2-nd step) Let

Note that supp. vkaD. By corollary 2-4 there exists ^ E C * ' 1 ' ^ ) which

satisfies dwk = ^ and supp. w^cD. Put /fc = ί/fc — wk. Then we have

f^C^-^φ), fk\9D = f and 5 / ^ = 5 ^ - 9 ^ - 5 ^ = 0. Thus fk is holo-

morphic on D and its boundary value is / . Then by the uniqueness of

continuation

fk — fk+l — fk+2 =

We put f=fk= /fc+i = /jfc+2 = , it is the desired one. Q.E.D.

3. Holomorphic extension of mappings

Let M be a complex manifold and S a real hypersurface of M. As we

saw in §1, TV(S)®C is decomposed at p e S as follows:

TP{S) ®C = Hp + Hp + Lp (direct sum)

where Hp, Hp9 are holomorphic and anti-holomorphic tangent space at p,
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respectively. Here we define the tangential Cauchy-Riemann equations for

mapping.

DEFINITION 3-1. Let M, M'9 be complex manifolds and S, S' real

hypersurfaces of M, M\ respectively. Let μ be a differentiate mapping

from S to S'. The following conditions 1), l'),2), 3) are equivalent. If μ

satisfies one of the conditions, we say that μ satisfies the tangential Cauchy-

Riemann equations (in short, T — C — R equations).

1). μ*{Hp{S))aHμ(piS') for every point

1)'. μ*(Hp(S))czHμ(p)(Sr) for every point

2). a differentiate function / on an open set of S' satisfies T — C — R

equations, then μ*f satisfies T— C — R equations on its domain.

3). Let (z'19 , #4) be a local coordinate system at q= μ(p) of M.

Then ft\ = μ*zl: (i - 1, ,m) satisfies T — C — R equations.

We shall prove that four conditions of definition are equivalent.

1) —> l') We choose a local coordinate system (zu , zn) of M at p as

follows.

".- (KTH - (τ£r))) "- - \Ur\-
Take some local coordinate system (z'19 ,2i) of M' at q= μ(p) and put

ft = V*zU then

dzt 7 <

But from the condition 1) μ% f-A_Vϋ r(S /), so that
V dZi /

n

() () =o

Hence it follows that

V) =$ l) is now obvious.
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2) = φ 3). Since (z[9 , zή) is a local coordinate of M' at μ{p) = q, it is

trivial that z't satisfies T — C — R equations. By condition 2), ft = μ*{z't)

satisfies T — C — R equations.

1) = > 2). Let g be a differentiate function defined on a neighbourhood (in

S') oΐ q = μ(p) which satisfies T — C — R equations. Let X be any element

of HP(S). By 1') μ+XezB^iS'), and X{μ*g) = (μ*X)g = 0. Thus g satisfies

T — C — R equations.

3) = Φ 1). We choose a local coordinate system at p as above. We also have

Since / satisfies T-C-R equations, we have (- |£-) = (^Ψ~) = ° T h e n

iS'). This means μ*(Hp(S))aHμ(p)(S').

LEMMA 3-2. Z^ί M be a complex manifold and S be a real hypersurface of

M. The set of all diffeomorphisms of S which satisfies T — C — R equations is a

group.

Proof is clear by the condition 1) of Definition 3-1. But I don't know

the group of lemma 3-2 is a Lie group or not.

Let {M,D) be a finite manifold. We introduce the following notations.

Let Diff (D) be the group of all C~-diffeomorphisms of D, and

Aut(D)= {μ^Όifΐ(D); μ\D is a holomorphic automorphism of D}

Now we shall prove the following

T H E O R E M 3-3. If a diffeomorphism μ:dD-+3D satisfies T — C — R equations,

there exists β<=Aut{D) such that β\dD= μ.

Proof Let p be any point of 3D. Since M is a Stein manifold, there

is a local coordinate system (fl9 , fn) of M at q = μ{p)9 where fl9 , fn

are holomorphic functions on M. By definition 3-1 μ*/* satisfies T — C — R

equations. Then by theorem 2-5 there exist f^Hφ) such that fi\dD = μ*fi

We take a sufficiently small neighbourhood Up of p, and define the map-

ping μϋp: Upf)D-+M, using the above local coordinate system {fu , fn)

at q, by

By the uniqueness of the holomorphic continuation of functions, there exist
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a small neighbourhood U of 3D9 so that Uf)D is connected, and there exists

a holomorphic mapping

μjj\ Df)U-+M with μu\up^D= Pίυp

Since D—DπU is compact, there exists a holomorphic mapping μ:D-+M

so that β\Dnu—fiu by Hartogs-Osgood's theorem (K. Kasahara [2]). We

shall prove that the mapping β is the desired one.

By the construction of β, β is holomorphic on D and β\9D= μ. First

we shall prove the rank of β is 2n at each point of a neighbourhood of

3D in D. Here we may assume that there exist real vector fields Xl9 , Xn,

JXl9 *,JXn-\ on a small neighbourhood Vp0 of p0 in 3D, such that they

form a base of TP(3D) at every point p of Vp0. We can construct them

taking real parts of the base of H and a real vector contained in L given

in §1.

We extend Xl9 ,Xn to a neighbourhood Wp0 of Fp0 and we denote

them Xί9 , Xn and we can assume Xl9 , A ,̂ JXU , /J?n_i are linearly

independent at each point of WPQ, taking WPo sufficiently small. Since μ

is a difTeomorphisms, μ*{Xx), μ*{X2), , μ*(Xn), μ*(JXi), , μ*{JXn-i) are

linearly independent at each point of μ(Vp), and hence β*(X\)9 , β*{Xn),

β*{JXι), - - ,β*(JXn-i) are independent at every point of β{Wpf)D)9 changing

WP0 smaller if necessary. Since β is holomorphic on D,

Then £*(Xi), β*{X2), , β*{Xn)> fi*{JXi), , β*{JXn) are independent at

/?(T7pΠl>). It means the rank of β is 2n on Wp0Γ\D. Since p0 is an arbit-

rary point of oD9 there exists a neighbourhood W of dZ) such taht rank of

β is 2n on Wf)D. Hence the set of all ponits of D where rank of β is

smaller than 2n is a compact analytic set of dimension n — 1 ;> 1 of M.

Since M is a Stein manifold, there is no compact analytic set of dimension

n — 1 ;> 1 of M. Then rank β is 2w at each point of D. Hence β is a

local diffeomorphism on D.

Next we see that β{D)dD. In fact, if β{D)(ZD9 there is a boundary

point q of /e(Z5) such that q= β{p)&D. Since β(3D) = 3D, we have pεD.

This contradicts to the fact β is a local diffeomorphism at p.

Since μ~x also satisfies T — C — R equations by Lemma 3-2, theer is {μ'1)

such that (μ"1)]^ is holomorphic and {μ~1)\dD = μ'1- Since β(D)aD and
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{μ~1) (D)dD, we have (β) {μ'1) = id = id, and {μ-1) (β) = id = id. This means

that β is a holomorphic automorphism of D. Q.E.D.

By the proof of the above theorem, we conclude the following theorem.

T H E O R E M 3-4. Let (M, D) be a finite manifold, N a Stein manifold and S a

real hyper surface of N. If a mapping μ: 3D-+S satisfies T—C—R equations, there

exists a differentiable mapping β: D-+N such that β\dD= μ and β\D is holomorphic.

In the above theorem the conditoin that S is a real hypersurface can

be changed to that μ:3D->N satisfies the condition 1) of Definition 3-1.

By using the above theorem, we consider the holomorphic extension of

a differentiable cross-section of a holomorphic fibre bundle.

Let (M,D) be a finite manifold and E a holomorphic fibre bundle over

M. If a differentiable cross-section 5 over 3D satisfies T — C — R equations

as a mapping s: 3D-* E, we call 5 satisfies the tangential Cauchy-Reimann

equations, (in short, T — C — R equations).

T H E O R E M 3-5. If a differentiable cross-section s over 3D of a holomorphic fibre

bundle whose fibre is a Stein manifold, satisfies T — C — R equations, there exists a

differentiable cross-section s over D such that s\dD = s and s\D is a holomorphic cross-

section.

Proof Since M and the fibre of E are Stein manifolds, E is also a Stein

manifold by the theorem of Matsushima-Morimoto [3]. Since cross-section

5 satisfies T — C — R equations, there exists a mapping s: D-ΪE such that

s\dD= s and s\D is holomprohic by Theorem 3-4.

Then it sufficies to prove s is a cross-section i.e. πs = id where π is the

projection from E to M.

f= (πs)*f is a holomorphic function for every f<=H(D). It is clear that

f\dD — f implies / = {πs)*f = f on D. By considering coordinate functions,

it means πs = id.

Remark 3.6. If E is a holomorphic vector bundle, E is a Stien manifold

since vector space over C is a Stein manifold. In this case if a differentiable

cross-section s over 3D satisfies T — C — R equations, by the local expression,

then it satisfies T — C — R equations as cross-section. Then s can be holo-

morphically extended to the cross-section over D by the above theorem.
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