H. Kunita Nagoya Math. J. Vol. 38 (1970), 41–52

STOCHASTIC INTEGRALS BASED ON MAR-TINGALES TAKING VALUES IN HILBERT SPACE

HIROSHI KUNITA

To Professor Katuzi Ono on the occasion of his 60th birthday

Let *H* be a separable Hilbert space with inner product (,) and norm || ||. We denote by *K* the set of all linear operators on *H*. Let $(\Omega, \mathfrak{F}, P)$ be a probability space and suppose we are given a family of σ -fields \mathfrak{F}_t , $t \geq 0$ such that $\mathfrak{F}_s \subseteq \mathfrak{F}_t \subseteq \mathfrak{F}$ for $0 \leq s \leq t$ and $\bigcap_{\epsilon>0} \mathfrak{F}_{t+\epsilon} = \mathfrak{F}_t$. We assume further that each \mathfrak{F}_t is complete relative to the probability measure *P*. A mapping $X_t(\omega)$; $[0, \infty) \times \Omega \to H$ is called an *H*-valued stochastic process or shortly *H*-process if (f, X_t) is a scalar valued (real or complex) stochastic process for all $f \in H$. In particular, if (f, X_t) is a martingale for every $f \in H$, X_t is called an *H*-martingale.

The purpose of this article is to define two types of stochastic integrals by *H*-martingale $\int_0^t (\Phi_1(s, \omega), dX_s(\omega))$ and $\int_0^t \Phi_2(s, \omega) dX_s(\omega)$ and to establish a formula concerning these stochastic integrals. Here $\Phi_i(s, \omega)$, i = 1, 2 is *H*or *K*-process, respectively, with suitable additional conditions. Similar problem concerning Hilbert space valued Brownian motion has been discussed by Daletskii [1].

1. Preliminaries. Let X be an H-random variable. Then $||X(\omega)||$ is clearly an \mathfrak{F} -measurable real random variable. We suppose $E||X|| < \infty$. For a given sub σ -field \mathfrak{G} of \mathfrak{F} , we define the *conditional expectation* of X relative to \mathfrak{G} , denoted by $E(X|\mathfrak{G})$, in the following manner; $E(X|\mathfrak{G})$ is an H-random variable such that $(f, E(X|\mathfrak{G}))$ is \mathfrak{G} -measurable and $(f, E(X|\mathfrak{G})) = E((f, X)|\mathfrak{G})$ holds for every $f \in H$. Such $E(X|\mathfrak{G})$ is unique up to measure 0. Then an H-process X_t such that $E||X_t|| < \infty$, $\forall t \ge 0$, is an H-martingale if and only if $E(X_t|\mathfrak{F}_s) = X_s$ holds for every $t \ge s$.

Received March 31, 1969

HIROSHI KINITA

PROPOSITION 1. Let \mathfrak{G} be a sub σ -field of \mathfrak{F} . Let X and Y be H-random variables such that $E||X||^2 < \infty$ and $E||Y||^2 < \infty$. Then if X is \mathfrak{G} -measurable, we have

$$E((X,Y)|\mathfrak{G}) = (X, E(Y|\mathfrak{G})) \quad or \quad E((Y,X)|\mathfrak{G}) = (E(Y|\mathfrak{G}), X).$$

Proof. It is enough to prove the proposition in the case where X is a step function, i.e., there exists a \mathfrak{G} -measurable partition $\{B_n\}$ of \mathcal{Q} such that $X(\omega) = a_n$ for $\omega \in B_n$, where each a_n is a fixed element of H. Since $(X, Y) = \sum (a_n, Y)I_{B_n}$ (I_B is the indicator function of the set B) and B_n belongs to \mathfrak{G} , we have

$$E((X,Y)|\mathfrak{G}) = \sum_{n} E((a_{n},Y)|\mathfrak{G})I_{B_{2}} = \sum_{n} (a_{n}, E(Y|\mathfrak{G}))I_{B_{n}} = (X, E(Y|\mathfrak{G})).$$

The proof of the second equality is quite similar to the above.

The following proposition is easily verified.

PROPOSITION 2. Let X_t be an H-martingale such that $E||X_t|| < \infty$ for every $0 \le t < \infty$. Then X_t has a weakly right continuous modification, i.e., there exists an H-martingale X_t^* such that $P(X_t = X_t^*) = 1$ for every t and (f, X_t^*) is a right continuous scalar martingale for every $f \in H$.

From now we shall only consider weakly right continuous *H*-martingales. We denote by \mathfrak{M} the set of all *H*-martingales such that $E||X_t||^2 < \infty$ for $0 < t < \infty$ and $X_0 = 0$ a.e. *P*. Then for every $X_t \in \mathfrak{M}$, $||X_t||^2$ becomes a real submartingale. In fact, using Proposition 1,

(1)
$$E(||X_t - X_s||^2 |\mathfrak{F}_s) = E(||X_t||^2 |\mathfrak{F}_s) + ||X_s||^2 - E((X_t, X_s) |\mathfrak{F}_s) - E((X_s, X_t) |\mathfrak{F}_s)$$
$$= E(||X_t||^2 |\mathfrak{F}_s) - ||X_s||^2 \ge 0$$

if $t \ge s$. Let us now introduce the metric ρ to \mathfrak{M} in the following way.

$$\rho(X,Y) = \sum_{n} \frac{1}{2} \frac{E \|X_n - Y_n\|^2}{1 + E \|X_n - Y_n\|^2}.$$

Then \mathfrak{M} is a complete metric space (c.f. [2]).

PROPOSITION 3. Let $X \in \mathfrak{M}$. Then, for almost all ω , $X_t(\omega)$ is strongly right continuous and has strong left limits with respect to t. Furthermore, if $X_t(\omega)$ is weakly continuous, it is strongly continuous for almost all ω .

Proof. Let L be a finite dimensional subspace of H. Then the assertion of the proposition is obvious for L-martingales. Since such L-martingales are dense in \mathfrak{M} , it is enough to verify that the limit of a sequence of strongly (right) continuous H-martingales is again strongly (right) continuous. Let $\{X_t^n\}$ be a sequence of \mathfrak{M} converging to X_t . Then, for each $\lambda > 0$ and N,

$$P(\sup_{t \leq N} ||X_t - X_t^n|| > \lambda) \leq \frac{1}{\lambda^2} E ||X_N - X_N^n||^2 \to 0 \quad \text{as} \quad n \to \infty$$

by Doob's inequality. Hence there exists a subsequence $\{X_{t}^{n_{k}}\}$ such that

$$P(\sup_{t \leq N} \|X_t - X_t^{n_k}\| \to 0 \quad \text{as} \quad k \to \infty \text{ for every } N > 0) = 1,$$

by Borel-Cantelli's lemma. It is now obvious that X_t is strongly (right) continuous if so is each $\{X_t^n\}$. The existence of strong left limits is obvious from the above discussion.

2. Stochastic integral I. We have shown in the preceding section that $||X_t||^2$ is a positive sub-martingale for any $X \in \mathfrak{M}$. Hence, by Meyer's decomposition, there exists a unique natural increasing process $\langle X \rangle_t$ such that $||X_t||^2 - \langle X \rangle_t$ is a real martingale. This $\langle X \rangle_t$ plays an important role in the future. For $X, Y \in \mathfrak{M}$, set

$$\langle X,Y\rangle_t = \frac{1}{4} \{\langle X+Y\rangle_t - \langle X-Y\rangle_t\}.$$

in case of real Hilbert space. In case of complex Hilbert space, the definition of $\langle X, Y \rangle_t$ should be modified in an obvious way. Then we have, making use of equality (1),

(2)
$$E((X_t - X_s, Y_t - Y_s)|\mathfrak{F}_s) = E(\langle X, Y \rangle_t - \langle X, Y \rangle_s |\mathfrak{F}_s), \qquad t \ge s.$$

We denote by $L(\langle X \rangle)$ the set of all very well measurable scalar processes ([5]) $\Phi(s,\omega)$ such that $E(\int_0^t |\Phi(s,\omega)|^2 d\langle X \rangle_s(\omega)) < \infty$ for every $0 \le t < \infty$. Then similarly as the one dimensional case, we have

(3)
$$\left| E\left(\int_{0}^{t} \Phi \Psi d\langle X, Y\rangle\right) \right| \leq E\left(\int_{0}^{t} |\Phi|^{2} d\langle X\rangle\right)^{\frac{1}{2}} E\left(\int_{0}^{t} |\Psi|^{2} d\langle Y\rangle\right)^{\frac{1}{2}},$$

where $\Phi \in L(\langle X \rangle)$ and $\Psi \in L(\langle Y \rangle)$.

THEOREM 1. For each $X \in \mathfrak{M}$ and $\Phi \in L(\langle X \rangle)$, there exists a unique $Y \in \mathfrak{M}$ such that

$$\langle Y, Z \rangle_t(\omega) = \int_0^t \varPhi(s, \omega) d\langle X, Z \rangle_s(\omega) \quad for \ every \ Z \in \mathfrak{M}.$$

Further, this Y satisfies

$$(f, Y_t) = \int_0^t \overline{\varPhi} \ d(f, X_t) \qquad \forall f \in H,$$

where the right hand of the above is the stochastic integral of the scalar martingale (f, X_t) , and $\overline{\Phi}$ is the complex conjugate of Φ .

The proof can be carried out similarly as that of real martingale, making use of inequalities (2) and (3). (See [2]). We shall call the above Y as the stochastic integral of φ relative to X and denote it as $\int_{a}^{t} \varphi dX$.

By virtue of Theorem 1, we can define orthogonality of *H*-martingales, projection etc. quite similarly as the case of real martingales. Two X and Y are orthogonal if $\langle X, Y \rangle \equiv 0$ or equivalently (X_t, Y_t) is a scalar martingale. A subset \mathfrak{N} of \mathfrak{M} is a stable subspace if it is a closed subspace of \mathfrak{M} and $\int \varPhi dX \in \mathfrak{N}$ whenever $X \in \mathfrak{N}$ and $\varPhi \in L(\langle X \rangle)$. Let \mathfrak{N} be a stable subspace. We denote by \mathfrak{N}^{\perp} the set of all $Y \in \mathfrak{M}$ which is orthogonal to every element of \mathfrak{N} . Then each $X \in \mathfrak{M}$ has a unique decomposition $X = X^1 + X^2$, where $X^1 \in \mathfrak{N}$ and $X^2 \in \mathfrak{N}^{\perp}$. Let \mathfrak{M}_e be the set of all $X_t(\omega) \in \mathfrak{M}$ which is strongly continuous with respect to t for almost all ω . Then \mathfrak{M}_e is a stable subspace of \mathfrak{M} . We denote \mathfrak{M}_e^{\perp} as \mathfrak{M}_d .

THEOREM 2. The set of all $X \in \mathfrak{M}_d$ decomposed to the difference of the following two Y and \tilde{Y} , is dense in \mathfrak{M}_d : Y_t is an F-measurable H-process changing the values by jumps only; \tilde{Y}_t is a strongly continuous H-process such that

$$\sup \sum_{t_n \leq t} \| \tilde{Y}_{t_n} - \tilde{Y}_{t_{n-1}} \| < \infty$$

where $0 = t_0 < t_1 < t_2 < \cdots$ and sup is taken for all such $\{t_n\}$. Furthermore, we have for every $X \in \mathfrak{M}$,

$$\sum_{\substack{t_n \leq t \\ s \leq t}} \|X_{t_n} - X_{t_{n-1}}\|^2 \to \sum_{\substack{\|\mathcal{A}x_s\| > 0 \\ s \leq t}} \|\mathcal{A}X_s\|^2 + \langle X^c \rangle_t \quad \text{in } L^1\text{-sense}$$

as $\limsup_{n} |t_n - t_{n-1}| = 0$, where X^c is the projection of X on \mathfrak{M}_c and $\Delta X_s = X_s - X_s^- (X_s^- = \lim_{s \perp 0} \dot{X}_{s-\varepsilon})$.

44

Proof. Let L be a finite dimensional subspace of H. We denote by $\mathfrak{M}(L)$ etc. the subset of \mathfrak{M} etc. consisting of L-martingales. Then all the assertions of the theorem is immediate from that of real martingales if \mathfrak{M} , \mathfrak{M}_d etc. are replaced by $\mathfrak{M}(L)$, $\mathfrak{M}_d(L)$ etc. (See [2] or [5]). Since $\bigcup \mathfrak{M}_d(L)$ is dense in \mathfrak{M} , the first assertion is obvious. Now let Y be the projection of $X \in \mathfrak{M}$ to $\mathfrak{M}(L)$. Then making use of orthogonal expansion and Bessel's inequality, it is easily seen that $||Y_t - Y_s||^2$ increases to $||X_t - X_s||^2$ as L increases to H. Similar fact holds for $\langle Y \rangle_t$ and $\langle X \rangle_t$. On the other hand since $\sum_{\substack{t \in \mathbb{K}^2 \\ t \in \mathbb{K}^2 \\ t \in \mathbb{K}^2}} ||Y_{t_n^{(k)}} - Y_{t_{n-1}^{(k)}}||^2$ converges to $\sum_{s \leq t} ||\Delta Y_s||^2 + \langle Y^c \rangle_t$ as $\limsup_{k \to n} |t_n^{(k)} - t_{n-1}^{(k)}| = 0$, $\lim_{k} \sum_{t \in \mathbb{K}^2} ||X_{t_n^{(k)}} - X_{t_{n-1}^{(k)}}||^2 \ge \sum_{s \leq t} ||\Delta X_s||^2 + \langle X^c \rangle_t$. To obtain the converse inequality, choose L large enough so that $E||X_N - Y_N||^2 < \varepsilon$ for given $\varepsilon > 0$ and N > 0. Then for $t \leq N$,

$$\begin{split} E[\lim_{\substack{t_n^{(k)} \leq t \\ n}} \sum_{l \in \mathbb{Z}_{t_n^{(k)}}} \|X_{t_n^{(k)}} - X_{t_{n-1}^{(k)}}\|^2] &\leq E \|Y_t\|^2 + E\|X_t - Y_t\|^2 \\ &\leq \varepsilon + E(\sum_{s \leq t} \|\mathcal{\Delta}Y_s\|^2 + \langle Y^c \rangle_t) \\ &\leq \varepsilon + E(\sum_{s \leq t} \|\mathcal{\Delta}X_s\|^2 + \langle X^c \rangle_t). \end{split}$$

Therefore we have the desired equality.

Remark. Let $X \in \mathfrak{M}$. Then for $\varepsilon > 0$ there sxists an increasing sequence of stopping times $\{T_n^{\varepsilon}\}$ converging to ∞ a.e. such that $||X_t - X_s|| < \varepsilon$ holds for all $T_n^{\varepsilon} \leq s, t < T_{n+1}^{\varepsilon}$. Such $\{T_n^{\varepsilon}\}$ is called an ε -chain for X. The assertion of Theorem 2 holds if we replace $t_n^{(k)}$ by $T_{n^k}^{\varepsilon_k}$, where $\{\varepsilon_k\}$ is a sequence converging to 0.

3. Stochastic integral II. An *H*-process $\Phi(t, \omega)$ is called very well measurable if $(f, \Phi(t, \omega))$ is very well measurable for every $f \in H$ ([5]). For a fixed $X \in \mathfrak{M}$, set

 $L_{H}(\langle X \rangle) = \left\{ \emptyset | \emptyset \text{ is very well measurable } H\text{-process such that } E\left(\int_{0}^{t} ||\emptyset||^{2} d\langle X \rangle\right) \\ < \infty \text{ for } 0 \leq t < \infty \right\}.$ Our purpose of this section is to define the stochastic integral $\int_{0}^{t} (\emptyset, dX)$ for $X \in \mathfrak{M}$ and $\emptyset \in L_{H}(\langle X \rangle)$.

We first consider the case where Φ is a step function, i.e., there exist $0 = t_0 < t_1 < \cdots < t_n < \cdots$ such that $\Phi(t, \omega) = \Phi(t_k, \omega)$ for $t_k \leq t < t_{k+1}$. Define the scalar process Y_t as

HIROSHI KUNITA

$$Y_{t} = \sum_{t_{k+1} \leq t} (\varphi(t_{k}), \ X_{t_{k+1}} - X_{t_{k}}) + (\varphi(t_{l}), \ X_{t} - X_{l}),$$

where l is the natural number such that $t_l < t \leq t_{l+1}$. Applying Proposition 1, it is easily seen that Y_t is a scalar martingale. Moreover,

$$\begin{split} E|Y_t|^2 &\leq \sum_{t_{k+1} \leq t} E\|\varPhi(t_k)\|^2 \|X_{t_{k+1}} - X_{t_k}\|^2 + E\|\varPhi(t_l)\|^2 \|X_t - X_{t_l}\|^2 \\ &\leq E\left(\int_0^t \|\varPhi\|^2 d\langle X\rangle\right). \end{split}$$

We shall denote by $L^o_H(\langle X \rangle)$ the closure of the step functions in $L_H(\langle X \rangle)$. (The metric of $L_H(\langle X \rangle)$ is defined similarly as that of \mathfrak{M}).

Choose a sequence of step functions $\{ \Phi^n \}$ of $L_H(\langle X \rangle)$ converging to $\Phi \in L^0_H(\langle X \rangle)$. Set $Y^n_t = \int_0^t \langle \Phi^n, dX \rangle$. Then

$$E|Y_t^n - Y_t^m|^2 \leq E\left(\int_0^t \|\boldsymbol{\Phi}^n - \boldsymbol{\Phi}^m\|^2 \, d\langle X\rangle\right) \to 0 \quad \text{as} \quad n, m \to \infty.$$

Hence there exists a square integrable martingale Y_t such that $E|Y_t - Y_t^n|^2 \to 0$. It does not depend on the choice of $\{\Phi^n\}$. We shall write this Y as $\int_{0}^{t} (\Phi, dX)$.

In order to see that the stochastic integral can be defined for all $\varphi \in L_H(\langle X \rangle)$, it is necessary to verify $L^o_H(\langle X \rangle) = L_H(\langle X \rangle)$. Let $\{f^i\}$ be a complete orthonormal system of H. For an arbitrary φ of $L_H(\langle X \rangle)$, set $\varphi^i = (\varphi, f^i)$. It is known that for each φ^i there exists a sequence of step functions $\{\varphi^i_n\}_{n=1,2,\ldots}$ such that $E\left(\int_0^t |\varphi^i_n - \varphi^i|^2 d\langle X \rangle\right) \to 0$ as $n \to \infty$ ([5]). Since $\|\varphi\|^2 = \sum_{i=1}^\infty |\varphi^i|^2$, φ can be approximated by step functions of $L_H(\langle X \rangle)$.

Remark. Set $X_t^i = (f^i, X_t)$ and denote the scalar stochastic integral as $\int_0^t \Phi^i dX^i$. Then $\sum_{i=1}^n \int_0^t \Phi^i dX^i$ converges to $\int_0^t (\Phi, dX)$ in L^2 -norm. In fact, if $\Phi = \sum_{i=1}^n (\Phi, f^i)$ (finite sum) is a step function, then

$$\begin{split} \int_{0}^{t} (\varPhi, dX) &= \sum_{t_{k+1} \leq t} (\varPhi(t_{k}), \ X_{t_{k+1}} - X_{t_{k}}) + (\varPhi(t_{l}), \ X_{t} - X_{l}) \\ &= \sum_{i=1}^{n} \sum_{k} \varPhi^{i}(t_{k}) \left(X_{t_{k+1}}^{i} - X_{t_{k}}^{i} \right) + \sum_{i=1}^{n} \varPhi^{i}(t_{l}) \left(X_{t}^{i} - X_{t}^{i} \right) \\ &= \sum_{i=1}^{n} \int_{0}^{t} \varPhi^{i} dX^{i}. \end{split}$$

The above holds obviously for arbitrary Φ^i . The convergence of $\sum_{i=1}^n \int_0^t \Phi^i dX^i$ to $\int_0^t \langle \Phi_i dX \rangle$ for arbitrary $\Phi \in L_H(\langle X \rangle)$ is now obvious.

4. Stochastic integral III. Let $\Phi(t,\omega)$ be a mapping from $[0,\infty)\times\Omega$ to K such that $\Phi(t,\omega)f$ is very well measurable for all $f \in H$. We denote by $\|\Psi\|(t,\omega)$ the norm of the operator $\Phi(t,\omega)$. It is easily seen that $\|\Psi\|(t,\omega)$ is a real very well measurable process. We shall call Φ is a step function if there exists $0 = t_0 < t_1 < \cdots < t_n <$ such that $\Phi(t) = \Phi(t_k)$ for $t_k \leq t < t_{k+1}$. Set

 $L^{0}_{K}(\langle X \rangle) = \left\{ \Phi | \Phi \text{ is a very well measurable step function such that} \\ E\left(\int_{0}^{t} \| \Phi \|^{2} d\langle X \rangle \right) < \infty \right\}$

and denote by $L_{\mathcal{K}}(\langle X \rangle)$ the closure of $L^{o}_{\mathcal{K}}(\langle X \rangle)$. We shall define the stochastic integral $Y_{t} = \int_{0}^{t} \Phi dX$, $X \in \mathfrak{M}$, $\Phi \in L_{\mathcal{K}}(\langle X \rangle)$ as an element of \mathfrak{M} in the following way;

(4)
$$(f, Y_t) = \int_0^t (\varPhi^* f, dX) \quad \text{for} \quad f \in H,$$

where $\Phi^*(t,\omega)$ is the adjoint of $\Phi(t,\omega)$ for each t,ω . The stochastic integral defined in Section 2 is a particular case of this. To verify the existence of such Y, let us first consider the case where $\Phi(t,\omega)$ is a step function. Then

$$Y_t = \sum_{t_{k+1} \leq t} \varPhi(t_k) \left(X_{t_{k+1}} - X_{t_k} \right) + \varPhi(t_l) \left(X_t - X_{t_l} \right)$$

satisfies (4). Furthermore,

$$E ||Y_t||^2 \leq E\left(\int_0^t ||\Phi||^2 \, d\langle X\rangle\right).$$

Consequently, the stochastic integral $\int \Phi dX$ can be defined for all $\Phi \in L_K(\langle X \rangle)$ as the limit of $\int \Phi^n dX$, where $\{\Phi^n\}$ is a sequence of step functions such that $E\left(\int_0^t \|\Phi - \Phi^n\|^2 d\langle X \rangle\right) \to 0$ for $0 \le t < \infty$.

Remark. The characterization of the space $L_{\kappa}(\langle X \rangle)$ in an explicit form remains open. We shall give here two sufficient conditions that Φ belongs

to $L_{K}(\langle X \rangle)$: (a) $\Phi(t, \omega)$ is left continuous in t with respect to the operator norm for almost all ω , and $\|\Phi\|(t, \omega)$ is a bounded function; (b) $\Phi(t, \omega)$ is very well measurable and satisfies $E\left(\int_{0}^{t} \|\Phi\|_{2}^{2} d\langle X \rangle\right) < \infty$, where $\|\Phi\|_{2}$ is the Hilbert-Schmidt norm of Φ . The first assertion is obvious. Suppose that Φ satisfies the condition (b). Let $\{f^{i}\}$ be a complete orthonormal system of H. Set $\Phi^{i} = \Phi f^{i}$. Since $\Phi^{i} \in L_{H}(\langle X \rangle)$, it can be approximated by step functions of $L_{H}(\langle X \rangle)$. Define linear operator $\Phi^{(n)}$ by $\Phi^{(n)}f = \sum_{i=1}^{n} a_{i}\Phi f^{i}$, where $a_{i} = (f, f^{i})$. Then $\Phi^{(n)}$ can be approximated by step functions of $L_{K}(\langle X \rangle)$ from the fact just remarked above. Furthermore, since

$$\| \Phi^{(n)} f - \Phi^{(m)} f \|^2 = \sum_{i=m+1}^n a_i^2 \| \Phi f^i \|^2 \le (\sum_{i=m+1}^n \| \Phi f^i \|^2) \| f \|^2,$$

 $\| \Phi^{(n)} - \Phi^{(m)} \| \leq \sum_{\substack{i=m+1\\i=m+1}}^{n} \| \Phi f^{i} \|^{2}$. This inequality shows that $\{ \Phi^{n} \}$ forms a cauchy sequence of $L_{K}(\langle X \rangle)$. The limit of $\{ \Phi^{(n)} \}$ is clearly Φ . Therefore Φ belongs to $L_{K}(\langle X \rangle)$.

5. Formula on stochastic integral. A mapping F from the Hilbert space to the space of real or complex numbers is called twice differentiable at $x \in H$ if there exists a linear functional F'(x) and linear operator F''(x) of H such that

$$F(x+h) - F(x) = (F'(x), \bar{h}) + \frac{1}{2} (F''(x)h, \bar{h}) + o(||h||^2),$$

where $o(||h||^2)$ means $o(||h||^2)/||h||^2 \to 0$ as $||h|| \to 0$. Further if F'(x) and F''(x) are continuous in their norms, F is called twice continuously differentiable.

Now let $\varphi_t(\omega)$ be an strongly right continuous *H*-process such that $\sup_{\{t_k\}} \sum_{t_{k+1} \leq t} \|\varphi_{t_{k+1}} - \varphi_{t_k}\| < \infty$ for any *t*, then the Bochner integral $\int_0^t (\Phi, d\varphi)$ is well defined for *H*-process $\Phi(t, \omega)$, for almost all ω . We shall call such φ is an *H*-process with finite variation.

THEOREM 3. Let F be twice continuously differentiable function such that ||F'(x)|| and ||F''(x)|| are bounded. Let X be of \mathfrak{M} and φ be well measurable strongly continuous process with finite variation. Set $A = X + \varphi$. Then we have the following formula

$$F(A_t) - F(A_0) = \int_0^t (F'(A_s), \ d\bar{X}_s) + \frac{1}{2} \langle \int F''(A) dX^c, \ \bar{X}^c \rangle_t$$

$$+ \int_{0}^{t} (F'(A_{\bar{s}}), d\bar{\varphi}_{s}) + \sum_{\substack{||A_{x_{s}}|| > 0 \\ s \leq t}} [F(A_{s}) - F(A_{\bar{s}}) - (F'(A_{\bar{s}}), \bar{X}_{s} - \bar{X}_{\bar{s}})]_{t}$$

where X^{c} is the projection of X on \mathfrak{M}_{c} .

Proof. Since the proof is essentially the same as that of one dimensinal case (See [2] or [5]), we shall state here the outline. Let $X = X^c + X^d$ be the orthogonal decomposition such that $X^c \in \mathfrak{M}_c$ and $X^d \in \mathfrak{M}_d$. We shall assume that X^d is written as $Y - \tilde{Y}$ where Y and \tilde{Y} are the processes having the properties of Theorem 2. Let $\{T_n\}$ be an ε -chain of X, Y, \tilde{Y} and φ , i.e., $\{T_n\}$ is an increasing sequence of stopping times converging to ∞ such that for $T_n \leq t, s < T_{n+1}$, $||X_t - X_s||$, $||Y_t - Y_s||$, $||\tilde{Y}_t - \tilde{Y}_s||$ and $||\varphi_t - \varphi_s||$ are all dominated by ε . We shall write $T_n \wedge t$ as T_n for the notational convention. Then

$$F(A_t) - F(A_0) = \sum [F(A_{T_n}) - F(A_{T_{n-1}})] + \sum [F(A_{T_n}) - F(A_{T_n})].$$

The first term of the right hand side is written as

$$\sum (F'(A_{T_{n-1}}), \ \bar{A}_{T_n} - \bar{A}_{T_{n-1}}) + \frac{1}{2} \sum (F''(A_{T_{n-1}}) (A_{T_n} - A_{T_{n-1}}), \ \bar{A}_{T_n} - \bar{A}_{T_{n-1}}) + \sum o(||A_{T_n} - A_{T_{n-1}}||^2) = I_1 + I_2 + I_3.$$

Each I_i converges as $\varepsilon \to 0$ in the following way.

$$\begin{split} I_{1} &= \sum \left(F'(A_{T_{n-1}}), \ \bar{X}_{T_{n}} - \bar{X}_{T_{n-1}} \right) + \sum \left(F'(A_{T_{n-1}}), \ \bar{\varphi}_{T_{n}} - \bar{\varphi}_{T_{n-1}} \right) - \sum \left(F'(A_{T_{n-1}}), \ d\bar{X}_{T_{n}} \right) \\ &\rightarrow \int (F'(A_{s}^{-}), \ d\bar{X}_{s}) + \int_{0}^{t} (F'(A_{s}^{-}), \ d\bar{\varphi}_{s}) - \sum_{s \leq t} (F'(A_{s}^{-}), \ d\bar{X}_{s}). \\ I_{2} &= \frac{1}{2} \sum (F'(A_{T_{n-1}})(X_{T_{n}}^{c} - X_{T_{n-1}}^{c}), \ \bar{X}_{T_{n}}^{c} - \bar{X}_{T_{n-1}}^{c}) + \frac{1}{2} \sum (F''(A_{T_{n-1}})(X_{T_{n}}^{c} - X_{T_{n-1}}^{c}), \ \bar{X}_{T_{n}}^{c} - \bar{X}_{T_{n-1}}^{c}) + \frac{1}{2} \sum (F''(A_{T_{n-1}})(\psi_{T_{n}} - \psi_{T_{n-1}}), \ \bar{\psi}_{T_{n}} - \bar{\psi}_{T_{n-1}}), \end{split}$$

where $\psi = \varphi - \tilde{Y}$. The first term converges to $\frac{1}{2} \langle \int F''(A^-) dX^c, \bar{X}^c \rangle_t$ by virtue of the definition of $\int_0^t F''(A_s^-) dX_s$ and Theorem 2. The other members converge to 0, because of the following estimate; for example,

$$\left|\frac{1}{2}\sum (F''(A_{T_{n-1}})(X_{T_n}^c - X_{T_{n-1}}^c), \ \psi_{T_n} - \psi_{T_{n-1}})\right| \leq \frac{1}{2} \varepsilon \sup \|F''(x)\| \sum \|\psi_{T_n} - \psi_{T_{n-1}}\|.$$

It is easily seen that I_3 converges to 0. Summing up all these, we obtain the desired formula.

To prove the general case, choose $\{X^n\}$ converging to X such that for each X^n the above argument is applicable. It will be shown that each mumber of (5) replacing X for X^n converges to the corresponding member of (5).

6. **Examples.** Additive and linear processes. Let H be a real Hilbert space. An H-process X_t is called additive if $X_{t_4} - X_{t_3}$ and $X_{t_2} - X_{t_1}$ are independent for any $0 \le t_1 < t_2 \le t_3 < t_4$. We assume that $E ||X_t||^2 < \infty$ for all $0 \le t < \infty$ and X_t is mean continuous i.e., $E ||X_t - X_s||^2 \to 0$ as $t \to s$. The least σ -field in which X_s , $s \leq t$ are measurable is denoted by \mathfrak{F}_t . Then \mathfrak{F}_t is right continuous. Now, since $E(f, X_t) \leq ||f|| E ||X_t||$, there exists a unique m_t of H such that $E(f, X_t) = (f, m_t)$ holds for any $f \in H$. Set $Y_t = X_t - m_t$. Then Y is again an additive process such that $E(f, Y_t) = 0$ for every $f \in H$. Furthermore, Y_t is an H-martingale because (f, Y_t) is an Therefore Y_t has strongly right continuous modification. real martingale. So we will assume that Y_t is strongly right continuous. Let X_t^c be the projection of Y_t to \mathfrak{M}_c and X_t^d the projection of Y_t to \mathfrak{M}_d . Remembering the procedure of defining X_t^c and X_t^d , it is seen that they are additive processes.

Let us now consider the covariance functional of X_t , $E(f, X_t)(g, X_t)$. Then it is a positive definite, symmetric and continuous bilinear form on H. Hence there exists a unique positive definite and symmetric operator S_t such that $(S_t f, g)$ coincides with the above bilinear form. Moreover, S_t has finite trace, because $\sum (S_t f^i, f^i) = \sum E(f^i, X_t)(f^i, X_t) \leq E ||X_t||^2$, where $\{f^i\}$ is the complete orthonormal system of H.

Let *E* be a measurable subset of *H* such that $0 < \rho(0, E) < \infty$, where ρ is the metric induced by the norm of *H*. Define.

$$P_t(E) = \sum_{\substack{s \leq t \\ \|\mathcal{A}X_s\| > 0}} I_E(\mathcal{A}X_s)$$

Then we have the following

THEOREM 4. X_t^c and X_t^d are independent. Furthermore, the characteristic functionals are given by

$$\begin{split} E(\exp(i(f, X_t^c))) &= \exp - \frac{1}{2} \left(S_t f, f \right) \\ E(\exp(i(f, X_t^c))) &= \exp - \left[\int \left\{ \exp\left(i(f, x)\right) - 1 - i\left(f, x\right) \right\} \pi_t(dx) \right] \end{split}$$

where $\pi_t(dx) = E(P_t(dx)).$

Proof. The function $F(x) = \exp i(f, x)$ has the first derivative $F'(x) = i \cdot \exp(i(f, x)) \cdot f$ and the second derivative $F''(x) = -\exp(i(f, x))f \cdot f$, which are continuous and bounded in their norms. Applying Theorem 3, we obtain

$$\begin{split} \exp\left(i(f, Y_t)\right) &- 1 = \text{martingale} - \frac{1}{2} \int_0^t \exp\left(i(f, X_s)\right) d\langle (f, X) \rangle_s \\ &+ \exp\left(i(f, X_s^{-}) \left[\exp\left(i(f, \Delta X_s)\right) - 1 - i(f, \Delta X_s)\right] \end{split}$$

Therefore,

$$\begin{split} E(\exp(i(f,X_t))) &- 1 = -\frac{1}{2} \int_0^t E(\exp(i(f,X_s))) d(S_t f, f) \\ &+ \int E(\exp(i(f,X_s))) \int_H (\exp(i(f,X)) - 1 - i(f,x)) d_s \pi(s, dx) \end{split}$$

Consequently,

$$E(\exp(i(f, X_t))) = \exp\left(-\frac{1}{2}(S_t f, f) + \int [\exp(i(f, x)) - 1 - i(f, x)]\pi_t(dx)\right).$$

The independence of X_t^c and X_t^d can be derived similarly as [2], if we replace (f, Y_t) by $(f, X_t^c - X_s^c) + (g, X_t^d - X_s^d)$ in the above discussion.

Now let X_t be a square integrable $(E||X_t||^2 < \infty)$ and mean continuous *H*-process. We denote by M_t (resp. M) the smallest linear manifold containing X_s , $s \leq t$ (resp. $s < \infty$). Then M_t is a pre-Hilbert space by the inner product (X,Y) = E(X,Y). We shall denote by \overline{M}_t the completion of M_t . The mean continuity of X_t implies that $\bigcap_{\varepsilon>0} \overline{M}_{t+\varepsilon} = \overline{M}_t$ and $\overline{\bigcup}_{\varepsilon>0} \overline{M}_{t-\varepsilon} = \overline{M}_t$. We shall call the *H*-process X_t linear if for any $X \in M$, the projection $P_t X$ of X to \overline{M}_t is independent of $X - P_t X$. ([3]).

We shall show that the joint distribution of linear process is subject to an infinitely divisible distribution. Let $X \in \overline{M}$. Then P_tX is an additive process. In fact, since the projection of P_tX to \overline{M}_s coincides with $P_sX(t \ge s)$, $P_tX - P_sX$ has to be independent of \overline{M}_s . Now let $X = \sum_{i=1}^{n} c_i X_{t_i}$. Then $\sum c_i(P_tX_{t_i} - P_tX_{t_i})$ is independent of \overline{M}_s . This means that $(P_tX_{t_i} - P_sX_{t_i}, \cdots,$ $P_tX_{t_n} - P_sX_{t_n})$ is independent of \overline{M}_s , or equivalently, $(P_tX_{t_i}, i = 1, 2, \cdots, n)$ is an H^n -valued additive process. Thus $(P_tX_{t_i}; i = 1, \cdots, n)$ is subject to infinitely divisible distribution. Taking $t \ge \max(t_i)$, we see that $(X_{t_i}, \cdots, X_{t_n})$ is also subject to infinite divisible distribution.

HIROSHI KUNITA

References

- [1] Yu.L. Daletskii, Infinite-dimensional epillitic operators and parabolic equations connected with them, Uspekhi Mate. Nauk. 22 (1967) (English translation; Russian Math. Surveys)
- [2] H. Kunita, and S. Watanabe, On square integrable martingales, Nagoya Math. J. 30 (1967), 209-245.
- [3] P. Lévy, Fonction aleatoires a correlation linaire, Illinois J. Math. 1 (1957), 217-258.
- [4] P.A. Meyer, Probability and potentials, Blaisdell, 1966.
- [5] P.A. Meyer, Seminaire de probabilites I, Lecture notes in Math., Springer, 1967.

Mathematical Institute, Nagoya University