N. Nobusawa

Nagoya Math. J.
Vol. 35 (1969), 47-51

ON A CROSSED PRODUGT
 OF A DIVISION RING

NOBUO NOBUSAWA

1. Let R and C be a ring and its center, and G an automorphism group of R of order n. By a factor set $\left\{c_{\sigma, \tau}\right\}$, we mean a system of regular elements $c_{\sigma, \tau}(\sigma, \tau \in G)$ in C such that

$$
\begin{equation*}
c_{\sigma, \tau \rho} c_{\tau, \rho}=c_{\sigma \tau, \rho} c_{\sigma, \tau}^{\rho} . \tag{1}
\end{equation*}
$$

A crossed product $W=W\left(R, G,\left\{c_{\sigma, \tau}\right\}\right)$ is a ring containing R such that $W=\sum_{\sigma \in G} u_{\sigma} R$ (direct) with regular elements u_{σ} and $a u_{\sigma}=u_{\sigma} a^{\sigma}$ for a in R and $u_{\sigma} u_{\tau}=u_{\sigma \tau} c_{\sigma, \tau}$. As usual, we identify $W\left(R, G,\left\{c_{\sigma, \tau}\right\}\right)$ and $W\left(R, G,\left\{c_{\sigma, \tau}^{\prime}\right\}\right)$ when $c_{\sigma, \tau}$ and $c_{\sigma, \tau}^{\prime}$ are cohomologous (in C). When $c_{\sigma, \tau}=1$, the crossed product is called splitting. In this note, we shall deal with a division ring D as R, and when $S=\left\{a \in D \mid a^{\sigma}=a\right.$ for all σ in $\left.G\right\}$, we suppose $[D: S]=n$. In this case, D / S is called a strictly Galois extension with a Galois group $G([3],[4])$. The purpose of this note is to discuss a splitting property of W by extending the base ring S as well as D, which is an analogy of the classical result of commutative case. We shall show that there exist a division ring D^{\prime} such that $S \subseteq D^{\prime} \subseteq D$ and a kind of (non-commutative) Kronecker product $D^{*}=D \otimes D^{\prime}$ over S such that $W\left(D^{*}, G,\left\{c_{\sigma, \tau}\right\}\right)$ becomes splitting. The construction of the Kronecker product seems very interesting to the author and an example will be given in the last section.
2. Let D be a division ring and $x_{1}, \cdots, x_{m} m$ indeterminates. A polynomial ring $D\left[x_{1}, \cdots, x_{m}\right]$ is defined in a natural way, supposing commutativity of multiplication between elements of D and x_{i} and between x_{i} and x_{j}. The quotient division ring of $D\left[x_{1}, \cdots, x_{m}\right]$ is called the rational function division ring, whose existence is almost clear when we imbed $D\left[x_{1}, \cdots, x_{m}\right]$ into the formal power series division ring $D\left\{x_{1}, \cdots, x_{m}\right\}=D\left\{x_{m}\right\}\left\{x_{m-1}\right\} \cdots\left\{x_{1}\right\}$ of x_{1}, \cdots, x_{m} over D and take the
minimum division ring containing it. We denote the rational function division ring by $D(x)$. A discrete valuation of rank m is then introduced in $D(x)$ as follows. Every element of $D(x)$ is considered as a formal power series in $D\left\{x_{1}, \cdots, x_{m}\right\}$, and let us express an element $f(x)=\Sigma a\left(i_{1}, \cdots\right.$, $\left.i_{m}\right) x_{1}{ }^{i_{1}} \cdots x_{m}^{i_{m}}$. Define a mapping φ such that $\varphi(f(x))=\left(s_{1}, \cdots, s_{m}\right)$ where $s_{1}=\min i_{1}$ (the min being taken over all i_{1} such that $a\left(i_{1}, \cdots, i_{m}\right)$ $\neq 0), s_{2}=\min i_{2}$ (the min being taken over all i_{2} such that $a\left(s_{1}, i_{2}, \cdots\right.$, $\left.i_{m}\right) \neq 0$), \cdots, and finally $s_{m}=\min i_{m}$ (the min being taken over all i_{m} such that $a\left(s_{1}, \cdots, s_{m-1}, i_{m}\right) \neq 0$). Between two m tuples of integers (i_{1}, • \cdots, i_{m}) and (j_{1}, \cdots, j_{m}) we introduce an order such that (i_{1}, \cdots, i_{m}) $>$ $\left(j_{1}, \cdots, j_{m}\right)$ if $i_{1}>j_{1}$, or if $i_{1}=j_{1}$ and $i_{2}>j_{2}, \cdots$, or if $i_{1}=j_{1}, i_{2}=j_{2}$, $\cdots, i_{m-1}=j_{m-1}$ and $i_{m}>j_{m}$. All $f(x)$ such that $\varphi(f(x)) \geq(0, \cdots, 0)$ form a ring called the valuation ring and denoted by $V_{D(x)}$, and all $f(x)$ such that $\varphi(f(x))>(0, \cdots, 0)$ form a prime ideal of $V_{D(x)}$ which is called the valuation ideal and denoted by $P_{D(x)}$. (See [6])
3. Let D, G and $\left\{c_{\sigma, \tau}\right\}$ be as in 1 . We consider a rational function division ring $D\left(t_{1}, \cdots, t_{m}\right)=D(t)$ where we suppose $m=n-1$. We want to extend G to an automorphism group of $D(t)$ as follows. G acts on elements of D as usual, but t_{i} will be mapped in the following manner. Let us express $G=\left\{\sigma_{1}, \cdots, \sigma_{m}, \varepsilon\right\}$ and set $t_{\sigma}=t_{i}$ for $\sigma=\sigma_{i}$ and $t_{\varepsilon}=1$. Then set

$$
\begin{equation*}
t_{\sigma}^{\tau}=t_{\tau}^{-1} t_{\sigma \tau} c_{\sigma, \tau} \quad(\sigma, \tau \in G) \tag{2}
\end{equation*}
$$

(Here we assume that $c_{\sigma, \varepsilon}=c_{\varepsilon, \sigma}=1$)
It is seen that G induces an automorphism group of $D(t)$, since $\left(t_{\sigma}^{\tau}\right)^{\rho}=$ $\left(t_{\tau}^{-1} t_{\sigma \tau} c_{\sigma, \tau}\right)^{\rho}=\left(t_{\rho}^{-1} t_{\tau \rho} c_{\tau, \rho}\right)^{-1}\left(t_{\rho}^{-1} t_{\sigma \tau \rho} c_{\sigma \tau, \rho}\right) c_{\sigma, \tau}^{\rho}=t_{\tau}^{-1} t_{\sigma \tau} c_{\sigma, \tau \rho}=t_{\sigma}^{\tau \rho}$ due to (1). Let B be the fix ring of G, namely $B=\left\{f(t) \in D(t) \mid f(t)^{\sigma}=f(t)\right.$ for all σ in $\left.G\right\}$. This is an analogue of the Brauer field defined in [5]. Naturally G is a group of outer automorphisms of $D(t)$ and hence $[D(t): B]=n$ by Galois theory of division rings. (See [1]). What is more important, a basis u_{1}, \cdots, u_{n} of D / S is also a basis of $D(t) / B$. (2) implies that the crossed product $W\left(D(t), G,\left\{c_{\sigma, \tau}\right\}\right)$ is a splitting crossed product. Now our intension is clear. Specialize B and $D(t)$ as well to get a finite extension D^{\prime} and D^{*} such that $W\left(D^{*} \mid D^{\prime}, G,\left\{c_{\sigma, \tau}\right\}\right)$ is again splitting. To do so, the discussion in 2 will be applied for the case $x_{i}=1-t_{i}(i=1, \cdots, m)$. Thus $D(t)=D(x)$ and, by the specialization with respect to the valuation in $2, t_{\sigma} \longrightarrow 1$ and $t_{\sigma} \longrightarrow c_{\sigma, \tau}$,
i.e. t_{σ} and t_{σ} are all contained in $V_{D(x)}-P_{D(x)}$, which also means t_{σ} are units. Keep this important fact in mind.
Let V_{B}. be the valuation ring of $B ; V_{B}=V_{D(x)} \cap B$, and P_{B} the valuation ideal of $B ; P_{B}=P_{D_{(x)}} \cap B$. Then the specialization D^{\prime} of B with respect to the valuation is V_{B} / P_{B} and clearly $S \subseteq D^{\prime} \subseteq D$. Now consider a set $U=\left\{\sum_{i} u_{i} f_{i}(x) \mid f_{i}(x) \in V_{B}\right\}$ and a set $P=\left\{\sum_{i} u_{i} p_{i}(x) \mid p_{i}(x) \in P_{B}\right\}$.

Proposition. U is a ring and P is an ideal of U.
Proof. To prove Proposition, it is sufficient to show that $f(x) u_{i} \in U$ for $f(x)$ in V_{B} and $p(x) u_{i} \in P$ for $p(x)$ in P_{B}. Let v_{1}, \cdots, v_{n} be the dual basis of u_{1}, \cdots, u_{n} with respect to the trace function Tr of D / S for the Galois group G. That is, $\operatorname{Tr}\left(v_{i} u_{j}\right)=\delta_{i j}$ (Kronecker delters). The existence of such v_{i} is clear since $\operatorname{Tr}(D) \neq 0$, the latter being a consequence of the existance of a normal basis for D / S [2]. (Also see [3].) Put $f(x) u_{i}=\sum_{j} u_{\imath} h_{j}(x)$ with $h_{j}(x) \in B$, and we have $h_{k}(x)=\operatorname{Tr}\left(v_{k} f(x) u_{i}\right)$. But clearly $\operatorname{Tr}\left(v_{k} f(x) u_{j}\right)$ $\in V_{D(x)}$, and hence $h_{k}(x) \in V_{B}$ which implies $f(x) u_{i}$ are contained in U for $f(x)$ in V_{B}. The second part is similarly proved.
4. Now put $D^{*}=U \mid P$. (Note that P is not necessarily prime although we use the letter P.) Every element of D^{*} has expression $\sum_{i} u_{i} \otimes a_{i}$ where $a_{i} \in D^{\prime}$ and conversely. The multiplication of $\sum u_{i} \otimes a_{i}$ and $\sum u_{i} \otimes b_{i}$ should be performed as follows. Let $f_{i}(x)$ (or $g_{i}(x)$) be elements of V_{B} such that $f_{i}(x) \longrightarrow a_{i}$ (or, $g_{i}(x) \longrightarrow b_{i}$) in the specialization. When $\left(\sum u_{i} f_{i}(x)\right)\left(\sum u_{i} g_{i}(x)\right)$ $=\sum u_{i} h_{i}(x)$ with $h_{i}(x)$ in V_{B} and $h_{i}(x) \longrightarrow c_{i}$, we have $\left(\sum u_{i} \otimes a_{i}\right)\left(\sum u_{i} \otimes b_{i}\right)$ $=\sum u_{i} \otimes c_{i}$. Due to Proposition, the product is well defined (does not depend on the choice of $f_{i}(x)$ and $\left.g_{i}(x)\right) . \quad D^{*}$ is a generalized Kronecker product $D \underset{S}{\otimes} D^{\prime}$. Lastly, we observe that G induces an automorphism group of U and that of P respectively, and hence G is considered to be an automorphism group of D^{*}. Clearly the fix ring of G is $D^{\prime}=S \otimes D^{\prime}$. Regarding t_{σ}, set $t_{\sigma}=\sum u_{i} f_{i}(x)$ with $f_{i}(x)$ in B. Since $f_{i}(x)=\operatorname{Tr}\left(v_{i} t_{\sigma}\right)=\sum_{\tau \in G} v_{i}^{\tau} t_{\sigma}^{\tau}$ $\in V_{D(x)} \cap B, t_{\sigma}$ are in U. Naturally $t_{\sigma} \notin P$. Applying the same discussion to t_{σ}^{-1}, we can see $t_{\sigma}^{-1} \in U-P$. Thus, if we set $s_{\sigma}=t_{\sigma} \bmod P$, (2) says $s_{\sigma}^{\tau}=s_{\tau}^{-1} s_{\sigma \tau} c_{\sigma, \tau}$, which proves our result:

Theorem. $W\left(D^{*}, G,\left\{c_{a, \tau}\right\}\right)$ is a splitting crossed product.

Corollary. $W\left(D, G,\left\{c_{\sigma, \tau}\right\}\right) \subseteq D_{n}($ a matrix algebra over $D)$.
Proof. By denoting by D_{r} the right multiplication ring of $D, G D_{r}$ coincides with the totality of $S\left(=S_{l}\right)$-homomorphisms of D to D by Galois theory of division rings. Now, $W\left(D, G,\left\{c_{\sigma, \tau}\right\}\right) \subseteq W\left(D^{*}, G,\left\{c_{\sigma, \tau}\right\}\right)=W\left(D^{*}\right.$, $G,\{1\})$, the latter being isomorphic to $G D^{*}$. From the first discussion, $G D^{*}$ coincides with the totality of D^{\prime}-homomorphisms of D^{*}, which is naturally (isomorhic to) D_{n}^{\prime}.
5. Let A denote the quaternion algebra $Q(i, j)$ over the rational number field Q as usual. Consider a simple extension $A / Q(i)$. This is a strictly Galois extension with a Galois group $G=\{\varepsilon, \sigma\}$ where $j^{\sigma}=-j$ ($=i j i^{-1}$). Take a factor set: $c_{\varepsilon, \varepsilon}=c_{\varepsilon, \sigma}=c_{\sigma, \varepsilon}=1$ and $c_{\sigma, \sigma}=2$. In this case, (2) says $t^{\sigma}=2 t^{-1} .\left(t=t_{\sigma}\right)$. Then $B=Q(i)\left(t+2 t^{-1}, j\left(t-2 t^{-1}\right)\right)$. By the specialization $t \longrightarrow 1, D^{\prime}=A$ and hence $D^{*}=A \otimes A$ over $Q(i)$. We take $u_{1}=1$ and $u_{2}=j$. Now we show some examples of multiplication. Since $1 \otimes j=1 \cdot\left(-j\left(t-2 t^{-1}\right)+j \cdot 0 \bmod P,(1 \otimes j)(1 \otimes j)=\left(-j\left(t-2 t^{-1}\right)\right)^{2} \bmod \right.$ $P=-\left(t-2 t^{-1}\right)^{2} \bmod P=-1 \bmod \quad P=1 \otimes(-1)$. Since $j \otimes(-1)=1 \cdot 0+$ $j \cdot(-1) \bmod P,(1 \otimes j)(j \otimes(-1))=\left(-j\left(t-2 t^{-1}\right)\right)(-j) \bmod P=-\left(t-2 t^{-1}\right)$ $\bmod P=j \cdot\left(j\left(t-2 t^{-1}\right)\right) \bmod P=j \otimes(-j) . \quad$ Similarly, we have $(j \otimes 1)(1 \otimes j)$ $=j \otimes j$ and $(j \otimes 1)(j \otimes(-1)=1 \otimes 1$. Thus, combining all results, we have $(1 \otimes j+j \otimes 1)(1 \otimes j+j \otimes(-1))=0$, which shows D^{*} is not a division ring. Since $t=\frac{1}{2}\left(\left(t+2 t^{-1}\right)-j j\left(t-2 t^{-1}\right)\right), \quad t \bmod P=\frac{1}{2}(1 \otimes 3+j \otimes j), \quad$ and since $t^{\sigma}=\frac{1}{2}\left(\left(t+2 t^{-1}\right)+j j\left(t-2 t^{-1}\right)\right), t^{\sigma} \bmod P=\frac{1}{2}(1 \otimes 3-j \otimes j)$. On the other hand, since $j=-j\left(t-2 t^{-1}\right)$ by $t \longrightarrow 1, j \otimes j=j\left(-j\left(t-2 t^{-1}\right)\right) \bmod$ P, which shows $(j \otimes j)(j \otimes j)=\left(t-2 t^{-1}\right)^{2} \bmod P=1 \otimes 1$. Thus, if we set $s=t \bmod P, \quad s s^{\sigma}=\frac{1}{4}(1 \otimes 9-1 \otimes 1)=2$, or $s^{\sigma}=2 s^{-1}$. This is nothing but (2).

References

[1] N. Jacobson, Structure of rings. A.M.S. (1956).
[2] F. Kasch, Über den Endomorphismenring eines Vectorraums und der Satz von der Normalbasen. Math. Ann. 126 (1953) 447-463.
[3] K. Kishimoto, T. Onodera and H. Tominaga, On the normal basis theorems and the extension dimension. J. Fac. Scie. Hokkaido Univ. Ser. 1, 18 (1964) 81-88.
[4] N. Nobusawa and H. Tominaga, Some remarks on strictly Galois extensions of simple rings. Math. J. Okayama Univ. 9 (1959/60) 13-17.
[5] P. Roquette, On the Galois cohomology of the projective groups and its applications. Math. Ann. 150 (1963) 411-439.
[6] O.F.G. Schilling, The theory of valuations. New York (1950).

University of Hawaii

