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QUASI-FLOWS*

IZUMI KUBO

The purpose of this paper is to investigate a quasi-flow which is a one-
parameter group of non-singular measurable point transformations on a
measure space. If, in particular, the transformations are all measure pre-
serving (i.e. a flow is given), the ergodicity together with the mixing pro-
perty, the spectral or metrical type, increasing partitions of the space and
the entropy of the flow are our main interests. Those methods used in the
study of a flow are frequently useful for our approach. For example, the
concept of a special flow introduced by W. Ambrose [3] plays an important
role and the representation of a given flow in terms of a special flow is a
powerful tool in the study of flows. L.M. Abramov [1] calculates the
entropy of a flow with the help of the representation. As another example
we give attention to the work of G. Maruyama [10] and H. Totoki [15]
where they discuss a general time-change of flows the basic idea of which
was originated by E. Hopf [8]. They discuss the invariant measure of a
general time-changed flow and prove that the ergodicity is inherited and
the entropy is kept invariant by the time-change. In the study of quasi-
flows, we shall use both the repesentation in terms of a special quasi-flow
and a time-change. Besides a quasi-flow requires its own methods in the
investigation and it gives us some further problems such as the existence of
an invariant measure (c.f. [4], [5], [6] and [7]) and related topics.

We are much interested in a study of two flows (quasi-flows) which
are linked by a particular kind of commutation relation. Ya. G. Sinai ([13],
[14]) has introduced the concept of transversal fields of a flow on a Rieman-
nian manifold and he has obtained the results on the ergodicity of the flow.
As one of generalizations, he has dealt with an admissible continuous one-
parameter group of non-singular point transformations which is a transversal
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field of the flow. Further generalization of his result to quasi-flow will be

discussed in this paper.

In Section 2 we shall define a quasi-flow, and we shall introduce some

related concepts and state their simple properties. In Section 3 we shall

first introduce a concept of an S-quasi-flow (Definition 3. l) which is ana-

logous to a special flow, and then we shall proceed to the representation

theorem which asserts that we can form an S-quasi-flow equivalent to a

given quasi-flow. Section 4 will be devoted to the discussion of time-change

of a quasi-flow based on a positive function (Definition 4. 1 and Theorem

4.1)

The results in § 3-4 lead us to state the following remarks. We shall

be able to give an example which shows how important the representation

theorem is in study of quasi-flows. The representation theorem gives us a

negative answer to the question proposed by Sinai [14];" Is every quasi-

flow admissible?". In fact, one of the conditions of the admissibility which

requires the boundedness of the density of the conditional measure dose not

hold in general. The other conditions for the admissibility are satisfied if

the quasi-flow has no fixed points. Further we shall find that his results

proved by using an admissible quasi-flow can be obtained similarly drop-

ping a condition which requires a bounded density of the conditional mea-

sure (c.f. §6 and §7). We shall further show that our representation theo-

rem and the theory of time-change enable us to give those conditions under

which a quasi-flow is metrically transitive or conservative, and to find if a

quasi-flow has a σ-finite invariant measure.

In Section 5 we shall consider a TQ-system. It is defined in the follow-

ing manner. Let {Zt} be a quasi-flow and T be an automorphism. Sup-

pose that λ{w) be a positive measurable function. If a quasi-flow {TZtT~ι\

is a time-changed quasi-flow based on λ{w)9 then we call the tripple [{Zt},

λ{w); T] a TQ-system, and {Zt} is called a transversal quasi-flow of the

automorphism T with the coefficient of expansion λ{w). Sinai has shown

that if in particular {Zt} is a flow, λ{w) is S(y{Zj)-measurable. Concerning

his result we shall show the following. Given a TQ-system \_{Zt}, λ{w); T].

If logλ(w) is quasi-integralble and E[logλ\vτ]{w) ^ψ 0 holds a.e. {dP)9 then [Zt] is

a flow if and only if λ(w) is Ϊ8(v^-measurable. Under the same conditions

{{Zt} is necessarily a flow) the entropy h{Zt} of {Zt} is either 0 or oo.

We shall apply our results to the investigation of the ergodic property
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of an automorphism and a flow in Section 6. There we shall assume some

what weaker conditions than those in Sinai [14] to obtain the same results.

In Section 7 we shall consider an increasing partition ζ and the condi-

tional entropy H(Tζ\ζ) of an automorphism T in connection with a TQ-

system. In particular, if λ{w)' in TQ-system is S3(v{Zj)-measurable and if

2s[log λ\vτ\ W > 0 holds a.e. {dP) then there exists an increasing partition ζ

and we obtain H(Tζ\ζ) = E[\og λ] whenever {Zt} has not fixed points.

In the final section we shall deal with three examples. Although they

are well-known or rather simple, however each example tells us important

remarks and its own specific suggestions. Example 1 is a so-called Bernoulli

automorphism. It is an example of an automorphism which has no trans-

versal flow but has a transversal quasi-flow. This quasi-flow is conservative

and metrically transitive. It can not be a flow by any kind of time-

change; in other words it has no invariant measure*. In example 2, we

shall form the flow induced by the Ornstein-Uhlenbeck's Brownian motion

and the flow of Brownian motion in such a way that they form a TQ-

system. It is noted that the flow of Brownian motion appearing as a

transversal flow in this example has infinite entropy. As is shown in

Theorem 5. 2, the entropy of the transversal flow is either 0 or oo. While

many examples of transversal flows of entropy 0 are known, for example

transversal flows of the group automorphism on the two dimensional torus,

the geodesic flow on the manifold of constant negative curvature, the infi-

nite shift and so forth, so far as the author knows no example of a trans-

versal flow of entropy oo has not been given. Example 3 is considered as

an example to show that we can discuss even multidimensional transversal

field in our set up by introducing a quasi-flow with a general unimodular

group as the parameter space.

The author wishes to express his hearty thanks to the menbers of

seminar on Probability who helped him in course of this paper. In par-

ticular, Professor T. Ugaheri gave him many suggestions. Professor H.

Totoki helped him with valuable discussion which the author very much

appreciates. Thanks due to Professor H. Kunita for his help in preparing

the manuscript.

* This example for a Bernoulli automorphism suggests us a new approach to the investiga-
tion of Bernoulli automorphisms as will be prescribled in Example 1.
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2. Preliminaries.

Throughout this paper the probability space denoted by (£?,33,P) is a

Lebesgue space in the sense of V. A. Rohlin [12]*. We denote by R the

real line with the ordinary Lebesgue measure dm(u) = du, and denote by

(R9ί!t9m) the ordinary Lebesgue measure space. A bimeasurable, one-to-one,

measure preserving transformation of Ω onto Ωr is called an isomorphism of

Ω onto Ωr. An isomorphism of Ω onto itself is an automorphism of Ω. A

one-parameter group of automorphisms {Tt; —co<t<co] is called a flow if

the mapping (t,w)-+Ttw is 3ΐ x S3-measurable**. Now we consider bimea-

surable transformations which are not necessarily measure preserving.

DEFINITION 2. 1. We call a one-to-one bimeasurable transformation S

of Ω onto itself a quasi-automorphism of Ω if it is non-singular, that is, both

P(SΛ) and P(S-1^4) vanish whenever P(A) vanishes. A one-parameter group

of quasi-automorphisms {Zt; — oo < t < co] is a quasi-flow if the mapping

{t,w)-*Ztw is 3ϊ x immeasurable.

Given a quasi-flow {Zt}, then by the non-singularity of {Zt} there exists

a collection of positive integrable functions {at(w); — oo < / < oo} such that

(2. 1) P(ZtB) = f at{w)dP for any 5 e S3,

or equivalently,

(2. 2) j f(Z~t

1w)dP = J f(w)at(w)dP

holds for any bounded measurable function /(«;). By the group property

of [Zt], it holds that

P(Zt+sB) = P(Zt(ZsB)) = [ at(w)dP = \ at{Zsw)as{w)dP
JZsB JB

for B e S3. So we have

(2. 3) &t+sM = at(Zsw)as{w) ax. (dP)

for any fixed £ and s. We call the (f, w) function at{w) defined by (2,1)

the multiplicative density function of {Zt}.

Remark 2. 1. By virtue of Theorem 3. 1, we can prove that there exists

* We shall use terminologies in [11, 12] throughout this paper.

** We denote by 3i X S3 the completion of the product σ-ίield SH X S3.
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a version of at(w) which is 3ft x S-measurable and equality (2,3) holds for

every t and s with probability 1.

A set B is called {Zt}-invariant if ZtB = B for all t. A set B is called

{Zt}-invariant {mod 0), if P(ZtBQB) = 0 holds for each t*. It is easily seen

that for any {ZJ-invariant (mod 0) set B, there exists a {ZJ-invariant set

B' such that P{BQB') = 0. Two quasi-flows {ZJ on Ω and {Z }̂ on Ω'

are said to be isomorphic if there exist two invariant null sets N a Ω and

NcΩ', and an isomorphism T of Ω-N onto β'-iV' such that Ztw = T~ίZ'tTw

for all w ^ Ω — N and £.

Let f be a partition of Ω. We denote by 33(f) the completion of the

o -fleld ( 5 e S ; i? is a f-set}. The factor measure space (Ω/ς9^8ς,Pς) is a

Lebesgue space if f is measurable. We denote by C = Cς the element of f

and denote by C{w) = Cς{w) the element of f which contains the point w.

For any measurable partition ζ, there exists a canonical system of measures

{(C,%c,P(-\ζ; Q), C e ζ}. We denote simply by P(A\Cς) = P(A n Q l f Q).

Then the conditional expectation of measurable function f(w) with respect

to 93(f) is given by

(2. 4) £[/|Π(w) = E[f\mmw) = f /rfP( If; C(w)) a.e.

Let T be an automorphism of Ω and f be a T-invariant measurable

partition of Ω. Then the transformation Tζ: TζC = {Tw/; w e C} e f is an

automorphism of (Ω/ζ,%5ζ,Pζ). We denote by TG the restriction of T to C.

Then the transformation T° is an isomorphism of (C,85c,P( If; C)) onto

(TζC, » Γ c σ, P( If; TCO) for almost every C e f (dPc).

We denote by v the trivial partition of Ω and, by ε the partition into

individual points of Ω. Let {Zt} be a quasi-flow on ί2. We denote by

v{Zt} the measurable covering of the partition into the trajectories of {Zt}:

{Ztw; — oo< t < oo}. The partition vs is defined from a quasi-automorph-

ism S in similar way. A quasi-flow (or a quasi-automorephism) is called

metrically transitive if v{Zt} = v (resp. vs = v).

Remark 2. 2. A quasi-flow {Zt} is metrically transitive if and only if

it has only trivial invariant sets, i.e. either P(B) = 0 or 1 whenever B is a

measurable invariant set.

* We denote by AQB the symmetric difference of A and B.



IZUMI KUBO

Let [Zt] be a quasi-flow and let g(w) be a measurable function on Ω.

Then g(t,w) = g(Ztw) is a 3d x SB-measurable function. Hence the integral

S6

g(Ztw)dt, — oo^«<6<oo

is well defined for almost all w if 0(w);>O. A quasi-flow {Zt} is called

conservative if, for any positive measurable function g(w) i.e. #(w) > 0 for all

w, the equality

(2. 5) Γg(Ztw)dt = Γ g{Ztw)dt = oo,
Jθ J-oo

holds for almost all w{dP). The definition of conservative automorphism

is similar. We should note that any flow {Tt} (automorphism T) is con-

servative because of the finiteness of the invariant measure P (c.f. [8]).

3. Representation of quasi-flows.

In this section, we shall represent quasi-flows by means of a special

quasi-flow which is an analogue of [3,4]. Our formulation is necessary for

the proofs of theorems in the later sections.*

Let 5 be a quasi-automorphism of a Lebesgue space {X9%μ)9 and f(x)

be a positive measurable function defined on X satisfying the following

equality

(3. 1) pf(Skx) = I]f{Slcx) = oo

for every x e X. Set Ω = [{x,u); 0<u<f{x), x e X] and let 8 be the

restriction of 21 x 3t to Ω. Let p{x,u) be a positive S-measurable function

on Ω such that

(3.2)

Setting dP(x,u) = p(x,ύ)du dμ{x), the measure space (Ω,%5,P) becomes a

Lebesgue space. We define a quasi-flow on Ω by

(3. 3) Zt(a,u) = (Snx,u + t- fn(x)) for /(Snα0 > u + ί -

where

* Recently, the author was privately informed by H. Totoki that U. Krengel [9] has
studied representations of one-parameter semigroups of non-singular measurable transforma-
tions under more general settings than ours.
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n > l

0 n = 0

—n

- 1 .

(3. 4) . /.(at) =

The multiplicative density function of {ZJ is given by the form

(3. 5) «,(*,«) = -^fg-Jy1 1 (*,«) e 0,

where p(x, u) is a function on X x R defined by

r P(aθ -PCS11"1 a?) n ^ l

(3.6) p(α,«) = p(Snx,u - fn(x)) xl 1 n = 0

ί IXS-1*) p(Snx)yί n<-l

for fn(x)<u<fn+1(x), with (̂flg) = rf^g) .

DEFINITION 3. 1. The quasi-flow {Zt} defined by (3. 3) is called an S-

quasi-fiow. We say that [Zt] is built up by (X,^ί,μ9f(x),p(x,u),S).

DEFINITION 3. 2. Let {Zt} be a quasi-flow. An S-quasi-flow {Zt} is

called an S-representation of {Zt}, if {Zί} is isomorphic to {Zt}.

With these definitions, we can now state the theorem,

THEOREM 3. 1. A quasi-flow without fixed points on a Lebesgue space has an

S-representation.

First we prepare two lemmas to prove the theorem.

LEMMA 3. 1. Let (X,%9μ) be a Lebesgue space, S be a bimeasurable one-to-

one transformation of X onto itself and f(x) be a positive measurable function

satisfying (3. 1). Set Ω = {{x, u); 0<u< f(x)9 x <E X} and let ξ be the partition

of Ω into the vertical lines. Suppose that {Ω,Ϊ8,P) is a Lebesgue space with a

certain measure P such that the partition ξ is measurable and the measure on the

factor measure space Ω/ξ is given by dPξ{C{x)) = dμ{x), where C(x)={(x,u)\

0^u<f{x)}. If the one-parameter group of transformations defined by (3.3) is

a quasi-flow on the space (Ω,S8,P), then S is a quasi-automorphism of (X, %, μ)

and the measure P is given by the multiple integral
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(3. 7) P(B) = j jf"° *s(s, u)p(x, u)du dμ(x)

for some positive function p{x9u)*. Further, if the functions. f{x,u) = f(x) and

g(x,u) = u are both S3 -measurable, then S3 = S holds and p(x,u) is ^-measurable.

Proof Since £ is a measurable partition of Ω, there exists the canoni-

cal system of measures: {(C,S3C,P( \ξ; C)); C 6 f ) . By the measurability

of {Z,}, we can easily show that any segment; {(x,u); a^Lu<b} of C{x)

is S3c-measurable. Put P(du\C{x)) = p{xydu). Then the multiplicative

density function at(x,u) satisfies

(3.8) at(x,u)p(x,du)dμ(x)

= Σ Z{/(S-*)X+«*-/,(χ)>0} (», u)p{SnXf d(u + t - fn{x)))dμ{x).

Therefore p(x,du)at(x,u) = p(x,d(u+t)) holds a.e. (rfP) for 0 ̂  K, u+t<f{x).

Hence p{x,du) is equivalent to the ordinary Lebesgue measure on [0,.

We denote by p(x,u) the density 2\χjcίu> . Obviously we have,

a.e. (dP). So (3. 7) holds. Noting (3. 8) again, we have

at(x, u)p(x, u)dμ(x) = p(Sx, u)dμ{Sx) for f(Sx) > u + t — /(a)

that is, dμ{Sx) is equivalent to dμ(x). Hence S is a quasi-automorphism

of X. If f{x,u) and g{x,u) are both S3-measurable, we can easily prove

that S3 coincides with © and that p(x,u) is ^-measurable by the formula

(3. 7).

By virtue of Wiener's ergodic theorem [16], we have the following

lemma.

LEMMA 3. 2. Let {Zt\ be a quasi-flow, g{w) be a bounded measurable function

on Ω whose absolute value is dominated by K, and let N be the null set of w out

side of which g{Ztw) is ^-measurable. If we put

— \ g{Zuw)du w $ N
_ fl Jo

WE: N

(3.9)

then we

(i)

have

9

= -

\ β->0 a.e.,

* We denote by Zs(α;, u) the characteristic function of B.
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(iii) Ig a (Z t w)- 9a(Zsw)I ^ - * £ - \t-s\.

Moreover C{{Zt}) is dense both in L2{Ω,?b,P) and in D(Ω,®9P). Here

C({Zt}) = C{{Zt}9Ω,S8,P) is the totality of all the bounded measurable functions each

of which satisfies \h{Ztw) — h{Zsw)\ <M\t — s\ with a suitable constant M.

Proof of Theorem 3. 1. Since {Zt} has no fixed points, there exists a

measurable set B e 93 and a positive number t0 such that P(BC Π ZtQB) > 0.

By Lemma 3.2, ψa{w) — — \ XB{Zuw)du-^XB{w) (a -*0) a.e. Hence there
a Jo

exists a positive number a such that P(B1 Q Bc) < - i- P(£ c Π Z ί o£) and

P(Z ί 0B2 θ Z t oβ) < - | - P ( £ C n Zt0B) hold for B, = jw; ψα(w) < ^ - ) . and B2 =

w; ψa(w)> -j- F i χ such a, then P{B1Γ\ZtQB2)>0 and l0α(ZfW)—ψa{Zsw)\

^_2JlizlL_ by Lemma 3. 2. Hence the functions ^ and φ defined bellow

are measurable.

f sup [u; Zuw e ^ n ZtQB2]

φ{w) = \
1 — oo if the above set is empty,

(3. 10)

inf {u; Zuw e ^ ί l ZtQB2}

oo if the above set is empty.

Set Ωx = {w; φ(w) = oo, φ(w) = — oo}, Ω2 = {w; φ{w) = oo, <p(w) > — oo}, Ω3 =

{w; —<χ><φ(w)<<χ>] and Ωi={w\ φ(w)=—co}. Each Ωj\ ; = 1,2,3,4 is a {Zt}~

invariant measurable set and Ωt Π Ωj = φ i =V i, ^ = Ωx + i?2 + ^3 + ΩA hold.

Further we have P(ΩX + Ω2 + Ωz) ̂ P{Bλ[\ ZtQB2) > 0.

Let 93! and Px be restrictions of 93 and P to ί21? respectively. We shall

construct the S-representation on the set Ωx. Set Ω\ = {w; ψa(w) = 1/2,

ψa{Ztw)> 1/2, for 0<t <al8}, f{w*) = inf U > 0 ; Ztw* e i2?} for M;* e βf

and S^* = Z/(w*)w*. Then ^ is divided into the segments of trajectories of

{Zt}: C(w*) = {Ztw*; O^t </(«;*)}. We denote by f such partition. Set

/(i0) = f(w*) if ^ e C(w*) and #(w) = M if Z-Uw = u;*, ^ e C(w*). Then we

can easily see that f{w) and #(«/) are both measurable and the partition ξ

is measurable. Observing the one-to-one mapping H of Ω1= {(w*9 u);

O^u — f{w*), w* e Ωf] onto Ωx defined by H{w*,u) — Zuw*, we can prove
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that {Zt} has an S-representation on Ωx by Lemma 3. 1, similarly to the

proof of Theorem 2 in [3],

Let us consider the set Ω2. Put ΩT = {w; n + 1 > φ{w) ^ n] n = 0, ± 1 ,

± 2 , . Then ΩT is measurable and Ω2 = Σ>Ωc

2

n\ Put 0? n ) = (w;?W
n

= n], then Z ^ f n ) = Ωfn~x\ Considering the partition ξ2 of Ω2: C$2(w*) =

{Zww*; 0 ̂  ^ < 1}, w* G J2f = Σ J2f(ίl), we have the assertion of the theorem
n

on Ω2 by a discussion similar to that of previous paragraph.

For Ω3, we can also prove the assertion similarly Ω2. For the set Ω4,

let us repeat the same discussion above, and we have the assertion of the

theorem for some subset of ΩA with positive measure. Performing this pro-

cedure successively and using transfinite induction, we can conclude the

proof.

COROLLARY 3. 1. (I. M. Ambrose) If {Zt} is a flow, there exists an

S-flow {Zt} built up by (X,yi,μ,f{x),l,S) where S is an automorphism of finite

measure space X, and {Zt} is isomorphic to {Zt}.

Remark 3. 1. By the proof of Theorem 3, we can easily see the following.

Let {Zt} be a quasi-flow and let F{Zt] be the set of all fixed points of

{Zt}. Let \Z\\ be the restriction of {Zt\ to Ω-F{Zt}. Then there exists

an S-quasi-flow {Zt} built up by some (X,9T, μ,f(x), φ{x9u),S) which satisfies

the following conditions (i) there exist S-invariant sets Xn; n ~ 1,2,3,

such that Xn f] Xm = Φ if n =V m and X = Σ Xn, (ii) there exists a positive
n

constant θn such that f{x)^θn for x e Xn for each n. (iii) {Zt} is iso-

morphic to {Z't}.

By this representation theorem of a quasi-flow, we have the following.

COROLLARY 3. 2. Let {Zt} be a quasi flow and let at{w) be the multiplicative

density function of {Zt}. Let an(w) be a sequence of 53(v{zt))-measurable functions

which converges to 0 as n->oo a.e. {dP). Then it holds that aan^w^(w) converges

to 1 in DiΩ^tP).

Especially, at(w) converges to 1 in Lι{Ω9^S9P) as t-+0.

Proof Since at(w) = 1 on F{Zt] and F{Zt] is a measurable set, it is

sufficients to prove the assertion in the case of an S-quasi-flow which satisfies

the conditions in Remark 3. 1. We may assume that there exists afi S-

invariant function bn{x) such that bn(x)~an{x, ύ) a.e. (dudμ{x)). By Remark

3. 1, for any ε >0, there exists a natural number iVj(e) such that P{{x,u);



QUASI-FLOWS 1 1

0 < u < f{x), a ; e Σ ^ ) < 4 - and fn(x) ^ ε for x e Yx (ε) = 2 *». By the

assumption, there exist a natural number JV2 = iV2(e) and an S-invariant set

F2(ε) such that P({(x,u); 0^u<f{x), x e Y2}) <-?- and en(a)<e for #eF2(ε).
4

Then {p(cc, w+ #„(#)); w ̂  iV2} is uniformly integrable on Ωε = {(#, M);

0 ^ M < /(»), a? e X - Y^ε) - F2(ε)} for w ̂  7V2(ε). Therefore we have

(3. 11) lim f ί f ^ I p(x, u + βn(α)) - v(x, u) | Jw dμ{x) = 0.

It is obvious that

by the invariantness of ί2—ί2e under {ZJ and by P{Ω — Ωε) < — . From

(3. 5), (3. 11) and (3. 12), it follows that

\ctancx ){x,u) — l\du dμ{x) <ε for any ε > 0.

0

Hence {aan^ (x, u)} converges to 1 in Lι{Ω,^&,P) as n-^00.

Now we remark the connections between the properties of a quasi-flow

{Ze} and the properties of the basic quasi-automorphism which appears in

the 5-representation of {Zt}.

Remark 3.2. Let {Zt} be an S-quasi-flow built up by {X,yt, μ,f{x),

p(x,u),S). Then the following propositions hold;

( i ) {Zt} is metrically transitive if and only if 5 is metrically transitive,

(ii) {Zt} is conservative if and only if S is conservative,

(iii) {Zt} has a <7-finite invariant measure equivalent to P if and only

if S has a σ-ίinite invariant measure equivalent to μ.

Remark 3. 3. Ya. G. Sinai [14] has called a quasi-flow {Zt} admissible

if

(i) there exists a regular partition ξ of Ω for {Zt}, that is, almost every

element of the partition ξ is a segment of a trajectory of {Zt} and the time

length of each element is a measurable function on Ω,

(ii) for any regular partition ξ of Ω, there exist two constants a and

b; 0 < α < & < o o , such that the conditional measure on an element C=Cξ{w)

= {Zuw; s(w) <u <r{w)} is expressed by a density p(u\C{w)) in the form
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(3.13) P(A\C) =

and p(u\C) satisfies

(3.14) a<p(u\C)(r- s)<b.

By virtue of Theorem 3. 1 and Lemma 3. 1, we have that any quasi-

flow without fixed points satisfies the conditions (i) and (ii) except the in-

equality (3. 14).

4. Time-changes of quasi-flows.

In this section, we introduce the time-change of a quasi-flow. The

method of time-changes is useful to study the geometrical structure of tra-

jectories of the quasi-flow. But it seems to be difficult to study the time-

changes of quasi-flows through general additive functionals, such as G.

Maruyama [10] and H. Totokί [15] did in flows. Perhaps the general time-

change is not useful for the investigation of quasi-flows. So we shall discuss

only classical time-changes induced by positive measurable functions.

Let [Zt] be a quasi-flow and λ(w) be a positive measurable function

on Ω. Let λ{w) be integrable along the trajectories of [Zt}9 that is, λ(Zuw)

is a locally integrable ^-function for every w e Ω. If we put

(4. 1) ?{t,w)= Γ λ(Zuw)du,
Jo

then it holds that

(4. 2) φ{t + S,w) = φ{t, w) + φ{s, Ztw)

by the group property of {Zt}. We say that the function φ{t,w) defined

by (4. 1) is the additive functional of {Zt} which is induced by λ{w), if λ(w)

is integrable along the trajectories of {Zt} and if

(4. 3) lim ψ{t,w) = ± oo.

We denote by τ{t,w) the inverse function of φ{t,w) for each w, that

is,

(4. 4) τ(tyw) = u if and only if φ(u,w) = t

Define a system of point transformations [Zt] by

(4. 5) Ztw = Zτy)W}w9
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then we have, by (4. 2),

(4. 6) Zt+Sw = ZtZsw9

THEOREM 4 . 1 . Let {Zt} be a quasi-flow on {Ω,^89P) and φ{t,w) be the

additive functional of {Zt} which is induced by λ(w). Then the system {Zt} defined

by (4. 5) is again a quasi-flow.

Further let at(w) and άt(w) be multiplicative density functions of {Zt} and {Zt},

respectively. Then it holds that

(4. 7) άt(w) = λ M g r α t g ) (w) a.e. .

We can easily prove the theorem similarly to the proof of Theorem

4. 2 in [16]. Now we define,

DEFINITION 4. 1. The quasi-flow {Zt}9 defined by (4. 5), is called the

time-change of {Zt} by λ(w).

The following proposition is easily seen,

PROPOSITION 4. 1. Let {Zt} be a quasi-flow and {Zt} be a time-changed

quasi-flow of [Zt] by λ{w). Then we have,

( i ) {Zt} is a time-changed quasi-flow of {Zt} by ljλ(w)9

( ϋ ) "{z,} = »{zj>

especially [Zt] is metrically transitive if and only if {Zt} is metrically transitive,

(iii) {Zt} is conservative if and only if {Zt} is conservative.

Remark 4. 1. The equality (4. 7) implies that if {Zt} is a flow, then

its time-changed quasi-flow {Zt} by λ(w) has a (/-finite invariant measure

P: dP = λ{w)dP.

Remark 4. 2. Let {Zt} be a quasi-flow on a Lebesgue space (12,S3,P).

There arises a question whether {Zt} has a <τ-finite invariant measure Q

equivalent to P. Such a problem has been discussed by many authors in

case of discrete parameters. In the continuous parameter cases, we have

some results by virtue of Remark 3. 1, Theorem 4. 1 and Propsoίtion 4. 1.

The following conditions are equivalent for a conservative quasi-flow {Zt},

(i) \Zt} has a σ-finite invariant measure equivalent to P,

(ii) {Zt} becomes a flow through time-change by some λ(w),
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(iii) there exists a positive measurable function λ{w) which is integrable

along the trajectories of {Zt} such that there exists the non trivial limit

S t

g{Zuw)du
v*. o, inn -A a.e. (dP)

*•*" λ(Zuw)du
Jo

for any ^-bounded, non-negative measurable function g(w). (Here we say

that a function g(w) is ^-bounded if there exists a constant K such that

\g{w)\<Kλ{w).) [c.f. 5].

(iv) For any e > 0, there exists a countable partition {Ωn} of Ω such

that

(4. 9) — ί — < at(w) < 1 + ε if w, Ztw e Ωn
1 -j- ε

[c.f. 2],

(v) for any {Zf}-invariant set A, there exists a measurable set 5 c i

with positive measure such that the Hopf's compressibility measure of B is

positive [c.f. 7],

(vi) {Zt} is abounded [c.f. 6].

5. TQ-systems.

In this section, we shall study some properties of quasi-flows which

have a special commutation relation with other automorphisms. The com-

mutation relation is important in the study of automorphisms and flows

(c.f. §6 and 7).

DEFINITION 5.1. A system [{Zt},λ(uή; T] of a quasi-flow {Zt} and a

positive measurable function λ(w) and an automorphism T is called a TQ-

sγstem, if

(5. 1) TZtT-' = Zt

holds, where {Zt\ is the time-changed quasi-flow of {Zt} by λ(w). We say

that a TQ-system [{Zt}, λ{w); T] is a TF-system if {Zt} is a flow.

The geometrical meaning of TQ-system is as follows. An automorphism

T transforms the trajectories of a quasi-flow {Zt} onto themselves so that

any segment of a trajectory is transformed again to another segment of

another one. We can easily see the following proposition.
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PROPOSITION 5. 1. Let [{Zt},λ{w); T] be a TQ-system and let {Zt} be a

time-changed quasi-flow of {Zt} by some 7{w). Then we have,

(i) the system [[Zt}9λ{w)r{T~ιw)lr(w)\ T] is a TQ-system,

(ii) the system [{Zt},λ^{w); Tk] is a TQ-system, where λm{w) is defined by

(5. 2) λ(k\w) = I 1 jfc = 0

lλ{Tw)λ{T2w) λ(T'kw)T1 k ̂  - 1.

Let[{Z t}, λ(w);T]be a TQ-system and let {Zt} be the time-changed quasi-

flow of {Zt} by λ{w)\ Ztw = ZτCt>tυ)w = TZtT~ιw. Let at(w) be the multipli-

cative density function of {Zt}. Since it holds that P(ZtB) = P{TZtT~ιB) =

= P(ZtT-χB) = ^_iBat{w)dP= ^at{T^w)dP9 we have the following proposition

by (4. 7).

PROPOSITION 5. 2. Let [{Zt},λ{w); T] be a TQ-system, then it holds that

(5. 3) *r«.u»(u>) = λ{

λfff - at(T'ιw) a.e. (dP).

COROLLARY 5. 1. (Ya. G. Sinai) If {Zt} is a flow, λ{w) is 33(ι>{Zj)-

measurable.

Proof Since {Zt} is a flow, at{w) = 1 holds. From (5. 3), it follows

that λ{Ztw)jλ(w) = 1 a.e. {dP). Thus we conclude that λ(w) is $8(y{£f})-mea-

surable. Hence Λ(w) is S3(^{Zf})-measurable by Propostiion 4. 1 (ii).

Now, we are interested converse problem i.e. whether 93(y{Zj)-measura-

bility of λ{w) implies that at{w) — 1 a.e. {dP). For this purpose, we shall

prepare the following simple lemma. We say that a measurable function

h{w) is quasi-integrable, if either the positive part or the negative part of h(w)

is integrable. For any quasi-integrable function h{w)9 the conditional ex-

pectation E\h(w)\ζ\ with respect to a afield 83(f) for any partition ζ is well

defined. And we have that

ί lim — Σ h(Tkw) a.e. (dP)
(5.4) £[A|yΓ](ίc;) =

I lim — Σ h{T-kw) a.e. (rfP)
Λ-^oo fl k=l
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by Birkhoff's ergodic theorem.

LEMMA 5. 1. Let [{Zt}, λ(w); T] be a TQ-system and let h(w) be quasi-

integrable. If h(w) is ^&(v {^-measurable ^ then the conditional expectation 2s[λ|ι>Γ]

is T- and [Zt] -invariant (mod 0).

Proof Noting that \TkZtT~k\ is a time-changed quasi-flow of {Zt}9 we

have together with Proposition 4. 1 (ii)

E\h\vτ\(Ztw) = lim - ^ - Σ A(T*ZtΓ-*T*«;)

= lim — Σ h(Tkw) = E{h\vT1 (w) a.e. (dP).

DEFINITION 5. 2. We say that a TQ-system [{Zt}, 2(w); Γ] has the

property (A), if logλ(w) is quasi-integrable and satisfies

(5.5) E[logλ\vτ]^0 a.e. (dP).

We say that a T<?-system has the property (AC) (or (AD)), if logλ(w) is quasi-

integrable and satisfies

(5.6) E[logλ\vτ\>0 (resp. <0) a.e. (dP).

THEOREM 5. 1. Let [{Zt}, λ(w); T] be a TQ-system with the property (A).

Then {Zt} is a flow if and only if λ(w) is SQ(V ^-measurable.

Proof. Assume that λ(w) is 93(y{Zf})-measurable. Then by Lemma 5. 1,

there exist T- and {Zt} -invariant sets Ω+ and Ω~ such that

ί > 0 a.e. (dP) on Ω+

(5.7) E[logλ\vτ]
{ < 0 a.e. (dP) on Ω~,

and P(Ω+) + P(Ω~) = 1. On the other hand, the set of all fixed points of

{Zt} denoted by F{Zt] is also T- and {Zt}-invariant. In fact, for w^F{Zt],

ZtT~ιw = T~ιZtw = T~ιw holds, and hence T~γw e F{Zt}. Therefore at(w) = 1

on F{Zt}. Hence we may assume that E[iogλ \ vτl > 0 (or <0) a.e. (dP) and

{Zt} has no fixed points. Let us consider the case E[logλ \ vτ~\ > 0, it follows

that

(5. 8) lim 1/J<»> (w) = lim ^ = 0 a.e.,
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because lim [2(w)2(T-ιw) λ{T~n+ιwWn = exp \El\ogλ{w)\vτ'\\ > 1 a.e. . By
W~»oo

the S3(y{2j)-measurability of λ(w)9 it follows that

(5.9) τ{t,w)=[t—^—=-^r a e f o r e a c h u

]« λ(zuw) *M

By Proposition 5. 1 (ii) and Proposition 5. 2, it follows that

(5. 10) at{T~kw) = at/k™{w){w) a.e. for each t.

Since the sequence {at/λ^(w)(w)} converges to 1 in U{Ω9^&,P) by Corollary

3.2, the sequence {g(at{T~nw))} converges to g{l) in Lx{Ωy^9P) for any

bounded continuous function g on R. Therefore it holds that

Έ[g(at)\vτ](w) = lim -±-ίl g(at(T-*uή)
«->oo ft k=l

= lim g(at(T-nw)) = g(l) in D{Ω, S3, P).
n->oo

Thus our proof is complete if E[logλ(w)\vτ] >0. For the case E\logλ{w)\vτ'\

< 0 , we can prove similarly.

We can easily see the following corollary by Theorem 5. 1 and Pro-

position 5. 1.

COROLLARY 5. 2. Let l{Zt],λ{w); T\ be a TQ-system with the property (A).

Then [Zt] becomes a flow via time-change by ΐ(w)9 if and only if λ(w)ϊ(T~1w)IT(w)

is ί8(v{Zί])-measurable.

We shall next point out another property, concerned with the entropy,

of a flow in a TF-system. First we prove the following lemma for an

automorphism.

LEMMA 5. 2. Suppose we are given an automorphism T and invariant measur-

able set B. Let h{w) and λ(w)>0 be measurable functions such that logλ(w) is

quasi-integrable and satisfies (5. 5) on the set B, and

(5. 11) h{w) = λ(w)h(T-ιw) a.e. (dP) on B.

Then the value of \h(w)\ is zero or infinity for almost all w e B.

Proof By the equality (5. 11), there exist T-invariant sets B+ and B-

such that 0 < h{w) < + oo on B+ and — oo < h{w) < 0 on B- and h(w) = 0 or

infinity a.e. {dP) on B — B+— B-. Assume that P(B+) > 0. Then there exist

two positive constants a and b such that P(Ba,b)>0, where Ba)b = {w;a<
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h(w) < b] Π B+. Since, (5. 4) holds for \ogλ(w) by BirkhofF's ergodic theorem,

there exist a point WQ<E Ba>b and an increasing subsequence of natural num-

bers {nk} such that Tn*wQ<E Ba,b k = 1,2, and

(5. 12) lim -A- Σ logλ(Tkw0) ψ 0
n->ro ft k=l

hold. While it follows from (5. 11) that

0f= I lim Σ

= Him - ί - (lQgA(T" «;,) - logA(κ>,)) | ί ί lim
k H fr

This is a contradiction, so we have P{B+) = 0. By a similar way, P{B-) = 0

is proved.

THEOREM 5. 2. Z ^ {Zf} έ^ a flow and [{Zt},λ(w); T] be a TQ-system with

property {A). Then the entropy of the flow {Zt} is zero or infinity.

Proof Let us consider the restriction {Zc

t} of the flow [Zt] onto

C e v{ztγ Then the entropy h({Zt}) of [Zt] is given by the form,

(5. 13) h({Zt}) = J ^ h(C)dP (C),

where the function h(C) = h{{Zc

t}) defined on Ωlv.Z} is equal to the entropy

of the flow {Zc

t} on C[c.f. 12]. Hence it is sufficient to prove that A(C)=0

or oo (a.e. Pv{ZJ).

Since λ{w) is S3(y{Zj)-measurable by Corollary 5. 1, we can define a

function on Ωlv{Zt} by λ(C) = λ(w) w <E C. Then it holds that

(5. 14) TZtT~ιw = Zt/-λ(C)w a.e. w e C, for a.e. C e ^ { Z J .

But ^ { Z } is 7-invariant because ZtT'1B = T~ίZtB = T-1B for any {ZJ-invariant

set. Hence (5. 14) can be written as

Clearly T€' is an isomorphism of T~ιC to C, and hence {Zτ

t~
lc} is isomorphic

to {Z^ ( C )}. Therefore we have

(5. 15) ACΓ-'C) = h({Z^λCC)}) = * » g » = J & 2 - a.e. C.
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From (5. 15) and Lemma 5. 2, it follows that h(C) = 0 or oo a.e. (dP*{Z}).

Now proof is complete.

Now we consider a commutation relation of a quasi-flow {Zt} and a

flow {Tt}, similarly to the above discussions.

DEFINITION 5.3. A system [{Zt}9 κ(w); {Tt}] is called a TQ-system, if

κ(w) is integrable along the trajectories of {Tt} and if {Zt}9 exp (\ κ(T-uw)du);

Ts\ is a TQ-system for each 5.

We say that a TQ-system has property (A) (resp. (AC) or (AD)), if

(5.16) E[fc{w)\v{Tt}]^0 (resp. > 0 or < 0) a.e. (dP)

holds. We call a TQ-system l{Zt],κ(w); {Tt}] a TF-system if {Zt} is a flow.

Then we have,

THEOREM 5 . 1 ' . Let [{Zt],κ(w); {Tt}] be a TQ-system with property (A).

Then {Zt} is a flow if and only if κ(w) is %ί(v{Zt})-measurable.

THEOREM 5. 2'. Under the same assumption of Theorem 5. 1', if {Zt} is a

flow, then its entropy is zero or infinity,

6. TQ-systems and the ergodicity of automorphisms and flows.

In this section, we discuss the ergodicity of flows on abstract measure

space in connection with TQ-systems (c.f. EX. 1 and 2 in §8).

We may call a quasi-flow {Zt} a transversal quasiflow of an automorph-

ism T (or a flow {Tt}) with a coefficient of expansion λ(w) (resp. κ(w))9 if

[{Zt},λ{w); T] (resp. [{Zt}, κ{w); {TtU) is a TQ-system. A transversal quasi-

flow is called a transversal flow if {Zt} is a flow. This definition of trans-

versal quasi-flows is a generalization of one dimensional transversal fields,

and moreover, of transversal admissible one-parameter group of transforma-

tions in [14].

THEOREM 6. 1. Let [{Zt},λ{w); T] be a TQ-system with property (A). If

either λ(w)^l for all w e Ω or 0 < λ(w) ̂  1 for all w e Ω holds, then it holds

that

(6. 1) vτ ^ y { Z j .

Proof By Lemma 3.2, it is easily seen that [E[h\vτ]; h e C({Zt})} is

dense in L1(Ω9$5(vτ)>P) a n d (5.4) holds. Hence it is sufficient to prove our
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assertion that for g(w) e C({Zt}), E[g\vτ] (w) is {Zt}-invariant (mod 0). By

Proposition 5. 1 (ii), TkZtT~kw = Zτ\t,w)W holds, where

(6. 2) τ\t, w) =

Therefore we have

E[g\vT] (Ztw) = lim — Σ 9(TkZtw) = lim — Σ g(Zτ\t,τ^Tkw)
n->zo U k=l n-^oo Ύl fc=l

for almost all w. Now, if λ(w) ̂  1, the sequence llλ(k) (Tkw) = λ(~k)(w) =

[λ(Tw)' λ(Tkw)Tι converges to 0 boundedly for almost all w, by the same

reasoning as (5. 8). From (6. 2), it follows that

(6. 3) I E[g I vτ\ (Ztw) - E[g \ vτ](w) |

lim — Σ {g{ZτKt.τ*w)T*w) —g(Tkw)}
n-»t:o H k=l

lim Σ K\τk(t9 Tkw) I = lim K\τn(t,
n-+oo Π k=l w-^oo

du
= 0 a.e. (dP)

for some constant K. Therefore E[g\vτ] is {Zt}-invariant (mod 0). We

can similarly prove the assertion for λ(w) ̂  1.

THEOREM 6. 2. TjΓ α TF-system [{Zt},λ{w); T] AΛΓ property [A), then (6. 1)

AoZώ.

Proof. With the same reasoning as the proof of Theorem 5. 1, we may

assume that l{Zt),λ(w); T] has property (AC) or (AD). If it has property

(AC), the sequence ^(~rι)(^) converges to 0 by (5. 8). Since it holds that

(6. 4) At, Tkw) = tλ(~k)(w) a.e. (dP)

by Theorem 5. 1, it follows that £"[̂ 1^ ]̂ is {Zt}-invariant (mod 0) by (6. 3).

If property (AD) holds, we can similarly prove our assertion.

COROLLARY 6. 1. Let a TQ-system [{Zt}9 λ(w); T] have property (A). If

there exists a positive measurable function r(w), integrable along the trajectories of

{Zt}9 such that λ(w) = λ(w)ϊ(T~ιw)lϊ(w) is %5(v{Zt})-measurable and logλ(w) is quasi-

integrable (or λ(w) ̂  1 for all w or λ(w) ̂  1 for all w) then (6. 1) holds.
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Proof. Let {Zt} be the time-changed quasi-flow of {Zt} by ϊ{w). By

Proposition 5. 1 (i), i{Zt},λ(w)\ T] is a TQ-system with property (A). Since

λ(w) is -$8(y{Zj)-measurable by the assumption, {Zt} is a flow by Theorem

5. 1. Hence we have our assertion by Theorem 6. 2 (or Theorem 6. l).

The following theorems are proved with the similar methods to the

Theorem 6. 1 and 6. 2.

THEOREM 6. 1\ Let [{Zt}, κ{w); {Γt}] be a TQ-system with property {A).

If either κ{w) 2^ 0 for all w e Ω or κ{w) ̂  0 for all w e Ω holds, then we have

(6. 5) v{τt}^V{zt} ( m od 0).

THEOREM 6. 2'. Let [{Zt}, κ(w); {Γt}] i* a TF-system with property (A).

Then (6. 5) holds.

Remark 6. 1. Relation (6. 1) (resp. (6. 5)) means that if {Zt} is metrically

transitive then T(resp. {Tt}) is ergodic.

7. TQ-systems and increasing partitions of automorphisms.

In this section, we shall study increasing partitions with respect to auto-

morphisms in connection with TQ-system. These results are generalizations

of the results in [14].

Let ί and ζ be measurable partitions. The conditional entropy H{ξ\ζ)

of ξ with respect to ζ is defined by

(7. 1) H(ξ\ζ; w) = -logP(D n C\ζ; C), w e D n C, DtΞζ, C e ? ,

(7. 2) ff(£|Cc) = Jϊ(€ir; Cς) = \CζH($\ζ; w)dP( \Cζ), Cζ e r,

(7.3) fl (eif) = £[ff(ei(r; w)].

THEOREM 7 . 1 . Zeί [{Zt},>i(w); T] 3« a TF-system with property (AC).

Then, there exists a partition ζ of Ω, such that almost every element of ζ is a seg-

ment of a trajectory of \Zt\ and that

( i ) Tζ^ζ (modO),

(ii) V T * r = β (mod 0),

(iii) ΛΓ*f = »{*,> (modO),

(iv) H(Tζ\ζ) = \Ω_F{Zt} logλ(w)dP.
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Proof. By the proof of Theorem 5. 1, the set F{Zt] of all fixed points

of {Zt} is T- and {Zt}-invariant. For any T-invariant set B, there exists

a 7- and {Zt}-invariant set Br such that P{BQB') = 0, by Theorem 6. 1.

If there exists a denumerable partition {ΩJ of Ω—F{Zt] such that (1)

each Ωn is T- and {Z,}-invariant subset of Ω—F{Zt}9 (2) there exists a

partition fn of Ωn which satisfies the conditions (i)^(iii) on Ωn and

(iv)' J^logPCCrc. (w) I Cζn (w))dP= \Qn logλ(w)dP.

Then the partition ζ of Ω, which is equal to ζn on Ωn and is equal to the

partition of F{Zt] into individual points on F{Zt}, is a desirable one. The

conditions (i)~(iii) are obviously fulfilled and it holds that

H(Tζ\ζ) = E[\ogP(Cτζ(w)\Cζ(w)] = 2 L \ogP(CτζnM\Cζn(w))dP
n-l JUn

Hence it is sufficient to prove the assertion that there exists a T- and {Zt}~

invariant subset Ωo of Ω — F{Zt] with positive measure and exists a partition

ζ of J20 which satisfies the conditions (i), (iί), (iii) and (iv)'.

Since we may assume that the flow {Zt} has not fixed points, we can

suppose by Corollary 3. 1 that {Zt} is an S-flow built up by some (X, % μ,

f{x), 1, S), where S is an automorphism of X. We may assume that

λ(w) = λ{x,u) = λ{Skx,v) for 0<v<f{Skx), by Theorem 5. 1. Let ξ be the

partition of Ω = {{x9u)*9 0 < u < f{x), x e X] into the vertical lines: Cξ(x) =

{(x,v); 0<υ<f(x)}. Put Vr = {w; £[log λ\vτ](w) > ϊ], then P(Vr) > 0

holds for sufficiently small Γ (>0). Since Vγ is 33(^{zj)-measurable, by

Theorem 6.2, there exists an S-invariant set A such that P(Vr Q {(x, u);

0<ί"u< f(x), x & A}) = 0. Let b be a positive constant such that μ({x;

f(x) >b] (Ί A) > 0. Put

(7. 4) F = {(a, a) f(x) >b, WΪΞ A, 0^u<b},

and

(7. 5) ΩQ = U TΨ.
A;=--oo

Let ?7 be the partition of F into the vertical lines of it i.e. the restriction
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of ξ to F, and let 9j be the partition of Ωo which is equal to η on V and

degenerated on Ωo — V. We shall show in the following that the partition

ζ = v Tkη is a desirable one.

For any ε >0, there exist a $8(v{Zj)-measurable set Ge with P(Gε)>l— ε

and a natural number n(ε) such that for any w e Gε and n > n(ε),

(7. 6) exp[nE[logλ{w)\vτ]+nε]>λ(Tw)

holds. From $8(L>{Zj)-measurability of Λ(M ). and (6. 4), it follows that the time

length of the segment Cτ»v{Tnw) is b[λ{Tw) λ{Tnw)Yι and it is less than

6χexp[— nE\\ogλ(w)\vτ\ + ne\<be~n^-^ for w<aGe and n>n(ε).

Setting Kn = {w e F; H(η\Cτ^(Tnw)) >0}, we have

(7. 7) Σ P(X» n G.) = Σ PίT x , n T^Ge)

<Σi E exp[-nE[\og λ\vτ]-{- nε]< Z>Σ ̂ ~ r + e ) n < °o

for any ε with T > ε > 0. From (7. 7) and Borel-Cantelli's lemma, it follows

that P(\ϊmKn Π G.) = 0 for small ε. Hence we have P(ϊϊm/ίΓΛ) = 0, that is,
n n

almost every w belongs to only finite numbers of KnS. Hence ζ divides

almost every C~ c V into almost countable segments, that is, almost every

element of ζ which is contained in V is a semi-open segment of a trajectory

of {Zt}. For k>0, put

wk = τ-kv-k\jτ-mv,
m=l

then P{Ω0 - Σ Wk) = 0 holds. Since Cτκ{w) = T~kCζ{Tkw) for w G TFΛ, almost

every element of ζ is a semi-open segment of a trajectory of {Zt}.

Let us show that ζ satisfies the condition (i)~(iii) and (iv)'. Let hn{w)

be the time length of the segment Cτκ(w) of a trajectory of {Zt}. Then

{hn{w)} is a non-increasing sequense of finite valued positive measurable

functions, because ζ is an increasing partition with respect to T. On the

other hand, from the commutation relation of T and {Zt}, it follows that

hn{Tw) = hn-iiuήjλiTw), w e Ωo. If we put lim hn{w) = h(w), then it holds that

(7. 8) λ{Tw)h(Tw) = λ(w) a.e. on β0.

From (7. 8) and Lemma 5. 2, it follows that A(JI ) = 0 a.e. on Ωo. This fact

means that the condition (ii) is fulfilled. The condition (iii) can be shown

similarly, that is, lim h%{w) = h*(w) (this limit exists for almost all w e Ωo
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admitting infinity), satisfies the equality (7. 8), where h%{w) is the time

distance between w and the boundary of Cζ{w)9 so we have h*(w) = oo a.e.

on Ωo.

Now we see easily that

(7. 9) P(Cτc(w)\Cζ(w)) = h1(w)lh0(w) = h^T'^lhMλMr1 for w<=Ω0.

The positive part of the logalism of the left hand side of (7. 9) is integrable,

and \ogλ{w) is quasi-integrable and E[\ogλ\vτ] > 0 a.e. on ΩQ. Let B be

the T-invariant set such that either lim — Σ \ogλ{Tkw) < oo o r — l i m — Σ
n->oo U k=L n-^oo fl k=l

\ogP{Cτζ(Tkw)\Cζ(Tkw)) < oo holds for almost every w e B. Then we have

by Lemma 5. 2, E[\og{λ{w)P(Cτζ(w))\Cζ(w))\vτ] = 0 a.e. (dP) on 5 . On the

other hand lim -1- Σlog^(T*w;) = -lim -i- Σ \ogP{Cτζ{Tkw) \ Cζ{Tkw)) = oo a.e.
«-»oo ΐl k=L »-»oo M 4=1

on ί20 — 5 . Therefore we have

(7. 10) - j β o Eΐίog P{Cτdw) I Ce(w)) I vτ}dP

= [ £[logi(«;)|υI.]ί/P= [ loglWdP.

So our assertion was proved.

For TQ-systems, we have similar theorem,

THEOREM 7. 2. Let [{Zt},λ(w); T] be a TQ-system with property (AC). If

λ(w)^l holds, there exists a partition ζ of Ω, such that almost every element of

which is a segment of a trajectory of {Zt} and ζ satisfies the same conditions ( i ) ~

(iv) in Theorem 7. 1.

Proof By the same reason in the proof of Theorem 7. 1, it is sufficient

to prove the assertion that there exists a T~ and {Zt}-invariant subset Ωo of

Ω— F{Zt} with positive measure and exists a partition ζ satisfying the con-

ditions (i)~(ίii) and (iv)' in the proof of Theorem 7. 1.

Since we may assume that [Zt] has not fixed points, we can suppose

that {Zt} is an S-quasi-flow built up by some {X, % μ9 f(x), p{x, u), S) by

Theorem 3. 1. Let ξ be the partition of Ω = {w = (x, u); 0 < u < f{x), X<ΞX]

into the vertical lines: Cξ(w) = Cξ{x, u) = {(x, v); 0 ̂  υ < f{x)}. Then the

conditional measure on Cξ(x, u) is given in the form

(7. 11) dP( • I Ce(x, «)) = -J$e'v)dv

\ p(x,v)dv
Jo
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Put

(7. 12)
\ p(x, u + v)dυ

w = (a;, u) J o

f / O 0 < α', for 0 < UI < β\
t \ p{x,v)dv

β' < u, and 2j9' < /(a?)

Since lim-^-\ p{x,u + v)dv = p{x,u) a.e. (dudμ{x)), there exist two constants
*->o ί Jo

a' and β' such that P{V^βή > 0. Further there exists a measurable set

A c l and positive constants b and β (< /3') such that {x,b), {x,b 4- β) e W/9'

for any α; G A and //(Λ) > 0 holds. Fix such constants b, α, β\ β and the

set A. Set V = {w = {x, u); b <u <b + β, x ^ A} and let rf be the partition

of V into the vertical lines of it. Let us fix positive constants ΐ and f such

that P{V) > 2jΐ~' and

(7. 13) P({w; P(J3|Cvr(tt;)) > 3T}) >1-T\

where D= \w\ λ(w)>l] Π U; lim -±-[*
I ί->o ί Jo ) λ(w)

The existence of such T and r' is assured by the hypothesis of that E[\ogλW\ > 0

a.e. and by that P{{w; λ(w)>l] —D)=0 holds by Lemma 3. 2 (i). Put

(7.14) ^ =

for 0 < a < 1. Since,

u Λ,/3 = U;-τ-Γ ,/i N
0<α<l I ' / Jθ λ(Zuw)

holds, we have

lim P{A*β I CvΓ (w)) ^ P(Z>| CvΓ (w)) a.e. .
α->l-0

From (7. 13), it follows that there exists a constant a ( < 1) such that

(7. 15) P(Aaβr) > 1 - 27", A*/3r = {w; P(A*/3 |CvΓ(«;)) > 2r}.

By Birkhoff's ergodic theorem, there exists a measurable set G with P(G) >

1 — 7*' and a natural number ^ 0 such that

(7. 16) I sn(w) - nP{Aaβ \ CVτ (w)) \ < nϊ
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hold for any w e G and n > n0, where sn(w) is the numbers of i (0 ̂  i ^ n)

with Tw e Atf. Put

(7. i7) F = {̂  e 7' P(G Π A»*r I <V(«0) > 1 - /T7 }.

From (7. 13) and (7. 15), it follows from TschebyschefF's inequality that

P(V - V) <-^\v,_v[l - P(G Π A«βr\Cv>(w))]dP

^ 1 (1 - P(G n A*βτ)) < %f = 3/r7 .

Hence we have F(F) > 0. Let η be the partition of V into the vertical

lines of it and 9j be the partition of Ωo = U TV which is equal to η on F

and degenerated on Ωo — V. Define a partition ζ of Ωo by

(7. 18) ζ = V T*9.

It can be proved by the same method as the proof of Theorem 7. 1, that

almost every element of ζ is a semi-open segment of a trajectory of {Zc}

and the conditions (i)-~(iv)' are fulfilled.

δ. Examples.

We shall give three TQ-systems on Lebesgue spaces. First, let us give

examples of TQ-systems such that the quasi-flows consisting of the systems

have not ^-finite invariant measures.

EXAMPLE 1. Bernoulli automorphisms. Let X = [0,l) and (91, μ) be the

ordinary Lebesgue measure on X. Let p ; = 1,2, , Λr be positive num-

bers with px + p2 + * ' # + VN — 1 a n d let S be the quasi-automorphism (mod

0) of X defined by

(8.1) sx =

for 1 - <pm

N + 2>5ta*-i ^ a? < 1 - pm

N + j>5ft, fc = 1,2> N, m = 0,1,2, , where

Qk = #i + V2 + ' ' + 2>*> #o = 0. l e t ί^ί) be the 5-quasi-flow of Ω = {{x, u);

0<u<l9 0 ^ α < l } built up by (X,9t,//, 1,1,S). The automorphism T of

ί2 defined by

(8. 2) Γ(a, u) = (a?', «'),
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(8.3)
= — (

P*

= PkU

for
k.ί^x< qk,

is isomorphic to a Bernoulli automorphism. Further the system [{Zt},

λ{x,u); T] is a TQ-system, where λ{x,u) = ljpk for qk-ί^x<qk. Now the

partition ζ of Ω into vertical lines is a partition given by Theorem 7. 1 and

the conditional entropy H(Tζ[ζ) = —^ΣipjlogPj = E[logλ{x9u)1 is equal to the
3

entropy of the automorphism T.

/

/

^ ^ — Pz~~—^^

^ ^

^ P 3 ^

/

Pi'. P2-P3P4

I

\

\
(0,0)

Fig. ] N = 4.

The quasi-flow {Zf} is a flow if and only if S is an automorphism, that

is, if and only if pλ = p2 = = pN = -^ holds. In the other cases, \Zt\

and S have no σ-finite invariant measures equivalent to the Lebesgue mea-

sure. Especially, the case N= 3 and px = pz = — , p2 — -~- is such an

example, which is given by A. Brunei. The case iV= 2 and p2jp1 = a is the

example given by L. K. Arnold (see [2]).

In the case of pj = -j^ , j = 1,2, •••,#, the flow {Z,} is ergodic and

has pure point spectrum 1 2πi JL k and m are integers J. Hence the

entropy of {Zt} is 0.
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EXAMPLE 2. Let Ω be the space of continuous functions on real line

R and let (β,33,P) be the measure space of Brownian motion. Then the

sift {θt} acting on the w: (θtw){s) = w{s - t), is a flow on (£,S,P). Define

a oneparameter group of transformations {Tt} of Ω by

(8.4) (Ttw)(s) = e-atw(e2ats).

We can easily see that {Tt} is a flow on Ω which is induced from 2-

dimensional Ornstein-Uhlenbeck's Brownian motion. We have

(8. 5) TsθtT-s = #ί exp(2α.s)>

that is, [{#ί}, — 2α; {Tί}] is a ΓF-system. This is an example of a trans-

versal flow which has infinite valued entropy. The relation (8. 5) satisfied

by the transformation groups θt and Tt on the functional space comes from

the commutation relation for the shift and the multiplication acting on reals.

EXAMPLE 3. We can generalize our formulations to multi-dimensional

transversal fields as follows. Let G be a connected unimodular Lie group

and {Zg; ^ G G ) be a group of non-singular transformations of a Lebesgue

space (£,33,P) such that

(i) Zg^g w — ZQ^W f° r 9V 92 e G and w e Ω,g

(ii) the mapping Zg: (g, w) -¥ Zgw is ® x ^-measurable, where & is the

topological Borel field on G. We call a mapping φ{g,w) of GxΩ onto G

to be a multiplicative mapping for {Zg; g e G} if it is ® x immeasurable and

φ(g,w) is a one-to-one onto mapping of G for each w and satisfies

(8. 6) Ψ(9ι929 w) = P(0i> ̂  w) P(02> w) for each w.

Let τ(g,w) be the inverse mapping of φ(g,w) for each w. Then the system

{Zg; g e G} defined by

(8. 7) Z^u; = Zrcg.*)w

is again a group of bimeasurable point transformations of Ω. We say that

{Zg\ g e G} is the time-change of {Zg; gr e G} by φ(g,w). If the measure

P is invariant under {Zg\ g e G}, {Zg; g ^ G] has an invariant measure. In

fact, if the mapping pfa, w) of G (for fixed w) is non-singular with respect

to the invariant measure dg of G, then the density is given in the form
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λ{Zgw) with some 93-measurable function λ{w) and the measure dQ •= λ{w)dP

is invariant under {Zg; g e G}.

Under the suitable hypothesis, we can perform the similar discucssions

to §3— §7. For an example, let Γ be an nxn matrix with integral coeffi-

cients with determinant ± 1. Then T can be considered as an automor-

phism of n-dimensional torus Tn. The Jordan's canonical form of T is

given by a regular real matrix C = {ci3) in the form

(8. 8) = A =

Λk

ίaJ

= (atJ),

where either a5 is a l x l matrix and / is the idddentity l x l matrix or a,

is 2X2-matrix in the form

a,- cos θj —aj sin

cos θj cos
aj>0.

and / is the identity 2X2 matrix.

We suppose that a19 a2, , am < 1. We define {Zc; t = (t1, t\

e RN} (where N is the total dimensions of A19 , Am) by

, tN)

(8.9)
iV

Ztx = x + Ct (Ct)i = Σ
ii

It is easily seen that {Zt; t ^ RN] is a group of measure preserving trans-

formations and satisfies

(8. 10) TZtT'1 =

Then we can construct an increasing partition ζ with respect to T such that
•m

ζ satisfies the condition (i) ~ (iii) in Theorem 7. 1 and H{Tζ\ζ) = — Σ
. 7 = 1

f

.7

It is well known that H(Tζ\ζ) is equal to the entropy of
T(c.f. [11]).
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