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NORMAL BASES IN GALOIS EXTENSIONS

OF NUMBER FIELDS

S. ULLOM*

Introduction

The notion of module together with many other concepts in abstract

algebra we owe to Dedekind [2]. He recognized that the ring of integers

Oκ of a number field was a free Z-module. When the extension K\F is

Galois, it is known that K has an algebraic normal basis over F. A

fractional ideal of K is a Galois module if and only if it is an ambiguous

ideal. Hubert [4, §§105-112] used the existence of a normal basis for cer-

tain rings of integers to develop the theory of root numbers — their decom-

position already having been studied by Kummer.

Let KjF be a Galois extension of number fields. A necessary condition

that O^ have a normal basis was given by Speiser [9], namely that KjF

be tamely ramified. Hubert [4, Theorem 132] showed O# has a normal

basis when K\Q is abelian and the degree of K/Q is prime to the discrimi-

nant of KIQ. E. Noether [7] proved that if K\F is tamely ramified, then

Oκ has a normal basis everywhere locally. When K/Q is abelian with

G = G(KIQ), Leopoldt [6] gave a complete structure theory for O^ as a ZG-

module using Gauss sums as generators. His theory uses in a crucial way

Kronecker's theorem that every absolutely abelian field is a subfield of a

cyclotomic field and that the base ring of integers Z is a principal ideal

ring. Frohlich [3] using "Kummer invariants" considered the case when

K\F is a Kummer extension and gave necessary and sufficient conditions

that O^ have a normal basis. Yokoi [11] using the structure theory of

integral representations of cyclic groups of prime order described the in-

tegral representations afforded by O^, KjQ a cyclic extension of prime

degree.
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Here we continue the study of the relationship between module struct-

ure and arithmetic properties. We consider all ambiguous ideals of K, not

just the ring of integers of K, as Galois modules. In Chapter I the ques-

tion of existence of normal bases of ambiguous ideals in tamely ramified

abelian extensions of the rationals is reduced to the corresponding question

for ambiguous ideals of the cyclotomic field Q(l) of l-th roots of unity over

Q. A sufficient condition for all the ambiguous ideals in a cyclic extension

of the rationals of prime degree to have a normal basis is given in Theorem

1. 10. (All field extensions are assumed finite and all modules finitely gene-

rated over their ring.)

Chapter II gives necessary conditions for an ambiguous ideal in a wildly

ramified Galois extension to have a normal basis; among them is the triviality

of a second ramification group. These conditions are sufficient for abelian

extensions of Q and quadratic extensions of Q(/—1). The latter statement

is proven in the author's thesis.

Chapter I. Normal bases in abelian extensions of the rationals

We begin the chapter with some general properties of ambiguous ideals.

Let K\F be a Galois extension with Galois group G, F the quotient field

of a Dedekind domain O^, O^ the integral closure of O^ in K. Residue

class field extensions are assumed separable. The ring of integers O^ is a

Dedekind domain and a G-module under Galois action. For β e K and

σ e G we denote either by σβ or βa the action of σ on β. If τ e G, we

write (βτ)a = βτa.

DEFINITION. Let $ be a prime ideal of K with ramification index e

over F. $ is tamely ramified over F if the characteristic of the field Opffi Π O^

is prime to e. If every prime of K is tamely ramified over F, KjF is said

to be tamely ramified. Prime ideal of F (resp. K) means prime ideal of

OF (resp. Oκ). An ideal Ĉ (possibly fractional) of K is G-ambiguous or

simply ambiguous if % is a G-module.

Let p be a prime ideal of F decomposing in K as pθκ = ($! ^ ) e .

Set ψ(p) = % %. It is known that

(i) 0(p) is ambiguous and the set of all ψ(p), p prime in F, is a free

basis for the group of ambiguous ideals of K,
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(ii) An ambiguous ideal 21 of K may be put in the form 2ϊob where

b = ideal of F,

where et > 1 is the ramification index of a prime of K dividing pt. 21 de-

termines 2I0 and b uniquely. 2ί0 is called a primitive ambiguous ideal. For 21

ambiguous, ψ{p)u ||2l shall mean ?$u\\% $ any prime of K dividing p, where

^ may be negative.

We now determine the trace SKIF& of an ambiguous ideal 2ί of K.

Since the trace function S = Sκ/F is ^-linear, S2ί is an ideal of F. Let p

be an arbitrary prime ideal of F with pθ# = ψ{p)\ φ(p)*\\% and ψ{p)m\β){KlF)

the relative different of K/F. [x] denotes the greatest integer less than or

equal to the real number x. The next proposition generalizes a result of

Yokoi [12, Prop. 2, p. 209].

1. 1. PROPOSITION. Take K/F as in the first paragraph of this chapter; let

21 be an ambiguous ideal of K and p a fixed but arbitrary prime ideal of F. The

p-component of Ŝ C is qr where pr is the highest power of p dividing

Proof For any ideal b of F, hp denotes the p-component of b.

For ideals % of K, b of F we have S& c b <=> % Q V&^iKIF). If r is

an integer, this means

< ( » ί + s)le.

The maximum integer r satisfying this is r = \_{m + s)je\.

1. 2. COROLLARY. If K\F is tamely ramified, then Ŝ C = % Π F.

Proof. The p-component of 2Ϊ Π F is py where

y = [{e-l + s)lel

Since KjF is tamely ramified, m = e — 1. By 1. 1 the p-component of Ŝ C

is pr where

r = l(m + s)le] = [(e-l + s)/el

Now use the fact that in a Dedekind domain an ideal may be written

uniquely as a product of powers of prime ideals.

We now make some observations on ambiguous ideals as Galois modules.
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1. 3. PROPOSITION. Suppose G = G{KjF) and H is a subgroup of G. KjF

tamely ramified implies any ambiguous ideal 2ί of K is 0FH-projective.

Proof By Rim [8, Prop. 2. 3, p. 702] it is enough to show SI is OF-

projective and there exists an 0F-endomorphism p: 2Ϊ-> 2Ϊ such that

Σ σp{σ"ιa) = a for all a e 21.

Since 21 is a finitely generated torsion-free O^-module, 2ί is O^-project-

ive. Let L be the fixed field of H. K\F tamely ramified implies K\L

tamely ramified. Thus 3β e O# with Sx/L(j9) = 1. Now take p to be multi-

plication by β.

1. 4. COROLLARY. 21 w cohomologically trivial as a G-module.

DEFINITION. An ideal 21 of K has an 0FG-normal basis if 21 is isomor-

phic to the group ring OFG (isomorphism of OFG-modules) equivalently

3«e2ΐ such that every element of 21 may be put in the form Y\aaa
a,aa^OF.

O<ΞG

The notation for this will be 21 = OFG [α]. We may also say 21 has a

if/F-normal basis, or simply normal basis and write 21 = [«]. Note 2t is

ambiguous if it has a normal basis.

In 1. 5 and 1,6 L is an intermediate field F c L Q K, fixed by the

normal subgroup H £ G.

1. 5. Remark, (i) If an ideal 21 of K is G-ambiguous, then 2ί Π L is

G/if-ambiguous.

(ii) If an ideal b of L is G///-ambiguous, then the extended ideal hθκ of

K is G-ambiguous.

1. 6. PROPOSITION. If 21 = OFG M , *Λ*« 21 n L = OF{GIH) [Sκ,L(a)l

Proof 21 Π L is a G/#-module, since H acts trivially on 21 Π L. Write

β e 21 as
r e G

If j3 G 2ί Π L, then βσ = β for σ e ϋΓ; consequently, σ <E H implies

i.e., βΓ = tfT(;. For /3 e 21 Π L,

2 r Σ Σ
τ/H a^H τ/H
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where Σ denotes a sum over a complete set of coset representatives for

GIH.

Note Sκ/L(a) e % n Z,. Since S#/L(α:τ) = (Siί/z,(«:))Γ, we conclude

1. 7. Remark. Take ίΓ/ί1 as in the first paragraph of this chapter, 2X

an ambiguous ideal of K. Suppose % = OFG [α] for some α G Ϊ , If b is

a principal ideal (6) of i s then the ideal W = OFG \ba\.

As a consequence, we see that if O^ is a principal ideal domain, the prob-

lem of showing an ambiguous ideal has a normal basis reduces to the cor-

responding problem for primitive ambiguous ideals.

1. 8. P R O P O S I T I O N . Let F be an algebraic number field with Kί9 K2 Galois

extensions of F such that Kx Π K2- F and the discriminants Dι = DiKJF), i = 1,2,

are relatively prime. Let ^ be an integral ambiguous ideal of Kι with %t=

OFGi [ α j , at e %, where G^ = G(KJF). Then the ambiguous ideal W ^ of

L — KλK2 has a normal basis, i.e., SΪ1S12 = OFG •[α1α:2], where G = Gλx G2 =

G(LIF), σ = (σl9σ2) G Gxx G2 acts on axa2 by

Proof Let σj(i\ j = 1, , mi9 be the distinct F-autmorphisms of Ki9

i = 1,2. The square of the determinant

J[αJ = det(^Ci W°«i), ί = 1,2,

is the discriminant (with respect to KJF) of the O^Grmodule generated by

a,. Let © = 51^2 (in OL). We have

= (NLlF&)2D(LIF)

and

Set M = OFG [αjαa]. Clearly M e © . It suffices to show the discrimi-

nants of M and © coincide as ideals of OF. The relative discriminant of

M is J[α1«2]
2. One finds
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= D(LIF)(NL[FW.

One uses Dl9D2 relatively prime to obtain the last equality.

The assertions on the Galois group G{L/F) follow at once from the

shifting theorem of Galois theory.

We now restrict our attention to cyclotomic extensions. Let F be an

extension of the rationals Q. Assume K\F is an abelian extension. From

class field theory there exists in F the congruence ideal group i7j with

conductor f to which K is the class field. For p a finite prime of F rami-

fied in K, p is tamely ramified in K/F if and only if p||f.

Consider K/Q abelian. K is class field to the congruence ideal group

Hm; m(resp. mp*) is the conductor for K real (resp. imaginary), and KQQ{m)9

the cyclotomic field of m-th roots of unity over the rationals. If K/Q is

tamely ramified, then m = lx lr9 a product of distinct odd primes. Thus

Let p be a rational prime and consider its decomposition in Q(m):

pOQ(m)=W1 5β,)β(*> = ψ(p)e^.

For a primitive ambiguous ideal 9Ϊ of Q{m) we have

Denote by U the unique prime ideal of (?(/*) dividing lim With these nota-

tions IΛV 2 as an ideal of Q(lι)Q(l2) = Q(lJz) is ψihT^ψihT2, since no rami-

fication over It occurs in Q{Ulj)lQ{Ji), i Ψ h Repeat this argument for the

successive composites of Q(lx /J and Q(li+1), i = 1, , r — 1. Finally

note that Q(m) is the composite of r linearly disjoint fields Q{lt), whose

absolute discriminants are relatively prime in pairs. Thus 1. 8 applies, and

we have proven the following formal reduction theorem.

1. 9. THEOREM. Suppose K/Q is abelian and tamely ramified, so K Q L =

Q(lx lr), U distinct odd primes. Let lί9 i = 1, , r, be the prime ideal of

Q(li) dividing U and let % be an ambiguous ideal of L which is the product of

powers of If (extended to O L ) , Le.y % = Π I/, j = j{i). If each factor 1/ of %
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has a normal basis in Q{l-D, then % c L has a normal basis. Consequently, the

ambiguous ideal % Π K of K has a normal basis.

In order to give a criterion for the' existence of normal bases in cyclic

extensions of prime degree we define the projective class group P(R) of a

ring R with 1 [8]. Two projective 7?-modules Pl9 P2 are equivalent if and

only if there exist free i?-modules Fl9 F2 with P1 © Fλ = P2 ® F2. (All mo-

dules are assumed finitely generated over R.) This set of classes of i?-modules

becomes an abelian group when the law of composition is given by direct

sum of ivNmodules.

Rim [8, Theorem 6. 24, p. 711] has shown for R the group ring ZG

where G is a cyclic group of prime order / and Z the rational integers that

P{ZG) is isomorphic to the ideal class group of the field Q(/). Further the

identity element of P{ZG) consists only of free ZG-modules.

Let FjQ be- a tamely ramified cyclic extension of prime degree /. Any

ambiguous ideal SI of F is ZG-projective by 1. 3 where G = G{FjQ). If

Q(l) has class number one, it follows from Rim's result that % is ZG-free

and hence has a normal basis. We have proved the theorem:

1. 10. THEOREM. Let FjQ be a cyclic extension of prime degree I in which

the prime I is unramified. Suppose the class number of the cyclotomic field Q(l) is

one. Then every ambiguous ideal of F has a normal basis.

In [5] we obtain a result by purely number-theoretic methods which

includes 1. 10.

We give explicit normal bases for certain ideals of a cyclotomic field.

Let K— Q{1), I an odd prime, p a primitive /-th root of unity, 1 = (1—^)0^,

G = G(KjQ). For an ambiguous ideal 2ΐ of K, % = [a] if there exists a e %

such that every element of % has the form Y\aaa
σ, aa e Z. Clearly O^^C^]

and I = [1 — p\. Set m = (/ —1)/2 and fix a primitive root r mod /, i.e.,

/ — 1 is the smallest positive integer such that r ι " 1 Ξ l m o d /. Let σ be the

automorphism of K which takes p\-+ pr.

1. 11. PROPOSITION, (i) The ideal lm of Q{1) has a normal basis

a = (l-p)(l-pr)...(l- pr-1), i.e., Γ = [*].

(ii) For arbitrary j , if V — [β], then lkm+j = l(ρλa)kβ]9 for any k <Ξ Z. λ is

defined {uniquely mod I) by λ{r —1) = 1 mod I. If S denotes the normalized Gauss

sum
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2m / a \

S = Σ (-f> 2 ί r < β / ί

and (-J-) the Legendre symbol, then ρλa = eS, where e = e(r, p) = ± 1.

- ! , and

Since there are

(i) By induction we have

a°j = ( - l)'p-FJa, j = 1, 2, ••

F,. = 1 + r + r2 + + rJ-1.

Consider the set of elements T = {a,a\

2m -\r 1 distinct powers of p and at most 2m distinct elements in T, some

power of p does not enter as a factor of aa\ One checks that exactly one

power pλ of p does not appear. Of course exponents of p are considered

mod /.

Thus

[«] = [«,

, Pλ~\ Pλ+1, •

, Pίma]

But α = (1 — p)mE, E unit of K. Therefore a generates a normal basis of

r.
(ii) Consider pλa. {pλa)a =—p^~ιa. Thus λr—l = λ mod / and (^0:)*= — ^^α.

It follows easily that P= ρλa lies in the (unique) quadratic subfield of Q(l)

and in fact P 2 = (— l)ml. On the other hand if S denotes the normalized

Gauss sum, then we know S2 = (— l)ml. Thus P = eS for e — e(r, p) = ± 1.

When / = 5, there are two primitive roots r mod 5. A computation

shows e{2,e2πίl5) = + 1 and £(3,£2πί/5) = — 1. It is clear that P depends on

the choice of p.

Now let M be the ZG-module [{pλa)kβ\ = [r], k e Z. Recall

Thus

M = [(P^α)*ft ( - Pλa)kβa,

= (1 - p)kmE-[β], E unit of K,
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O n e can check that in Q(7), I2 = [(1 - p) (1 - P3)]; in Q(ll), ί2=[(l-/t>)

(1 - P2)l I3 = [(1 — /o) (1 — P*) (1 - ι°9)]. So we have shown u p to but not

including I4 of Q(ll) that V {j - 1, •••,/— 2) has a normal basis of the

form

pμ(l - p) (1 ~ pr) (1 ~ P^-% μϊΞZ,

r some primitive root mod I. However, this pattern fails for I4 of Q(ll).

Chapter II. Normal bases in wildly ramified Galois extensions

Let K\F be a Galois extension satisfying the conditions of the first

paragraph of Chapter I. We may attach a subscript to an ideal to indicate

the field in which it lies, e.g., %K9 %F. A prime p of F decomposes in K as

$OK = ββj. ΊβgY = ψ{p)e, where e = eop
r (e = e0 if characteristic of OFI\> is

zero), (eo,p) = 1, and r^O. K\F is wildly ramified (at %t or over p) if r i>l.

Fix some $ = $i dividing p. Let L be the fixed field of a subgroup H of

G = G(K/F). We have the ramification groups with respect to $ and KjL

Vffl, KID ={σ

When L = F, we abbreviate V^, K/F) as F4. We write Γ for the inertia

group Fo, 7 for Vx.

2. 1. T H E O R E M . Suppose KjF is wildly ramified. Let $ be any wildly

ramified prime ideal of K over p of F and 2Ϊ an ambiguous ideal of K. The zero

dimensional cohomology group H°(V9^ί) — 0 implies (i) and (ii). If in addition the

inertia group T is abelian, condition (iii) holds.

(i) ψipYW,s an integer, implies S Ξ I mod pr.

(ii) V2 = {1}. ifc/M* F = © ZlpZ.

(iii) T = V.

Proof HQ(V,n) = 0 means

Sjr/^W = « Π ίΓF, ίTF the fixed field of F .

By 1.1 the exponent of ^Kv = ̂  Π Kv in S * , * ^ is [ ( m + s ) / p r ] where

$mmKIKv); the exponent of $Kv in % f] Kv is [(p r + s - l )/p r ] . Thus

(1) [(m+s)lpr] = [(pr + s-l)lprl

For the remainder of the proof we consider s mod pr take se{ l ,2 , , p r } .



162

The ramification groups of K\KV at % are Vt Π G{KIKV) = Vt ΠV,

{H: 1) denotes the order of a subgroup H of G. We have

m=

Equation (1) implies

[(2(pr

or

For s e ( l , 2 , , p r}, 5 must be 1, i.e., s = l mod pr

Assume V2ψ {1}, then

Using the result of (i), we have

r

This is absurd, so V2 = {1}. 7 = ®ZlpZ since FJ7< + 1, ί ^ 1 , is abelian of
1

type (p,p, , y).

We know that if σ G T and ί GFi, / ̂  1, we have the commutator

tfΓo "1?--1 e Vi+i if and only if σ1 e 7 or r e Kί+1. See Artin-Tate [1, Theo-

rem 5, p. 111]. When T is abelian and V2 = {1}, this yields T = F.

2. 2. Remark. If 21 has a normal basis, it is cohomologically trivial.

In particular, H°(V,%) = 0.

2. 3. We determine the ideals with normal bases in wildly ramified

abelian extensions KjQ. For /z^l , let Lh{l) denote the unique subfield of

Q(lh+1) of degree lh where / is a prime. If 1 = 2, we see Lh{l) = Q(2Λ+1).

Let Z,j(/) = L(/). Define the rational integer D' as the product of all the

rational primes which are wildly ramified in the extension K.

Suppose KIQ is a wildly ramified abelian extension. Then K Q Ω, where

0 = P Π Lh(l).
ι\jy
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Of course h depends on / PjQ is a tamely ramified abelian extension.

In the remainder of this chapter we use the notation G = G(ΩjQ) and the

subgroups A and B of G fix the fields Ωr and K respectively.

DEFINITION. The Galois extension K/Q satisfies hypothesis H(p) if, for a

prime $ of K dividing the rational prime p,

VO(%KIQ) = V^KIQ) =®ZlpZ, r ^ l , and V2(%KIQ) = {1}.
1

2. 4. Suppose KQ Ω described in 2. 3 and K satisfies H{l),l an odd prime.

Set

M=P> Π Lh(φ), Ω' = M-L{1).
V\D'
PΦl

We claim K Q Ω\ Let S be a prime divisor of / in Ω. Since / is totally

ramified in Lh{l) and tamely ramified in M, we have M Π Lh(l) = Q. Hence

the order of V = VΊ{S9Ω/Q) is lh. For any subgroup HQG put fl^ = the

subfield of Ω fixed by elements of H. Since / is tamely ramified in M,

ΩVΏM; also [β: M] = [LΛ(Z): Q] = Z\ Hence β r = M and F is cyclic.

This and hypothesis H{1) imply the ramification index of / in K is /.

Hence Vf)B = V^Ω/K) has order lh~\ Thus i c ^ , which implies KQΩ'.

Suppose K satisfies H(l)9 I odd? and K^ P M= Ω, where

PΦl

We may assume / is unramified in P. In fact let Pr be the inertia field

of SPI / relative to P/Q. The prime / is unramified in Pr and SP ' is totally

ramified in P. We claim K Q Pr *M, which we now call Ω'. Let M" ψ Q

be a subfield of M. In M" some prime ramifies wildly, so M" $ P.

Therefore P n M = Q . Set

M' = Π LΛ(p)
PΦl

and P'M' = Po Note that PQ is the inertia field of 2Ω\l relative to ΩjQ,

since / is unramified in Po = PrMr and 2Po is totally ramified in Ω. Let T

be the inertia group of 2Ω fixing Po. T is an abelian group of order al,

where / = (Γ: 4̂), a = (A: 1) = [£: β f] = [P: P']. Since PjQ is tamely ramified,

(I, a) = 1. Thus T = ZjlZ® A. Since the ramification index of / in J? is Z
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T f) B has order a. But T has exactly one subgroup of order a implies

T Γ) B = A, A Q B, and finally K Ω Ω'.

2. 5. Suppose K satisfies H{2) and KQ LΛ+1(2) M = Ω, where h^.1 and

M/Q is abelian and unramified over the prime 2. We claim K<ΞΞ: L{2) M= Ω'.

Let S be a prime of β dividing 2. Since M Π LΛ+1(2) = Q, G{Lh+1(2)lQ) ~

G(Ω/M). Ωv = M as above. Since

Γ = F = Fi(S, β/Q) - Z/2Z© Z/2/ιZ

and hypothesis H{2) holds, the ramification index of 2 in K is 2 or 4.

Consider the latter case. If a prime S*|2, then 2G

K\\^){KIQ); Sm||®WQ)>

w = (h + 1)2Λ+1. Consequently, if 2X\\Q(ΩIK), we have by the chain rule for

differents

(2) {h + l)2h+1 = 6 2ft-1 + x.

By the theorem on the bound of the power of S dividing ^){Ω/K)9 e.g.,

Weiss [10, Prop. 3-7-23]

(3) x^{h- l)2/i+1 + 2h~' - 1.

Equations (2) and (3) cannot both hold. Hence the ramification index of

2 in K is 2.

Lh+i{2) has three subfields of degree 2, namely L(2) = Q(/~~T ) and

Q(τ/± 2 ). Since the ramification index of 2 in iΓ is 2, the subgroup V Π B

has order 2/ι. V contains the subgroup A fixing Ω' of order 2h. Either

B Ώ. A (in which case K c ^') or B contains one of the two subgroups

fixing the field M ( / ± 2 ).

We assume K c M{ J 2 ) and obtain a contradiction. Let F be the

ramification subfield of K, so [K: F ] - 2. Since V2(2K,KIQ) = {1}, KψF{{2 ).

Since £|| |£>(F(/2 )/F) and %\\Ό{K\F), where in each case £> denotes the

relative discriminant, it follows that the ramification index of 2 in KU 2 )

is 4. But by assumption K and hence i£(/2 ) c the field M(/2 ) in which

the ramification index of 2 is 2. Of course we could have replaced / 2 by

-f^. Thus i ί c l ( 2 ) . M a s claimed. Sections 2.4 and 2.5 give the fol-

lowing theorem.

2. 6. THEOREM. Assume KjQ abelian and at each rational prime I wildly

ramified in K we have K satisfies hypothesis H(l). Then
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(i) KGΩ = P- Π
X J l\D'

where P\Q is abelian and tamely ramified and the absolute discriminant of P is prime

to Dr.

(ii) An ambiguous ideal % of K has a normal basis implies that at each rational

prime I wildly ramified in K we have ψ(iY\\% where s = l mod I and for a prime

*β of K dividing I we have

Vo{% KIQ) = V,{% KIQ) = ZIIZ

and

The following proposition provides explicit normal bases.

2. 7. PROPOSITION. Let I be an odd prime, L = LX{1). Then

(i) L is the only wildly ramified subfield of Q{lh+1) containing ideals with normal

bases.

(ii) If the prime ideal S|/, S of L, then S has a normal basis. Explicitly,

S = [1 + T], where T — $(p), S = the trace function from Q(l2) to L, pa primitive

I2 root of unity. S is the only primitive ambiguous ideal of L with a normal basis.

(iii) Q(/— 1 ) is the only (wildly ramified) subfield of Q{2h+1) containing ideals with

normal bases. If Z\2, S a prime ideal of Q( / — 1 ), then S = [1 + /— 1 ] is the

only primitive ambiguous ideal of Qb/— 1 ) with a normal basis.

Proof. Parts (i)-(iii) of 2. 1 imply that the ideal S of L is the only

candidate for a primitive ambiguous ideal of a wildly ramified subfield of

Q{lh+1), I odd, to have a normal basis.
/ 2 - l

Every element of OQ ( / 2 ) maybe written (not uniquely) as Σ

Since Q(/2)/L is tamely ramified, SOQ ( / 2 ) = OL. Therefore ^ =

• , I2 — 1} contains a 2T-basis of OL. Let r be a primitive root mod I2,

G(Q(l2)lQ) = <σ\ Pa=Pr, a n d r ^ S t r ) , i = 0, , /(/ - 1) - 1. Note

that

τt = S(/*") =

for i ΞΞΞ j mod /. Also S(pil) = - 1 for i = 1, - -, / - 1. Thus

T7 = { - 1 , To, •• ,T,_ 1 }.
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But To + + TL-X = sum primitive /2 roots of unity = 0. Thus OL has a

Z-basis consisting of the elements 1, To, , 7V2.

Set T = T0. If SI Z in L, then 1 + T generates a normal basis of S. In

fact, p — 1 generates the principal ideal of Q(/2) dividing / and

S(/o - 1) = T - (/ - 1) -e S.

Therefore M = [1 -
as a Z-module is

[CV.M]

Z.

=

1

1

1

1

s.

1

0

0

- 1

It

0

1

0

- 1

suffices to ί

0

0

0

_ 1 . . .

>how

0

0

1

- 1

= /

IXl

The proof of (iii) follows that of (i) and (ii).

2. 8. THEOREM. Let % be an ambiguous ideal of K.

K= Π
l\Df

Suppose

and at each wildly ramified prime I of K including 1 = 2, ψ(l)*\\yί, s = l mod I;

then $ϊ has a KjQ-normal basis.

Proof. By the remark of 1. 7 it suffices to consider % a primitive am-

biguous ideal. For any Galois extension M of Q and rational prime /

define ψ(l,M) to be the product of all distinct prime ideals of M dividing

I. Any primitive ambiguous ideal 21 of K with a normal basis must have

the form

51= Π φ{l9K).
l\D'

The ideals ψ{l,L{l)) have normal bases in their respective fields. The

extension KjL{l) is unramified over the prime of L{1) dividing /, hence

ψ(l,L(l))Oκ = ψ(l,K).

The absolute discriminants of the fields L{1) are pairwise coprime, hence we

may "multiply the normal bases" (see 1. 8) to get a if/Q-normal basis of
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