HOMOTOPY GROUPS OF COMPACT LIE GROUPS E_6 , E_7 AND E_8

HIDEYUKI KACHI

§ 1. Introduction

Let G be a simple, connected, compact and simply-connected Lie group. If k is the field with characteristic zero, then the algebra of cohomology $H^*(G;k)$ is the exterior algebra generated by the elements x_1, \dots, x_l of the odd dimension n_1, \dots, n_l ; the integer l is the rank of G and $n = \sum_{i=1}^l n_i$ is the dimension of G. Let X be the direct product of spheres of dimension n_1, \dots, n_l ; then there exists a continuous map $f: G \longrightarrow X$ which induces isomorphisms of $H^i(X;k)$ to $H^i(G;k)$ for all i (cf. [8]). From this we deduce by Serre's C-theory [8] that $f_*: \pi_i(G) \longrightarrow \pi_i(X)$ are C-isomorphisms for all i, where C is the class of finite abelian groups. Therefore the rank of $\pi_q(G)$ is equal to the number of such i that n_i is equal to q, and particularly if q is even, then $\pi_q(G)$ is finite. It is a classical fact that $\pi_2(G) = 0$ and $\pi_3(G) = Z$.

According to Bott-Samelson [6];

$\pi_i(E_6)=0$	for $4 \leqslant i \leqslant 8$,	$\pi_{\mathfrak{g}}(E_{\mathfrak{f}})=Z,$
$\pi_i(E_7)=0$	for $4 \leqslant i \leqslant 10$,	$\pi_{11}(E_7)=Z,$
$\pi_i(E_8)=0$	for $4 \leq i \leq 14$,	$\pi_{15}(E_8)=Z.$

where E_6 , E_7 and E_8 are compact exceptional Lie groups.

In this paper, using the killing method we compute the 2-components of homotopy group $\pi_{f}(G)$, where $G = E_{\mathfrak{s}}, E_{\mathfrak{r}}$ and $E_{\mathfrak{s}}$. The results are stated as follows;

j	$4 \leqslant j \leqslant 14$	15	16	17	18	19	20	21	22	23
$\pi_{j}(E_{8}:2)$	0	Ζ	Z_2	Z_2	Z_8	0	0	Z_2	0	$Z+Z_2$
j	24	25	26	27	28	Ī				
$\pi_j(E_8:2)$	$Z_2 + Z_2$	Z_2	0	Z	0					

Received April 3, 1967.

HIDEYUKI KACHI

j	$4 \leqslant j$	≤ 10	11	12	13	14	15	16	17	18	19
$\pi_j(E_7:2)$	0		Z	Z_2	Z_2	0	Z	Z_2	Z_2	Z_4	$Z+Z_2$
j	20	21	22		23		24		25		
$\pi_{j}(E_{7}:2)$	Z_2	Z_2	Z_4	Z_2 +	$+ Z_2 +$	$Z_2 \mid Z$	$Z_2 + Z_2$	$+Z_2$	$Z_{2} + Z_{2}$	2	

j	$4 \leqslant j \leqslant 8$	9	10	11	12	13	14	15	16	17
$\pi_j(E_6:2)$	0	Ζ	0	Z	Z_4	0	0	Z	0	$Z+Z_2$
j	18	19	20	21	22	Ĩ				
$\pi_{j}(E_{6}:2)$	$Z_{16} + Z_2$	0	Z_8	0	0					

All spaces that we concider in this paper are those which have the homotopy groups of finite type. Let G be such a space, then $\pi_i(G)$ is isomorphic to the direct sum of a free part F and the p-components of $\pi_i(G)$ for every prime p. We denote by $\pi_i(G:p)$ the direct sum of a certain subgroup F' of F and the p-component of $\pi_i(G)$, where the index [F; F'] is prime to p.

Given an exact sequence for such A, B and C

$$\cdots \longrightarrow \pi_i(A) \longrightarrow \pi_i(B) \longrightarrow \pi_i(C) \longrightarrow \cdots,$$

then we can form the following exact one in our case

$$\cdots \longrightarrow \pi_i(A : p) \longrightarrow \pi_i(B : p) \longrightarrow \pi_i(C : p) \longrightarrow \cdots$$

The author is indebted to Professor H. Toda for his advice during the preparation of the paper.

§ 2. The cohomology of the 3-connective fibre spaces of E_6, E_7 and E_8 .

H. Cartan and J.P. Serre introduced a method to calculate the homotopy group in [7]. Let $K(\pi, n)$ be an Eilenberg-Mac-Lane space of type (π, n) .

THEOREM 2.1. Let X be an arcwise connected topological space, then there exists a sequence of (n-1)-connected spaces (X, n) $(n = 1, 2, \dots, and (X, 1) = X)$ and continuous maps $f_n: (X, n+1) \longrightarrow (X, n)$ such that:

(1) the triple $((X, n + 1), f_n, (X, n))$ is a fibre space with a fibre $K(\pi_n(X), n - 1)$. (II) there exists a fibre space X'_n over the base space $K(\pi_n(X), n)$, where X'_n and (X, n) are of the same homotopy type, such that the fibre is (X, n + 1).

Hence $f_1 \circ f_2 \circ \cdots \circ f_{n-1}$ defines the isomorphism of $\pi_i(X, n)$ to $\pi_i(X)$ for $i \ge n$.

LEMMA 2. 2. Let X be a 2-connected topological space. Assume that X satisfies the following conditions,

- (1) $\pi_{\mathfrak{z}}(X)$ is isomorphic to an infinite cyclic group,
- (2) $H^*(X; Z_2) = A_0 \otimes A_1 \otimes \cdots \otimes A_r \otimes B$

where x_3 is a generator of $H^3(X; Z_2) \approx Z_2$, $A_0 = Z_2[x_3]/(x_3)^{s_0}$, $A_i = Z_2[Sq^{2i}Sq^{2i-1} \cdots Sq^2x_3]/(Sq^{2i}Sq^{2i-1} \cdots Sq^2x_3)^{2^{s_i}}$ $(s_i \ge 1)$ $1 \le i \le r$, and $Sq^{2r+1}Sq^{2r} \cdots Sq^2x_3 = 0$, then

$$H^*((X,4); Z_2) = Z_2[w] \otimes \varDelta(a_0, a_1, \cdots, a_r) \otimes B'$$

where the deg. $a_i = (2^{i+1} + 1)(2^{s_i} - 1) + 2^{2^i}$, deg. $w = 2^{2^{r+1}}$, $\Delta(a_0, a_1, \dots, a_r)$ indicates a submodule having a_0, \dots, a_r as a simple system of generators and B' is isomorphic to B by $(f_1 \circ f_2 \circ f_3)^* : H^*(X; Z_2) \longrightarrow H^*((X, 4); Z_2)$.

Proof. From the above theorem, there exists a fibre space $((X, 4), f_1 \circ f_2 \circ f_3, X)$ with a fibre K(Z, 2). Since K(Z, 2) is the infinite dimensional complex projective space, its mod 2 cohomology structure is $H^*(Z, 2; Z_2) \approx Z_2[u]$, where u is a generator of $H^2(Z, 2; Z_2)$. Let $\{E_r^{**}\}$ be the mod 2 spectral sequence associated to the above fibration ((X, 4), X, K(Z, 2)), then

$$E_2^{**} = A_0 \otimes A_1 \otimes \cdots \otimes A_r \otimes B \otimes Z_2[u].$$

Clearly we have $d_3(1 \otimes u) = x_3 \otimes 1$. Hence if *n* is even, $d_3(1 \otimes u^n) = 0$, if *n* is odd, $d_3(1 \otimes u^n) = x_3 \otimes u^{n-1}$, and $d_3(x_3^{s_0-1} \otimes u^n) = 0$ for all n > 0. Thus we obtain

$$E_4^{**} = \Lambda(\bar{a}_0) \otimes A_1 \otimes A_2 \otimes \cdots \otimes A_r \otimes B \otimes Z_2[u^n]$$

where $\bar{a}_{0} = (x_{3})^{s_{0}-1} \otimes u$.

Let τ be the transgression, $\tau(u^2) = Sq^2x_3$, since the transgression commutes the Steenrod operation. Thus $d_5(1 \otimes u^2) = Sq^2x_3 \otimes 1$. Since d_t is derivative, $d_5(1 \otimes u^{2n}) = 0$ if n is even, $d_5(1 \otimes u^{2n}) = Sq^2x_3 \otimes u^{2(n-1)}$ if nis odd, and $d_5((Sq^2x_3)^{2^s_t-1} \otimes u^{2n}) = 0$ for all $n \ge 1$. Thus $E_6^{**} = \Lambda(\bar{a}_0, \bar{a}_1) \otimes A_2 \otimes A_3 \otimes \cdots \otimes A_r \otimes B \otimes Z_2[u^4]$

where $\bar{a}_1 = (Sq^2x_3)^{2^{s_i-1}} \otimes u^2$.

Carrying on similarly, we have

$$E_{2^{r+1}+2}^{**} = \Lambda(\bar{a}_0, \bar{a}_1, \cdots, \bar{a}_r) \otimes B \otimes Z_2[u^{2^{r+1}}]$$

where $\bar{a}_i = (Sq^{2i}Sq^{2i-1}\cdots Sq^2x_3)^{2^{s_i-1}} \otimes u^{2^i}, i = 0, 1, \cdots, r$, and $s_i \ge 1$. Clearly $d_t = 0$ for all $t \ge 2^{r+1} + 2$. Thus we obtain

$$E_{\infty}^{**} = \Lambda(a_0, a_1, \cdots, a_r) \otimes B \otimes Z_2[u^{2^{r+1}}].$$

Since E_{∞}^{**} is the graded algebra associated to $H^*((X, 4); Z_2)$, assume that a_i, w, B' correspond to $\bar{a}_i, u^{2^{r+1}}, B$ respectively. We have the lemma.

Particularly, we can assume that B is mapped isomorphically onto B' by the homomorphism $(f_1 \circ f_2 \circ f_3)^*$; $H^*(X; Z_2) \longrightarrow H^*((X, 4); Z_2)$. Thus the relation of B are arranged in B'.

The mod 2 cohomology algebra of the exceptional Lie groups have been determined by S. Araki [2] and S. Araki-Y. Shikata [3]. These algebra are as follow.

(2.1) $H^*(F_4; Z_2) = Z_2[x_3]/(x_3^4) \otimes \Lambda(Sq^2x_3, x_{15}, Sq^8x_{15}),$

$$(2. 2) H^*(E_6; Z_2) = Z_2[x_3]/(x_3^4) \otimes \Lambda(Sq^2x_3, Sq^4Sq^2x_3, x_{15}, Sq^8Sq^4Sq^2x_3, Sq^8x_{15}),$$

(2.3)
$$H^*(E_7; Z_2) = Z_2[x_3, Sq^2x_3, Sq^4Sq^2x_3]/(x_3^4, (Sq^2x_3)^4, (Sq^4Sq^2x_3)^4) \\ \otimes \Lambda(x_{15}, Sq^8Sq^4Sq^2x_3, Sq^8x_{15}, Sq^4Sq^8x_{15}),$$

$$(2. 4) H^*(E_8 ; Z_2) = Z_2[x_3, Sq^2x_3, Sq^4Sq^2x_3, x_{15}]/(x_3^{16}, (Sq^2x_3)^8, (Sq^4Sq^2x_3)^4, x_{15}^4) \\ \otimes \Lambda(Sq^8Sq^4Sq^2x_3, Sq^8x_{15}, Sq^4Sq^8x_{15}, Sq^2Sq^4Sq^8x_{15})$$

where x_i denotes a generator of degree *i*.

(2.5) In the inclusion $F_4 \subset E_6 \subset E_7 \subset E_8$, every subgroup is totally nonhomologous to zero mod 2 in any bigger group containing it, where each exceptional group denotes simply-connected one. (See, S. Araki and Y. Shikata [3], Theorem 3).

If $Sq^{16}Sq^8Sq^4Sq^2x_3 = 0$ in E_8 , then this is a primitive element. By (2. 4), there is no primitive element of degree 33. Thus $Sq^{16}Sq^8Sq^4Sq^2x_3 = 0$ in E_8 . Similarly we have $Sq^{16}Sq^8Sq^4Sq^2x_3 = 0$ in E_6 , E_7 and $Sq^4Sq^2x_3 = 0$ in F_4 .

COROLLARY 2.3. Let \tilde{G} be the 3-connective fibre space over G: where $G = F_4, E_5, E_7, E_8$, then

$$\begin{split} H^*(F_4; Z_2) &= Z_2[y_8] \otimes \varDelta(y_9, y_{11}, y_{15}, y_{23}), \\ H^*(\tilde{E}_6; Z_2) &= Z_2[y_{32}] \otimes \varDelta(y_9, y_{11}, y_{15}, y_{17}, y_{23}, y_{33}), \\ H^*(\tilde{E}_7; Z_2) &= Z_2[y_{32}] \otimes \varDelta(y_{11}, y_{15}, y_{19}, y_{23}, y_{27}, y_{33}, y_{35}), \\ H^*(\tilde{E}_8; Z_2) &= Z_2[y_{15}, y_{32}]/(y_{15}^4) \otimes \varDelta(y_{23}, y_{27}, y_{29}, y_{33}, y_{35}, y_{39}, y_{47}), \end{split}$$

where y_i denotes a generator of degree *i*. By the naturality of the homomorphism $p^* = (f_1 f_2 f_3)^*$, we have

$$Sq^{8}y_{15} = y_{23}$$
 in $\tilde{E}_{6}, \tilde{E}_{7}, \tilde{E}_{8}$ and $\tilde{F}_{4},$
 $Sq^{4}y_{23} = y_{27}$ in $\tilde{E}_{7}, \tilde{E}_{8},$
 $Sq^{2}y_{27} = y_{29}$ in $\tilde{E}_{8}.$

LEMMA 2.4. We have the following relations,

(i)
$$Sq^1y_8 = y_9, Sq^2y_9 = y_{11}$$
 in \tilde{F}_4 ,

(ii)
$$Sq^2y_9 = y_{11}, Sq^8y_9 = y_{17}$$
 in \tilde{E}_6 ,

(iii)
$$Sq^{8}y_{11} = y_{19}$$
 in \tilde{E}_{7} .

Proof. (i) From Theorem 2.1, there exists a fibration $(\bar{F}_4, K(Z, 3), \tilde{F}_4)$, where \bar{F}_4 denotes the space which has same homotopy type as F_4 . We consider the spectral sequence $\{E_r^{**}\}$ over Z_2 associated with the above fibration. Then

$$E_2^{**} = H^*(Z, 3; Z_2) \otimes H^*(\tilde{F}_4; Z_2).$$

It is known that

$$H^*(Z, 3; Z_2) = Z_2[v, Sq^2v, Sq^4Sq^2v, \cdots]$$

where v is a fundamental class of $H^3(Z, 3: Z_2)$. From the mod 2 cohomology algebra of F_4 , $Sq^4v \otimes 1$, $(Sq^2v)^2 \otimes 1$ and $v^4 \otimes 1$ must be d_r -images for some r. If $p \neq 0$ and 0 < q < 8, or $q \neq 0$ and $0 , then <math>E_r^{p, q} = 0$ for all r. Since $E_r^{0, 8}$ has only one element $1 \otimes y_8$ for $r \leq 9$, $Sq^4Sq^2v \otimes 1$ is not a d_r -image for $r \leq 8$. Thus τ be the transgression, we have $\tau(y_8) = Sq^4Sq^2v$. Since $E_r^{0, 9}$ has only one generator $1 \otimes y_9$ and $(Sq^2v)^2 \otimes 1$ is not a d_r -image for $r \leq 10$, we have that $\tau(y_9) = (Sq^2v)^2$. Consider

$$d_r: E_r^{p, q} \longrightarrow E_r^{12, 0}$$
 for $p+q = 11$ and $r = q+1$.

From Corollary 2.3, we have $E_r^{p,q} = 0$ for $q \neq 8,9$. But $E_r^{2,9} = 0$. $E_r^{3,8}$ has one generator $v \otimes y_8$ and $d_9(v \otimes y_8) = vSq^4Sq^2v \otimes 1 \neq 0$, for $d_9(1 \otimes y_8)$ = $Sq^4Sq^2v \otimes 1$. Thus $E_{12}^{0.11}$ has only one generator $1 \otimes y_{11}$ and $v^4 \otimes 1$ is not a d_r -image for $r \leq 11$. Therefore we have that $\tau(y_{11}) = v^4$. Using Adem's relation, from $Sq^1Sq^4Sq^2v = Sq^5Sq^2v = (Sq^2v)^2$, $Sq^2(Sq^2v)^2 = Sq^2Sq^5Sq^2v$ = $Sq^6Sq^3v = v^4$, we obtain $Sq^1y_8 = y_9$, and $Sq^2y_9 = y_{11}$.

(ii) From Theorem 2.1, there exists a fibration $(\bar{E}_6, K(Z, 3), \tilde{E}_6)$ where \bar{E}_6 denotes the space which has the same homotopy type as E_6 . Let τ be the transgression associated with this fibration. Let $\{E_r^{p,q}\}$ be the mod 2 spectral sequence associated with this fibration. Then

$$E_2^{**} = H^*(Z, 3; Z_2) \otimes H^*(\tilde{E}_6; Z_2).$$

By the same argument as in \tilde{F}_4 , we have that $\tau(y_9) = (Sq^2v)^2$ and $\tau(y_{11}) = v^4$. Concider

$$d_r$$
; $E_r^{p, q} \longrightarrow E_r^{18, 0}$ for $p+q=17$ and $r=q+1$.

From Corollary 2. 3, we have $E_r^{p,q} = 0$ for $q \neq 9,11,15$ and 17 $(q \leq 22)$. But $E_r^{2,15} = 0$. $E_{10}^{8,9}$ has one generator $(vSq^2v) \otimes y_9$ and $d_{10}((vSq^2v) \otimes y_9) = v(Sq^2v)^3 \otimes 1 \neq 0$, for $d_{10}(1 \otimes y_9) = (Sq^2v)^2 \otimes 1$. $E_{12}^{6,11}$ has one generator $v^2 \otimes y_{11}$ and $d_{12}(v^2 \otimes y_{11}) = v^6 \otimes 1 \neq 0$ for $d_{12}(1 \otimes y_{11}) = v^4 \otimes 1$. Thus, since $E_{17}^{0,17}$ has one generator y_{17} and $(Sq^4Sq^2v)^2 \otimes 1$ is not a d_r -image for $r \leq 16$, $d_{18}(1 \otimes y_{17}) = (Sq^4Sq^2v)^2 \otimes 1$, i.e. $\tau(y_{17}) = (Sq^4Sq^2v)^2$. Using Adem's relation, $Sq^2(Sq^2v)^2 = Sq^2Sq^5Sq^2v = Sq^6Sq^3v = v^4$ and $Sq^8(Sq^2v)^2 = Sq^8Sq^5Sq^2v = Sq^9Sq^4Sq^2v = (Sq^4Sq^2v)^2$. From the commutativity of the Steenrod operation and the transgression, we obtain $Sq^2y_9 = y_{11}$ and $Sq^8y_9 = y_{17}$.

(iii) Consider the fibration $(\bar{E}_7, K(Z, 3), \tilde{E}_7)$ of theorem 2.1 (II), where \bar{E}_7 has the same homotopy type as E_7 . Let $\{E_7^{p,q}\}$ be the mod 2 spectral sequence associated with this fibration. Then

$$E_r^{**} = H^*(Z, 3; Z_2) \otimes H^*(\tilde{E}_7; Z_2).$$

From the mod 2 cohomology algebra of E_7 , $v^4 \otimes 1$ and $(Sq^2v)^4 \otimes 1$ must be the d_r -images for some r. Since $H^*(\bar{E}_7; Z_2) = 0$ for degree ≤ 10 , we have $E_r^{p, q} = 0$ for $p \neq 0$ and 0 < q < 10. Thus we have that $\tau(y_{11}) = v^4$, where τ is the transgression. Consider

$$d_r$$
; $E_r^{p, q} \longrightarrow E_r^{20, 0}$ for $p+q=19$ and $r=q+1$.

From $H^{i}(\tilde{E}_{7}; Z_{2}) = 0$ for $i \neq 11, 15$ and i < 19, it follow that $E_{r}^{p, q} = 0$ for $(p, q) \neq (4, 11)$ and (2, 15). On the other hand $H^{i}(Z, 3; Z_{2}) = 0$ for i = 2, 4

and $i \leq 4$. Thus $E_r^{p, q} = 0$ for (p, q) = (4, 11) and (2, 15). From this we obtain $\tau(y_{19}) = (Sq^2v)^4$. By Adem's relation $Sq^8v^4 = Sq^8Sq^6Sq^3v = Sq^{10}Sq^4Sq^3v + Sq^{11}Sq^3Sq^3v = Sq^{10}Sq^5Sq^2 + Sq^{11}Sq^5Sq^1v = (Sq^2v)^4$. Thus we obtain $Sq^8y_{11} = y_{19}$.

LEMMA 2.5. Let a topological space X be 2-connected and the homology of finite type. Assume that $H^*(X; Z_2)$ has the additive basis a_1, \dots, a_s for dim. < N. Then there exist a finite cell complex $K = {}_* \cup e_1 \cup e_2 \cup \dots \cup e_s$, where dim. e_i = degree $a_i = n_i$ and a continuous map $f; K \longrightarrow X$ such that f induces isomorphism of $H^*(X; Z_2)$ onto $H^*(K; Z_2)$ for dim. < N.

Particularly if $\pi_{n_i-1}(K^{n_i-1})$ is finite, then we can assume that the class of attaching map of e_i belong to the 2-components. Here * denotes a vertex and K^n the n-skelton of K.

Proof. We prove this by induction on dimension N. Suppose that there exist a finite cell complex $K_0 = K^{N-1}$ and a continuous map f_0 ; $K_0 \longrightarrow X$ satisfying lemma 2.5 for dim. $\langle N$. Here we may assume that f_0 ; $K_0 \longrightarrow X$ is the injection by the mapping-cylinder argument. Suppose that $H^N(X; Z_2)$ has generator a_{s+1}, \dots, a_r .

From the cohomology exact sequence for pair (X, K_0) and the assumption of the induction, we have

$$H^{i}(X, K_{0}; Z_{2}) = 0$$
 for $i < N$,
 $H^{N}(X, K_{0}; Z_{2}) \approx H^{N}(X; Z_{2})$.

By the duality, we obtain

$$H_i(X, K_0; Z_2) = 0$$
 for $i < N$

and

 $H_N(X, K_0; Z_2)$ has the generators $\bar{a}_{s+1}, \cdots, \bar{a}_r$.

By Serre's C-theory [8], we have that $\pi_N(X, K_0) \otimes Z_2 \longrightarrow H_N(X, K_0) \otimes Z_2$ is an isomorphism. Let $f_i : (E^N, S^{N-1}) \longrightarrow (X, K_0)$ $(i = 1, 2, \dots, r-s)$ be the generators of $\pi_N(X, K_0)$ such that they correspond to \bar{a}_{s+i} by the above isomorphism and construct a cell complex K which is obtained from the disjoint union of $C(S_1^{N-1} \lor \cdots \lor S_{r-s}^{N-1})$ and K_0 by identifying $S_1^{N-1} \lor \cdots \lor S_{r-s}^{N-1}$ with its image under a map $(f_1 | S_1^{N-1}) \lor \cdots \lor (f_{r-s} | S_{r-s}^{N-1})$; $S_1^{N-1} \lor \cdots \lor S_{r-s}^{N-1} \longrightarrow K_0$, where CY is a cone over the space Y and S_i^{N-1} is a (N-1)-sphere. Using the map f_i the inclusion map f_0 ; $K_0 \longrightarrow X$ has an extension over K and we denote this extension by $g: K \longrightarrow X$. Then $g: K \longrightarrow X$ induce an isomorphism $H_N(K, K_0; Z_2)$ onto $H_N(X, K_0; Z_2)$ and from the duality between homology and cohomology, it follows that $g^*:$ $H^N(X, K_0; Z_2) \longrightarrow H^N(K, K_0; Z_2)$ is an isomorphism onto.

Applying the five lemma to the diagram

$$\begin{split} H^{N-1}(K_0 \ ; \ Z_2) &\longrightarrow H^N(X, K_0 \ ; \ Z_2) &\longrightarrow H^N(X \ ; \ Z_2) &\longrightarrow H^N(K_0 \ ; \ Z_2) = 0 \\ & \downarrow \approx \qquad \qquad \qquad \downarrow g^* \qquad \qquad \downarrow g^{**} \qquad \qquad \downarrow \approx \\ H^{N-1}(K_0 \ ; \ Z_2) &\longrightarrow H^N(K, K_0 \ ; \ Z_2) &\longrightarrow H^N(K \ ; \ Z_2) &\longrightarrow H^N(K_0 \ ; \ Z_2) = 0, \end{split}$$

we obtain that

$$g^*: H^N(X; Z_2) \longrightarrow H^N(K; Z_2)$$

is an isomorphism.

Particularly if $\pi_{N-1}(K_0)$ is finite, then there exists an odd integer q such that $q\{f_i|S^{N-1}\}$ belongs to the 2-component of $\pi_{N-1}(K_0)$. Displacing f_i by qf_i , it is sufficient for the last statement that we construct a cell complex K from K_0 . Consequently the lemma is proved.

Let α be an element of $\pi_{n+i-1}(S^n)$ and consider a cell complex $K_{\alpha} = S^n \cup e^{n+i}$ which is uniquely determined by α up to homotopy type.

THEOREM 2.6. Let n > i and i = 2 (4 or 8 respectively), then Sq^i : $H^n(K_{\alpha}; Z_2) \longrightarrow H^{n+i}(K_{\alpha}; Z_2)$ is an isomorphism onto if and only if $\alpha \equiv \eta_n$, (ν_n or σ_n respectively) mod $2\pi_{n+i-1}(S^n)$. (For the proof see H. Tada; [11] Proposition 8.1)

From Lemma 2.5 and Corollary 2.3, there exist a cell complex $M = S^8 \cup e^9 \cup e^{11} \cup e^{15}$ and a continuous map $f: M \longrightarrow \tilde{F}_4$ such that f induces an C_2 -isomorphisms $\pi_i(M)$ onto $\pi_i(\tilde{F}_4)$ for $i \leq 14$, where C_2 is the classes of finite abelian group whose 2-primary components are zero. Since $Sq^1y_8 = y_9$ in \tilde{F}_4 , we may assume that e^9 is attached to S^8 by a map of degree two. Then we have

(2. 6)
$$\begin{aligned} \pi_{18}(S^8 \bigcup_2 e^9 : 2) &= 0, \\ \pi_{14}(S^8 \bigcup_2 e^9 : 2) \approx \pi_{14}(S^8 : 2) &= Z_2 \end{aligned} \text{ generated by } \nu_8^2, \end{aligned}$$

we denote by ν_s^2 a generator of $\pi_{14}(S^s \cup e^g : 2)$ identifying with that of $\pi_{14}(S^s : 2)$ by the inclusion $S^s \subset S^s \cup e^g$.

Consider the following exact sequence

$$\pi_i(S^{\mathfrak{s}}:2) \longrightarrow \pi_i(S^{\mathfrak{s}}:2) \longrightarrow \pi_i(S^{\mathfrak{s}} \cup e^{\mathfrak{g}}:2) \longrightarrow \pi_i(S^{\mathfrak{g}}:2) \longrightarrow \pi_i(S^{\mathfrak{g}}:2)$$

for $i \leq 15$. From $\pi_{12}(S^8) = \pi_{13}(S^9) = \pi_{14}(S^9) = 0$ and $\pi_{14}(S^8) = \{\nu_8^2\} = Z_2$, (2. 6) is obtained.

Consider the exact sequence

$$\pi_{14}(S^{10}:2) \longrightarrow \pi_{14}(S^8 \bigcup_2 e^9:2) \xrightarrow{i^*} \pi_{14}(S^8 \bigcup_2 e^9 \cup e^{11}:2) \xrightarrow{j_*} \pi_{14}(S^{11}:2) \longrightarrow \pi_{14}(S^9 \bigcup_2 e^{10}:2)$$

where *i* is the inclusion $S^8 \cup e^9 \subset S^8 \cup e^9 \cup e^{11}$, and $j: S^8 \cup e^9 \cup e^{11} \longrightarrow S^{11}$ is the projection. From (2.6), we have the following exact sequence

$$(2.7) \qquad 0 \longrightarrow \pi_{14}(S^8 \bigcup_2 e^9 : 2) \xrightarrow{i^*} \pi_{14}(S^8 \bigcup_2 e^9 \cup e^{11} : 2) \xrightarrow{j_*} \pi_{14}(S^{11} : 2) \longrightarrow 0.$$

Then there exists a coextension (in the sense of [11]) $\tilde{\nu}_{10}$ of ν_{10} and $j_*\tilde{\nu}_{10} = \nu_{11}$. Assume that $8\tilde{\nu}_{10} = 0$, then $-i_*\nu_8^2 = i_*\nu_8^2 = 8\tilde{\nu}_{10}$. Let $f: S^{14} \vee S^{11}$ $\longrightarrow S^8 \bigcup_2 e^9 \cup e^{11}$ be a map such that $f|S^{14}$ and $f|S^{11}$ representative of $8\iota_{14} \oplus \nu_{11}$, then $f \circ g: S^{14} \longrightarrow S^8 \bigcup_2 e^9 \cup e^{11}$ is homotopic to zero. Consider a mapping cone C_f of f, then there exists a coextension $G: S^{15} \longrightarrow C_f$ of g. Let K be a mapping cone of G, then we have a complex

$$K = S^{8} \cup e_{6} \cup e^{11} \cup e^{12} \cup e^{15} \cup e^{16}$$

and $Sq^4u_8 = u_{12}$, $Sq^4u_{12} = u_{16}$, where u_8 , u_{12} and u_{16} are cohomology classes mod 2 which are represented by S^8 , e^{12} and e^{16} respectively. Thus it is verified that $Sq^4Sq^4u_8 \neq 0$ in K. By use of Adem's relation

$$Sq^4Sq^4u_8 = Sq^6Sq^2u_8 + Sq^2Sq^6u_8.$$

Since there is no cell of dimension 10 or 14 in K, the right side of the above equation vanishes in K, but this is a contradiction. Thus we have proved that $8\tilde{\nu}_{10} = 0$. Therefore, from the exact sequence (2.7), we obtain

$$\pi_{14}(S^8 \cup e^9 \cup e^{11}: 2) = \{i_*\nu_8^2\} + \{\tilde{\nu}_{10}\} \approx Z_2 + Z_8.$$

In the complex $M = S^8 \bigcup_2 e^9 \cup e^{11} \cup e^{15}$, let e^{15} be attached to $S^8 \bigcup_2 e^9 \cup e^{11}$ by a map $h: S^{14} \longrightarrow S^8 \bigcup_2 e^9 \cup e^{11}$, then we have the sequence

$$\pi_{14}(S^{14}:2) \xrightarrow{h_{\bullet}} \pi_{14}(S^{8} \bigcup_{2} e^{9} \cup e^{11}:2) \longrightarrow \pi_{14}(M:2) \longrightarrow \pi_{14}(S^{15}:2) = 0$$

is exact. By Lemma 5.5 of [10], $\pi_{14}(F_4) = Z_2$. Thus $\pi_{14}(M:2) \approx Z_2$ and $h_{\star} \epsilon_{14} = b \tilde{\nu}_{10} + a(i_{\star} \nu_8^2)$ where a = 0 or 1,

for an odd integer b. Thus

 $j_*h_*\iota_{14} = \nu_{11} \mod 2\pi_{14}(S^{11})$.

By theorem 2.6, we have the following important lemma.

LEMMA 2.7. $Sq^4y_{11} = y_{15}$ in \tilde{F}_4 .

Considering the natural inclusions $\tilde{F}_4 \subset \tilde{E}_6 \subset \tilde{E}_7$, we have

COROLLARY 2.8. $Sq^4y_{11} = y_{15}$ in \tilde{E}_6 and \tilde{E}_7 .

§ 3. Homotopy group of some cell complexes.

Let X be an *m*-connected CW-complex and let α be an element of $\pi_{n-1}(X)$ (n > m). Consider a CW-complex $K_{\alpha} = X \bigcup_{\alpha} e^{n}$.

LEMMA 3.1. Let i be an injection $X \longrightarrow K_{\alpha}$ and let $p: K_{\alpha} \longrightarrow S^{n}$ be a mapping which shrinks X to a point. Then the following sequence is exact for $j \leq m + n - 1$

 $(3. 1) \qquad \cdots \longrightarrow \pi_j(S^{n-1}) \xrightarrow{a_*} \pi_j(X) \xrightarrow{i_*} \pi_j(K_a) \longrightarrow \pi_{j-1}(S^{n-1}) \xrightarrow{a_*} \pi_{j-1}(X) \longrightarrow \cdots$

Here ∂ is a composition $E^{-1} \circ p_* : \pi_j(K_\alpha) \longrightarrow \pi_{j-1}(S^{n-1})$, and $E : \pi_{j-1}(S^{n-1}) \longrightarrow \pi_j(S^n)$ is the suspension homomorphism. If α is of order a power of 2, then the above sequence is exact for the 2-primary components.

Proof. See Blakers-Massey [4].

We introduce necessary results on the homotopy group of spheres. According to [11], the results are listed in the following table;

$$(i) \quad n > k+1$$

(3. 2)

k =	0	1	2	3	4	5	6	7	8
$\pi_{n+k}(S^n:2)$	Z	Z_2	Z_2	Z_8	0	0	Z_2	Z_{16}	$Z_2 + Z_2$
Generator	l _n	ŋ,	η_n^2	ν _n			ע ²	Ø _n	$\bar{\nu}_n, \varepsilon_n$
k =		9		10		11	12	13	

$\kappa =$	9	10	11	12	13
$\pi_{n+k}(S^n:2)$	$Z_2 + Z_2 + Z_2$	Z_2	Z_8	0	0
Generator	$\nu_n^3, \eta_n \varepsilon_{n+1}, \mu_n$	$\eta_n \mu_{n+1}$	ζn		

(ii) $n \le k+1$ n = 9, 10, 11, 13, 14.

(3.3)

1.	0		10	11
k =	8	9	10	11
$\pi_{k+9}(S^9:2)$	$Z_2 + Z_2 + Z_2$	$Z_2 + Z_2 + Z_2 + Z_2$	$Z_2 \qquad Z_8 + Z_2$	$Z_8 + Z_2$
Generator	$\sigma_9 \eta_{16}, \bar{\nu}_9, \varepsilon_9$	$\sigma_9 \eta_{16}^2, \nu_9^3, \mu_9, \eta_9 \varepsilon_{10}$	$\sigma_9\nu_{16}, \eta_9\mu_{10}$	$\zeta_9, \overline{\nu}_9 \nu_{17}$
$\pi_{k+10}(S^{10}:2)$		$Z + Z_2 + Z_2 + Z$	$Z_2 \qquad Z_4 + Z_2$	Z_8
Generator		$\Delta(\iota_{21}), \nu_{10}^{3}, \mu_{10}, \eta_{10}\varepsilon$	$\sigma_{10}\nu_{17}, \eta_{10}\mu_{11}$	ζ10
$\pi_{k+11}(S^{11}:2)$			$Z_2 + Z_2$	Z_8
Generator			$\sigma_{11}\nu_{18},\eta_{11}\mu_{12}$	ζ11
$\pi_{k+13}(S^{13}:2)$				
Generator				
$\pi_{k+14}(S^{14}:2)$				
Generator				
k =	12	13	14	
$\pi_{k+9}(S^9:2)$	0	Z_2	$Z_{16} + Z_4$	
Generator		$\sigma_9 \nu_{16}^2$	σ_9^2, κ_9	
$\pi_{k+10}(S^{10}:2)$	Z_4	Z_2	$Z_{16} + Z_2$	
Generator	$\Delta(\nu_{21})$	$\sigma_{10}\nu_{17}^2$	$\sigma_{10}^2, \kappa_{10}$	
$\pi_{k+11}(S^{11}:2)$	Z_2	$Z_2 + Z_2$	$Z_{16} + Z_2$	
Generator	θ'	$\theta' \eta_{23}, \sigma_{11} \nu_{18}^2$	$\sigma_{11}^2,\kappa_{11}$	
$\pi_{k+13}(S^{13}:2)$	Z_2	Z_2	$Z_{16} + Z_2$	
Generator	Εθ	$E heta\eta_{25}$	$\sigma_{13}^2, \kappa_{13}$	
$\pi_{k+14}(S^{14}:2)$		Z	$Z_{8} + Z_{2}$	
Generator		$\Delta(\epsilon_{29})$	$\sigma_{14}^2, \kappa_{14}$	

We shall use the following relations;

(3. 4)
$$\sigma_n \circ \mu_{n+7} = \eta_n \circ \sigma_{n+1} = \bar{\nu}_n + \varepsilon_n$$
 for $n \ge 10$
by Lemma 6. 4 of [11],

```
HIDEYUKI KACHĮ
```

(3.5) $\sigma_n \circ \eta_{n+7}^2 = \eta_n^2 \circ \sigma_{n+2} = \nu_n^3 + \eta_n \circ \varepsilon_{n+1} \quad \text{for } n \ge 10$ by Lemma 6.3 of [11],

(3. 6)
$$\sigma_n \circ \nu_{n+7} = 0$$
 for $n \ge 12$
 $\nu_n \circ \sigma_{n+3} = 0$ for $n \ge 11$,
 $2\sigma_{10} \circ \nu_{17} = \nu_{10} \circ \sigma_{13}$ by (7. 20) of [11],
 $\varepsilon_n \circ \eta_{n+8}^2 = \eta_n^2 \circ \varepsilon_{n+2} = 0$ for $n \ge 9$ by (7. 10) and (7. 20) of [11],

(3. 7)
$$\begin{aligned} \sigma_n \circ \bar{\nu}_{n+7} &= 0 & \text{for } n \ge 11 & \text{by (10. 8) of [11],} \\ \sigma_n \circ \varepsilon_{n+7} &= 0 & \text{for } n \ge 6 & \text{by Lemma 10. 7 of [11],} \end{aligned}$$

(3.8)
$$\nu_n \circ \varepsilon_{n+3} = \nu_n \circ \nu_{n+3} = 0$$
 for $n \ge 7$ by (7.17) of [11],
 $\nu_n \circ \eta_{n+3} = \eta_n \circ \nu_{n+1} = 0$ for $n \ge 6$ by (5.9) of [11],

(3. 9)
$$\nu_n \circ \mu_{n+3} = 0$$
 for $n \ge 7$ by Theorem 7. 6 of [11],

(3. 10)
$$\Delta(\iota_{21}) \circ \eta_{19} = 2\sigma_{10} \circ \nu_{17}$$
 by (7. 21) of [11].

Consider a generator σ_n of $\pi_{n+7}(S^n:2) \approx Z_{16}$ for $n \ge 9$ and a cell complex $K_{\sigma_n} = S^n \bigcup_{\sigma_n} e^{n+8}$. Let $i: S^n \longrightarrow K_{\sigma_n}$ be the injection.

PROPOSITION 3. 2. We have the following tables of the homotopy groups $\pi_j(K_{\sigma_n}:2)$ for n = 9, 10, 11, 14 and 15, and generator of their 2-primary components. (3. 11)

j	$j \leq 8$	9	10	11		12	13		14	15	16
$\pi_j(K_{\sigma_{\mathfrak{g}}}:2)$	0	Ζ	Z_2	Z_2		Z_8	0		0	Z_2	0
Generator		i*c9	$i_*\eta_9$	$i_*\eta_9^2$	i	* ^ν 9				$i_* \nu_9^2$	
j		17		18		19			20	21	22
$\pi_k(K_{\sigma_{\mathfrak{g}}}:2)$	Z+Z	$Z_{2} + Z_{2}$	Z_2 -	$-Z_{2}+Z_{2}$	2	Z_{2}	2	Z_{s}	$_{3} + Z_{2}$	0	0
Generator	16e16,	$i_*\varepsilon_9, i_*\overline{\nu}_9$	$i_*\eta_9\varepsilon_1$	0, <i>i</i> *ν ³ , <i>i</i> ,	$_{k}\mu_{9}$	$i_*\eta_9$	μ_{10}	i _* ζ ₉	, <i>i</i> *v ₉ v ₁₇		

(3.12)

j	$j \leq 9$	10	11	12	13	14	15	16 _	17
$\pi_j(K_{\sigma_{10}}:2)$	0	Ζ	Z_2	Z_2	Z_8	0	0	Z_2	0
Generator		i*c10	i*7710	$i_*\eta_{10}^2$	<i>i</i> * <i>v</i> ¹⁰			$i_{*}\nu_{10}^{2}$	

120

j	18	19	20	21	22	23
$\pi_j(K_{\sigma_{10}}:2)$	$Z+Z_2$	$Z + Z_2 + Z_2$	Z_2	Z_{16}	Z_4	0
Generator	$\widetilde{16\iota_{17}}, i_*\varepsilon_{10}$	$i_* \Delta(\iota_{21}), i_* \eta_{10} \varepsilon_{11}, i_* \mu_{10}$	$i_*\eta_{10}\mu_{11}$	$\widetilde{4\nu_{17}}$	$i_* \varDelta(\nu_{21})$	

(3. 13)

j	$j \leq 9$	11	12	13		14	15	16	5 17	18
$\pi_j(K_{\sigma_{11}}:2)$	0	Ζ	Z_2	Z_2		Z_8	0	0	Z_2	0
Generator		<i>i</i> * <i>t</i> 1	$_{1}$ $i_{*}\eta_{11}$	$i_*\eta_1^2$	1	$i_{*}v_{11}$			$i_{*}\nu_{11}^{2}$	
j	19)	20		21	22	2	23	24	25
$\pi_j(K_{\sigma_{11}}:2)$	Z_2 +	- Z	$Z_2 + Z_2$	2	Z_2		32	Z_2	Z_2	Z_2
Generator	$i_*\varepsilon_{14}, i$		$i_*\mu_{11}, i_*\eta_1$	$_1\varepsilon_{12} i_*$	$\gamma_{11}\mu_{12}$	$\frac{1}{2\nu}$	18	$i_*\theta'$	$i_*\theta'\eta_{23}$	i _* κ ₁₁

(3. 14)

j	$j \leq 13$	14	15	16	17	18	19	20	21
$\pi_j(K_{\sigma_{14}}:2)$	0	Ζ	Z_2	Z_2	Z_8	0	0	Z_2	0
Generator		i*114	<i>i</i> *7714	$i_*\eta_{14}^2$	<i>i</i> *v14			$i_{*}\nu_{14}^{2}$	
j	22		23		24	25	5 2	26	27
$\pi_j(K_{\sigma_{14}}:2)$	Z +	Z_2	$Z_{2} +$	Z_2	Z_2	Z_6	4	0	Ζ
Generator	$\widetilde{16}\iota_{21},$	i*\$214	$i_*\mu_{14}, i_*$	$\eta_{14}\varepsilon_{15}$	$i_*\eta_{14}\mu_{15}$	ν_2		1	*Δ(ℓ ₂₉)

(3. 15)

j		15	16	17	18	19	20	21	22
$\pi_j(K_{\sigma_{15}}:2)$	0	Z	Z_2	Z_2	Z_8	0	0	Z_2	0
Generator		<i>i</i> * <i>c</i> ¹⁵	$i_*\eta_{15}$	$i_*\eta_{15}^2$	$i_*\nu_{15}$			$i_{*}\nu_{15}^{2}$	
j	23	3	24		25	26	5	27	28
$\pi_j(K_{\sigma_{15}}:2)$	Z +	Z_2	$Z_{2} +$	Z_2	Z_2		34	0	0
Generator	$\left \begin{array}{c} \widetilde{16\iota_{22}}, \end{array} \right.$	$i_* \varepsilon_{15}$	$i_*\mu_{_{15}}, i_*$	$\eta_{15}\varepsilon_{16}$	$i_*\eta_{15}\mu_{16}$	ν_2			

Here we denote by $\tilde{\beta}$ an element of $\pi_i(K_{\sigma_n}:2)$ such that $\partial \tilde{\beta} = \beta \in \pi_{i-1}(S^{n+7}:2)$ i.e. we may consider that $\tilde{\beta}$ is a coextension of β .

Proof. Consider the exact sequence

$$\cdots \longrightarrow \pi_{j}(S^{n+7}:2) \xrightarrow{\sigma_{n_{*}}} \pi_{j}(S^{n}:2) \xrightarrow{i_{*}} \pi_{j}(K_{\sigma_{n}}:2) \xrightarrow{\partial} \pi_{j-1}(S^{n+7}:2)$$
$$\xrightarrow{\sigma_{n_{*}}} \pi_{j-1}(S^{n}:2) \longrightarrow \cdots$$

of (3. 1) for $j \le 2n + 5$. From $\pi_j(S^{n+\gamma}:2) = 0$ for $j \le n + 6$ and from the exactness of the above sequence, it follows that

$$i_*: \pi_j(S^n:2) \longrightarrow \pi_j(K_{\sigma_n}:2)$$

are isomorphisms onto for $j \leq n+6$, and n = 9, 10, 11, 14, 15.

It follows from (3.1) that the sequence

$$\pi_{n+7}(S^{n+7}:2) \xrightarrow{\sigma_{n_{*}}} \pi_{n+7}(S^{n}:2) \xrightarrow{i_{*}} \pi_{n+7}(K_{\sigma_{n}}:2) \xrightarrow{\vartheta} \pi_{n+6}(S^{n+7}:2) = 0$$

is exact for $n \ge 9$. From $\pi_{n+7}(S^n:2) \approx \{\sigma_n\} \approx Z_{16}$, we have that

(3. 16)
$$\sigma_{n*}: \pi_{n+7}(S^{n+7}:2) \longrightarrow \pi_{n+7}(S^n:2)$$

is an epimorphism. Thus we obtain $\pi_{n+7}(K_{\sigma_n}:2) = 0$ for n = 9, 10, 11, 14 and 15.

Consider the exact sequence

$$\pi_{n+8}(S^{n+7}:2) \xrightarrow{\sigma_n} \pi_{n+8}(S^n:2) \xrightarrow{i_*} \pi_{n+8}(K_{\sigma_n}:2) \xrightarrow{\partial} Z = \{16\iota_{n+7}\} \longrightarrow 0$$

of (3.1) for $n \ge 9$. From (3.2), (3.3) and (3.4) we have that

(3. 17)
$$\sigma_{n*}: \pi_{n+8}(S^{n+7}:2) \longrightarrow \pi_{n+8}(S^n:2)$$

are monomorphisms for $n \ge 9$. Thus it follows from the exactness of the above sequence that the table is true for $\pi_{n+8}(K_{\sigma_n}:2)$, n = 9, 10, 11, 14, 15.

From (3. 17) and the exact sequence (3. 1), it follows that the sequence

$$\pi_{n+9}(S^{n+7}:2) \xrightarrow{\sigma_n^*} \pi_{n+9}(S^n:2) \xrightarrow{\mathfrak{e}_n} \pi_{n+9}(K_{\sigma_n}:2) \longrightarrow 0$$

is exact for $n \ge 9$. From (3.5), (3.2) and (3.3), we have that

(3. 18)
$$\sigma_{n*}: \pi_{n+9}(S^{n+7}:2) \longrightarrow \pi_{n+9}(S^n:2)$$

is monomorphisms for $n \ge 9$. Thus we obtain that

HOMOTOPY GROUPS OF COMPACT LIE GROUPS

$$\pi_{n+9}(K_{\sigma_n}:2) \approx \pi_{n+9}(S^n:2)/\{\sigma_n \circ \eta_{n+7}\}.$$

From (3. 18) and the exact sequence (3. 1), it follows that the sequence

$$\pi_{n+10}(S^{n+7}:2) \xrightarrow{\sigma_{n_{*}}} \pi_{n+10}(S^{n}:2) \xrightarrow{\iota_{*}} \pi_{n+10}(K\sigma_{n}:2) \longrightarrow 0$$

is exact for $n \ge 9$. From (3. 2), (3. 3) and (3. 6), it follows that

(3. 19)
$$\begin{aligned} \sigma_{9*}:\pi_{19}(S^{16}:2) &\longrightarrow \pi_{19}(S^9:2) \text{ is a monomorphism,} \\ \sigma_{n*}:\pi_{n+10}(S^{n+7}:2) &\longrightarrow \pi_{n+10}(S^n:2) \text{ is trivial for } n = 14, 15, \\ \text{ the kernel of } \sigma_{10*}:\pi_{20}(S^{17}:2) &\longrightarrow \pi_{20}(S^{10}:2) \text{ is} \end{aligned}$$

generated by $\{4\nu_{17}\}$, and

the kernel of
$$\sigma_{11*}: \pi_{21}(S^{18}:2) \longrightarrow \pi_{21}(S^{11}:2)$$
 is

generated by $\{2\nu_{18}\}$.

Thus it follows that the table is true for $\pi_{n+10}(K_{\sigma_n}:2)$ n = 9, 10, 11, 14 and 15.

In the stable rangs, we have the exact sequence

$$0 \longrightarrow \pi_{n+11}(S^n:2) \xrightarrow{i_*} \pi_{n+11}(K_{\sigma_n}:2) \xrightarrow{\partial} \pi_{n+10}(S^{n+7}:2) \longrightarrow 0$$

of (3. 1) for $n \ge 13$. Moreover we have the following relation in the stable secondary compositions

$$\zeta \in \langle \sigma, 4\nu, 2\iota \rangle \mod 2G_{11} \qquad \text{from Lemma 9.1 of [11],} \\ \supset \langle \sigma, \nu, 8\iota \rangle \qquad \text{from Proposition 1. 2 of [11],}$$

and $\langle \sigma, \nu, 8\iota \rangle$ is a coset of the subgroup $\sigma \circ G_4 + 8G_{11} = 8G_{11}$. Thus

$$\zeta \equiv <\sigma,\nu, 8\iota > \mod 2 \ G_{11}$$

where G_n is the *n*-th stable homotopy group of the sphere and ζ is a generator of the 2-components of G_{11} .

From Proposition 1.8 of [11], we obtain

$$i_*\xi = i_* < \sigma, \nu, 8\iota > \mod 2 \quad i_*G_{11}$$
$$= -8\tilde{\nu}$$

where $\tilde{\alpha} \in \pi_i(K_{\sigma_n}:2)$ is a coextension of $\alpha \in \pi_{i-1}(S^{n+7}:2)$. Thus, from this and from the exactness of the above sequence it follows that

(3. 20)
$$\pi_{n+11}(K_{\sigma_n}:2) = \{\tilde{\nu}\} = Z_{64}$$

for $n \ge 13$

HIDEYUKI KACHI

From (3. 1), (3. 19) and from $\pi_{n+11}(S^{n+7}:2) = 0$ for $n \ge 0$, it follows the next four exact sequences and the commutative diagram

for $n \ge 13$, where $E: \pi_{21}(S^{10}:2) \longrightarrow \pi_{22}(S^{11}:2)$ and $E^{n-11}: \pi_{22}(S^{11}:2) \longrightarrow \pi_{n+11}(S^n:2)$ are isomorphisms. From (3. 20) and the above diagram, we obtain that

$$\pi_{20}(K_{\sigma_{9}}:2) = \{i_{*}\zeta_{9}\} + \{i_{*}\bar{\nu}_{9} \circ \nu_{17}\} \approx Z_{8} + Z_{2},$$

$$\pi_{21}(K_{\sigma_{11}}:2) = \{\tilde{4}\nu_{17}\} \approx Z_{16},$$

$$\pi_{22}(K_{\sigma_{11}}:2) = \{\tilde{2}\nu_{18}\} \approx Z_{32},$$

$$\pi_{n+11}(K_{\sigma_{n}}:2) = \{\tilde{\nu}_{n+7}\} \approx Z_{64} \quad \text{for } n \ge 13.$$

It is easily seen the results of $\pi_{n+12}(K_{\sigma_n}:2)$ and $\pi_{n+13}(K_{\sigma_n}:2)$ from the exact sequence of (3. 1), the table (3. 2), (3. 3) and the relation (3. 6).

Consider the exact sequence

$$\pi_{25}(S^{18}:2) \xrightarrow{\sigma_{11}*} \pi_{25}(S^{11}:2) \xrightarrow{i^*} \pi_{25}(K_{\sigma_{11}}:2) \xrightarrow{\partial} \pi_{24}(S^{18}:2) \xrightarrow{\sigma_{n^*}} \pi_{24}(S^{11}:2)$$

of (3.1). From (3.2), (3.3) it follows that

(3. 21)
$$\sigma_{11^*}: \pi_j(S^{18}:2) \longrightarrow \pi_j(S^{11}:2)$$
 for $j = 24, 25$

are monomorphisms. Thus from the exactness of the above sequence we have

$$\pi_{25}(K_{\sigma_{11}}:2) \approx \pi_{25}(S^{11}:2) / \{\sigma_{11}^2\} = \{\kappa_{11}\} \approx Z_2$$

From (3.1) and (3.2), we have the exact sequence

$$\pi_{\mathbf{26}}(S^{\mathbf{18}}:2) \xrightarrow{\sigma_{\mathbf{11}^*}} \pi_{\mathbf{26}}(S^{\mathbf{11}}:2) \xrightarrow{i_*} \pi_{\mathbf{26}}(K_{\sigma_{\mathbf{11}}}:2) \longrightarrow 0.$$

From (3.7) and (3.2), we have that

124

$$i_*: \pi_{26}(S^{11}:2) \longrightarrow \pi_{26}(K_{\sigma_{11}}:2)$$

an isomorphism onto.

Next consider a generator ν_{10} of $\pi_{13}(S^{10}:2)$ of order 8 and an element $= \Delta(\iota_{21}) + \tau$ of $\pi_{19}(S^{10}:2)$ of order infinite order, where τ is an element $\gamma_{20} \circ \varepsilon_{11} + b\nu_{10}^3$ of $\pi_{19}(S^{10}:2)$ with the order at most 2 (a, b = 0 or 1). Let a ell complex $K = S^{11} \cup C(S^{13} \lor S^{19})$ be obtained by attaching $C(S^{13} \lor S^{19})$ to ¹⁰ by $\nu_{10} \lor \beta: S^{13} \lor S^{19} \longrightarrow S^{10}$. Then we have the following lemma.

LEMMA 3.3. We have the following table of homotopy group $\pi_j(K:2)$ for ≤ 21 ;

j	$j \leqslant 9$	10	11	12	13	14	15	16
$\pi_j(K:2)$	0	Ζ	Z_2	Z_2	0	Z	Z_2	Z_2
Generator		i*110	<i>i</i> *7710	$i_*\eta_{10}^2$		$\left \begin{array}{c} \widetilde{8\iota_{13}} \\ \end{array}\right \left \begin{array}{c} \widetilde{\eta_{13}} \\ \end{array}\right $		$\widetilde{\eta_{13}^2}$
j	17		18	19)	20		21
$\pi_j(K:2)$	$Z_{16} + $	Z_4	$Z_2 + Z_2$	$Z_{2} +$	$Z_{2} + Z_{2}$		Z_2	Z_{128}
Generator	i*010,2	$\widetilde{\nu_{13}}$ i	$i_* \nu_{10}, i_* \varepsilon_{10}$	$i_*\eta_{10}\varepsilon_{11}$	$i_*\eta_{10}\varepsilon_{11}, i_*\mu_{10}$		$*\eta_{10}\mu_{11}$	$\overbrace{\sigma_{13} \oplus \eta_{19}}$

Iere $i: S^{10} \longrightarrow K$ is an injection and we denote by $\tilde{\alpha}$ an element of $\pi_j(K:2)$ such hat $\tilde{\alpha}$ is a coextension of $\alpha \in \pi_{j-1}(S^{13} \lor S^{19}:2)$.

Proof. By (3.1), we have an exact sequence

3. 23)
$$\cdots \longrightarrow \pi_j(S^{13} \lor S^{19} : 2) \xrightarrow{(\nu_{10} \lor \beta)_*} \pi_j(S^{1}_0 : 2) \xrightarrow{i_*} \pi_j(K : 2)$$
$$\xrightarrow{\vartheta} \pi_{j-1}(S^{13} \lor S^{19} : 2) \xrightarrow{(\nu_{10} \lor \beta)_*} \pi_{j-1}(S^{10} : 2) \longrightarrow \cdots$$

or $j \leq 21$. We can identify $\pi_j(S^{13} \vee S^{19}:2)$ $((\nu_{10} \vee \beta)_*$ respectively) with $j(S^{13}:2) \oplus \pi_j(S^{19}:2)$ $(\nu_{10^*} + \beta_*$ respectively) for $j \leq 21$ and we shall use the lotation $\alpha = \nu_{10^*} + \beta_{*^*}$.

From the tables (3. 2), (3. 3), the relations (3. 6), (3. 8) and the exact equence (3. 23), it is easy to see the results of $\pi_j(K:2)$ for $j \neq 17$, 21.

Consider the exact sequence

$$\pi_{17}(S^{13}:2) \oplus \pi_{17}(S^{19}:2) \xrightarrow{\mathfrak{a}} \pi_{17}(S^{10}:2) \xrightarrow{\mathfrak{i}_{\bullet}} \pi_{17}(K:2)$$
$$\xrightarrow{\vartheta} \pi_{16}(S^{13}:2) \oplus \pi_{16}(S^{19}:2) \xrightarrow{\mathfrak{a}} \pi_{16}(S^{10}:2)$$

of (3. 23), where $\pi_{16}(S^{13}:2) \oplus \pi_{16}(S^{19}:2) = \pi_{16}(S^{13}:2) = \{\nu_{13}\} \approx Z_8$ and $\pi_{17}(S^{13}:2) \oplus \pi_{17}(S^{19}:2) = 0$ by (3. 2). We have that the homomorphism $\alpha : \pi_{16}(S^{13}:2) \oplus \pi_{16}(S^{19}:2) \longrightarrow \pi_{16}(S^{10}:2)$ is an epimorphism and its kernal is generated by $\{2\nu_{13}\}$. Thus we obtain the following sequence

$$(3. 24) \qquad \qquad 0 \longrightarrow \{\sigma_{10}\} \xrightarrow{i_*} \pi_{17}(K:2) \xrightarrow{\partial} \{2\nu_{13}\} \longrightarrow 0.$$

By Adams [1],

 $\{\nu_{10}, 2\nu_{13}, 4\iota_{16}\} \equiv 0 \mod 4\pi_{17}(S^{10}:2)$

and we have, by Proposition 1.8 of [11], $4 \widetilde{2\nu_{13}} = -i_* \{\nu_{10}, 2\nu_{13}, 4\epsilon_{16}\} \in 4 i_* \pi_{17}(S^{10}:2)$. Thus $4(\widetilde{2\nu_{13}} + i_* \alpha) = 0$ for some $\alpha \in \pi_{17}(S^{10}:2)$. We may replace $\widetilde{2\nu_{13}} + i_* \alpha$ by $\widetilde{2\nu_{13}}$. Thus, from (3. 24), follows that

$$\pi_{17}(K:2) = \{i_*\sigma_{10}\} + \{2\nu_{13}\} \approx Z_{16} + Z_4.$$

From (3. 23), we have the exact sequence

$$\pi_{21}(S^{13}:2) \oplus \pi_{21}(S^{19}:2) \xrightarrow{\alpha} \pi_{21}(S^{10}:2) \xrightarrow{i_*} \pi_{21}(K:2)$$
$$\xrightarrow{\vartheta} \pi_{20}(S^{13}:2) \oplus \pi_{20}(S^{19}:2) \xrightarrow{\alpha} \pi_{20}(S^{10}:2).$$

By (3. 6), (3. 10) and the diagram (3. 2), (3. 3), we have

$$\alpha\{\sigma_{13}\} = \nu_{10} \circ \sigma_{13} = 2\sigma_{10} \circ \nu_{17} = \varDelta(\iota_{21}) \circ \eta_{19} = \alpha\{\eta_{19}\}.$$

Thus we obtain that

(3. 25) the kernel of $\alpha : \pi_{20}(S^{13}:2) \oplus \pi_{20}(S^{19}:2) \longrightarrow \pi_{20}(S^{10}:2)$

is generated by $\{\sigma_{13} \oplus \eta_{19}\} \approx Z_{16}$.

By (3.8), (3.10) and the diagram (3.2),

$$\alpha\{\bar{\nu}_{13}\} = \nu_{10} \circ \bar{\nu}_{13} = 0,$$
(3. 26)

$$\alpha\{\epsilon_{13}\} = \nu_{10} \circ \epsilon_{13} = 0,$$

$$\alpha\{\eta_{19}^2\} = \beta\{\eta_{19}^2\} = \Delta(\epsilon_{21}) \circ \eta_{19}^2 + a\eta_{10} \circ \epsilon_{11} \circ \eta_{19}^2 + b\nu_{10}^3 \circ \eta_{19}^2$$

$$= 2\sigma_{10} \circ \nu_{18} \circ \eta_{19}^2 + 4a\nu_{10} \circ \epsilon_{13}$$

$$= 0.$$

Thus, from (3. 25), (3. 26) and the from above sequence, it follows that the sequence

$$0 \longrightarrow \{\zeta_{10}\} \xrightarrow{i_*} \pi_{21}(K:2) \xrightarrow{\partial} \{\sigma_{13} \oplus \eta_{19}\} \longrightarrow 0$$

is exact. By (9.3) of [11],

$$\zeta_{10} \in \{\nu_{10}, 2\sigma_{13}, 8\iota_{20}\} \mod 8\pi_{21}(S^{10} : 2)$$

and by Proposition 1.3 of [11]

$$i_{*}\xi_{10} \in i_{*}\{\nu_{10}, 2\sigma_{13}, 8\iota_{20}\}$$

= -8 $2\sigma_{13}$
= -16 $\sigma_{13} \oplus \eta_{19}$.

Thus we obtain that

$$\pi_{21}(K:2) = \{ \overbrace{\sigma_{13} \oplus \eta_{19}} \} \approx Z_{128}.$$

§ 4. Homotopy groups of exceptional Lie groups E_6 , E_7 and E_8 .

(I) Homotopy groups $\pi_j(E_8:2)$ for $j \leq 28$.

From Corollary 2.3, Lemma 2.5, there exist a cell complex $K_{\tilde{E}_{\mathfrak{s}}}$ = $S^{15} \bigcup_{\sigma_{1\mathfrak{s}}} e^{2\mathfrak{s}} \cup e^{2\mathfrak{r}} \cup e^{2\mathfrak{s}}$ and a continuous map $f: K_{\tilde{E}_{\mathfrak{s}}} \longrightarrow \tilde{E}_{\mathfrak{s}}$, from which the following isomorphism f_* , induced by a map f, is obtained;

(4.1)
$$f_*: \pi_j(S^{15} \bigcup_{\sigma_{15}} e^{23} \cup e^{27} \cup e^{29}: 2) \approx \pi_j(\tilde{E}_8: 2)$$
 for $j \leq 28$.

Let e^{27} be attached to $K_{\sigma_{15}} = S^{15} \bigcup_{\sigma_{15}} e^{23}$ by a map $g: S^{26} \longrightarrow K_{\sigma_{15}}$ and e^{29} be attached to $S^{15} \bigcup_{\sigma_{15}} e^{23} \cup e^{27}$ by a map $h: S^{28} \longrightarrow S^{15} \bigcup_{\sigma_{15}} e^{23} \cup e^{27}$, then, from Corollary 2. 3 and Theorem 2. 6, it follows that the next diagrams are commutative

$$(4. 2) \quad (i) \qquad \begin{array}{c} S^{26} \xrightarrow{g} K_{\sigma_{15}} \\ & & & \\ & & & \\ & & & \\ & & & \\$$

where p, p' are the maps which shrink $S^{15}, S^{15} \cup e^{23}$ are respectively to a point. From (4. 1),

$$\pi_j(\widetilde{E}_8:2) \approx \pi_j(S^{15} \underset{\sigma_{15}}{\cup} e^{23} \cup e^{27}:2) \quad \text{for } j \leq 27.$$

Consider the exact sequence

127

HIDEYUKI KACHI

$$\pi_{26}(S^{26}:2) \xrightarrow{g_{\bullet}} \pi_{26}(K_{\sigma_{15}}:2) \xrightarrow{i'_{\bullet}} \pi_{26}(S^{15} \underset{\sigma_{15}}{\cup} e^{23} \cup e^{27}:2) \xrightarrow{\partial} \pi_{25}(S^{26}:2)$$

of (3. 1), where $i': K_{\sigma_{15}} \longrightarrow S^{15} \cup e^{23} \cup e^{27}$ is the inclusion map. From (i) of (4. 2) and the table (3. 15), we have that

(4.3)
$$g_*: \pi_{26}(S^{26}:2) \longrightarrow \pi_{26}(K_{\sigma_{15}}:2)$$

is an epimorphism. Thus, from the exactness of the above sequence, we obtain

(4. 4)
$$\pi_{26}(S^{15} \bigcup_{\sigma_{16}} e^{23} \cup e^{27} : 2) = 0.$$

It follows from (3.1), (3.15) and (4.3) that the sequence

$$0 = \pi_{27}(K_{\sigma_{15}}:2) \xrightarrow{i'_{*}} \pi_{27}(S^{15} \bigcup_{\sigma_{15}} e^{23} \cup e^{27}:2) \xrightarrow{\vartheta} \pi_{26}(S^{26}:2)$$
$$\xrightarrow{g_{*}} \pi_{26}(K_{\sigma_{15}}:2) \longrightarrow 0$$

is exact. Thus we obtain

(4.5)
$$\pi_{27}(S^{15} \bigcup_{\sigma_{15}} e^{23} \cup e^{27} : 2) = Z.$$

Next consider the diagram;

where i'' is a inclusion map. From (3.1) the row and column sequences are exact, and from (ii) of (4.2) and from the definition of ∂ , it follows that the diagram is commutative. By (3.15), $\partial : \pi_{28}(S^{15} \cup e^{23} \cup e^{27} : 2) \longrightarrow \pi_{27}(S^{26} : 2)$ is an isomorphism, and $E : \pi_{27}(S^{26} : 2) \longrightarrow \pi_{28}(S^{27} : 2)$ is an isomorphism. Thus, from the commutativity of the above diagram, it follows that

$$h_*: \pi_{28}(S^{28}:2) \longrightarrow \pi_{28}(S^{15} \cup e^{23} \cup e^{27}:2)$$

128

is epimorphic. Thus, from the exactness of the column sequence, we obtain

(4. 6)
$$\pi_{28}(S^{15} \cup e^{23} \cup e^{27} \cup e^{29} : 2) = 0.$$

From (4. 1), (3. 15) and (4. 4) (4. 9), it follows the next table of the homotopy groups of exceptional Lie group E_8 .

Proposition 4.1.

j	1,2	3	$4 \leqslant j \leqslant 14$	15	16	17	18	19	20
$\pi_j(E_8:2)$	0	Ζ	0	Z	Z_2	Z_2	Z_8	0	0
j	21	22	23	24	4	25	26	27	28
$\pi_j(E_8:2)$	Z_2	0	$Z + Z_2$	$Z_{2} +$	$-Z_2$	Z_2	0		0

(II) Homotopy groups $\pi_j(E_7:2)$ for $j \leq 25$.

From Lemma 2.5, there exist a cell complex $K_{\tilde{E}_7} = S^{11} \cup e^{15} \cup e^{19} \cup e^{23}$ $\cup e^{26} \cup e^{27}$ and a continuous map $k: K_{\tilde{E}_7} \longrightarrow \tilde{E}_7$ such that $k_*: \pi_j(K_{\tilde{E}_7})$ $\longrightarrow \pi_j(\tilde{E}_7)$ are C_2 -isomorphism onto for $j \leq 28$. By Corollary 2.8 and Lemma 2.4, e^{15} is attached to S^{11} by a representative of $\nu_{11} \in \pi_{14}(S^{11}:2)$.

Consider the diagram

$$\begin{array}{c} S^{11} \cup e^{15} \cup e^{19} \longrightarrow S^{15} \cup e^{19} \\ \downarrow^{\nu_{11}} \downarrow k \qquad \qquad \qquad \downarrow^{\beta}_{\tilde{k}} \swarrow^{f} S^{15} \\ \tilde{E}_{7} \quad \subset \quad \tilde{E}_{8} \end{array}$$

where p is a map which shrinks S^{11} to a point and $\tilde{E}_7 \subset \tilde{E}_8$ is the natural inclusion. Since $\pi_i(\tilde{E}_8) = 0$ for $i \leq 14$, $k | S^{11} \simeq 0$ in E_8 . Thus there exists a map $\bar{k}: S^{15} \cup e^{19} \longrightarrow \tilde{E}_8$ such that the above diagram is homotopy commutative. A generator $x_{15} \in H^{15}(\tilde{E}_7: Z_2)$ corresponds to a generator $x_{15} \in H^{15}(\tilde{E}_8; Z_2)$ by the natural inclusion $\tilde{E}_7 \subset \tilde{E}_8$. Thus, from the commutativity of the above diagram, $x_{15} \in H^{15}(\tilde{E}_8; Z_2)$ corresponds to a generator of $H^{15}(S^{15} \cup e^{19}; Z_2)$ by \bar{k}^* . Let $f: S^{15} \longrightarrow \tilde{E}_8$ be a representative of a generator $\{f\}$ of $\pi_{15}(\tilde{E}_8) = Z$, then $\bar{k} | S^{15}$ is homotopic to $x\{f\}$ for some odd integer x. Let e^{19} be attached to S^{15} by $\beta: S^{18} \longrightarrow S^{15}$ for a cell complex $S^{15} \cup e^{19}$ of the above diagram.

Since \bar{k} is extended over e^{19} , we have

 $0 = (\bar{k} | S^{15})_* \beta = x(f_* \beta) \quad \text{ in 2-component.}$

By (4. 1), $f_*: \pi_j(S^{15}) \longrightarrow \pi_j(\tilde{E}_s)$ are C_2 -isomorphism onto for $j \leq 21$. Thus it follows $\beta = 0$. From this we have that $S^{11} \cup e^{19}$ is a subcomplex of $K_{\tilde{E}_7}$, and e^{19} is attached to S^{11} by σ_{11} .

LEMMA 4.2. We may regard the inclusion $j: K_{\sigma_{11}} = S^{11} \cup e^{19} \subset K_{\tilde{E}_7}$ as the fibre map. Let F be the fibre, then $H^*(F; Z_2)$ has additive basis $\{1, a_{14}, a_{22}, a_{26}\}$ for degree < 29, where a_i denote a generator of degree *i*.

Proof. From lemma 2.5, $H^*(K_{\tilde{E}_7}; Z_2) = \Delta(x_{11}, x_{15}, x_{19}, x_{23}, x_{27})$ for degree < 30 and $Sq^4x_{11} = x_{15}$, $Sq^8x_{15} = x_{23}$, $Sq^4x_{23} = x_{27}$, $Sq^8x_{11} = x_{19}$. Let $\{E_r^{**}\}$ be the mod 2 spectral sequence associated with the above fibering, then we have

$$E_{2}^{**} = H^{*}(K_{\tilde{E}_{7}}; Z_{2}) \otimes H^{*}(F; Z_{2})$$

and

$$E_{\infty}^{**} = \Delta(x_{11}, x_{19})$$
 for degree < 30.

Clearly $K_{\tilde{E}_7}$ and F are 10-and 13-connected respectively. We have the following cohomology exact sequence $\cdots \longrightarrow H^*(K_{\tilde{E}_7}; Z_2) \xrightarrow{j^*} H^*(K_{\sigma_{11}}; Z_2)$ $\longrightarrow H^*(F; Z_2) \xrightarrow{\tau} H^*(K_{\tilde{E}_7}; Z_2) \longrightarrow \cdots$ for degree ≤ 24 . It follows that $H^*(F; Z_2) = \{1, a_{14}, a_{22}\}$ for degree < 24 where $\tau(a_{14}) = x_{15}$ and $\tau(a_{22}) = x_{23}$, i.e, $d_{15}(1 \otimes a_{14}) = x_{15} \otimes 1$ and $d_{23}(1 \otimes a_{22}) = x_{23} \otimes 1$. For $24 \leq q \leq 29$, any non-zero element of $E_2^{0, q}$ must be cancelled by d_r with some element of $E_r^{r, q-r+1}$. By the dimensional reason, the only posibilities of such q are q = 24, 25, 26 corresponding to $x_{11} \otimes a_{14}, x_{11}x_{15} \otimes 1$ and $x_{27} \otimes 1$ respectively. Thus $H^q(F; Z_2) = 0$ for q = 27, 28, 29. Since $d_{15}(x_{11} \otimes a_{14}) = x_{11}x_{15} \otimes 1 \neq 0$, $x_{11} \otimes a_{14}$ is not a d_{15} -image, hence $H^{24}(F; Z_2) = 0$. We have also $H^{25}(F; Z_2)$ = 0 since $x_{11}x_{15} \otimes 1 = 0$ in $E_{26}^{26, 0}$. By the dimensional reason, we see that $x_{27} \otimes 1 \neq 0$ in $E_{27}^{27, 0}$, hence there exists an element a_{26} such that $d_{28}(1 \otimes a_{26})$ $= x_{27} \otimes 1$ and a_{26} generates $H^{26}(F; Z_2) \approx Z_2$.

From the proof of this lemma, we have that a_{14}, a_{22}, a_{25} are transgressive elements. Since $Sq^8x_{15} = x_{23}$, $Sq^4x_{23} = x_{27}$, it follows, from the commutativity of the Steenrod operation and the transgression, that

$$(4. 7) Sq^{8}a_{14} = a_{22}, Sq^{4}a_{22} = a_{26}.$$

By Lemma 2.5 and Theorem 2.6, there exists a cell complex K_F = $S^{14} \cup e^{22} \cup e^{26}$ and a continuous map from K_F to F which induces isomorphisms from $\pi_j(K_F:2)$ onto $\pi_j(F:2)$ for $j \leq 26$. Let $f: K_F \longrightarrow K_{\sigma_{11}}$ = $S^{11} \bigcup_{\sigma_{11}} e^{19}$ be the mapping from a fibre to the total space identifying Fwith K_F for dimension ≤ 26 . Then $f|S^{14}$ is a representative of ν_{11} .

Consider the exact sequence

(4.8)
$$\cdots \longrightarrow \pi_j(K_F:2) \xrightarrow{f_*} \pi_j(K_{\sigma_{11}}:2) \xrightarrow{j_*} \pi_j(K_{\tilde{E}_7}:2) \xrightarrow{\partial} \pi_{j-1}(K_F:2) \xrightarrow{f_*} \pi_{j-1}(K_{\sigma_{11}}:2) \longrightarrow \cdots$$

associated with the above fibering for $j \leq 26$ and the following homotopy commutative diagram

$$(4.9) \qquad S^{14} \xrightarrow{i} K_F \\ \downarrow^{\nu_{11}} \qquad \downarrow^f \\ S^{11} \xrightarrow{i} K_{\sigma_{11}}$$

From (3. 1), (3. 14) and from the fact that e^{26} is attached to $K_{\sigma_{14}}$ by a coextension of ν_{22} , we have the next table;

14	10)
(4	1())
(*•	L ()

j	$j \leq 1$	13 14		15	16	17	18	19	20
$\pi_j(K_F:2)$	0		Z		Z_2	Z_8	0	0	Z_2
Generator		i*c	14	$i_*\eta_{14}$	$i_*\eta_{14}^2$	$i_{*}\nu_{14}$			$i_* \nu_{14}^2$
j	21	22			23	24		25	26
$\pi_j(K_F:2)$	0	Z +	$Z + Z_2$		$Z_2 + Z_2$			0	Ζ
Generator		$\widetilde{16\iota_{21}}, i$	$\widetilde{16\iota_{21}}, i_*\varepsilon_{14}$		$i_*\mu_{14}, i_*\eta_{14}\varepsilon_{15}$		μ_{15}		641 ₂₅

LEMMA 4.3. For the homomorphism $f_*: \pi_j(K_F:2) \longrightarrow \pi_j(K_{\sigma_{11}}:2)$, we have the following table;

(4.11)

α =	<i>i</i> * <i>c</i> ¹⁴	$i_*\eta_{14}$	$i_*\eta_{14}^2$	$i_* \nu_{14}$	$i_{*}\nu_{14}^{2}$	$i_*16\iota_{21}$	$i_*\varepsilon_{14}$	$i_*\mu_{_{14}}$	$i_*\eta_{14}\varepsilon_{15}$	$i_*\eta_{14}\mu_{15}$
$f_*\alpha =$	$i_*\nu_{14}$	0	0	$i_* \nu_{14}^2$	$i_*\eta_{11}arepsilon_{12}$	$4\widetilde{2\nu_{18}}$	0	0	0	0

Proof. From (4. 9), (3. 8), (3. 9), it follows that the table is true excepting for $\alpha = i_* 16 \tilde{\iota}_{21}$, $i_* \nu_{14}^2$.

The relation $i_*\eta_{11} \circ \varepsilon_{12} = i_*\nu_{11}^3$ in $\pi_{20}(K\sigma_{11}:2)$ imply the formula

$$f_*(i_*\nu_{14}^2) = i_*\eta_{11} \circ \varepsilon_{12}.$$

Consider the following commutative diagram

$$S^{14} \xrightarrow{\nu_{11}} S^{11}$$

$$\downarrow i \xrightarrow{\overline{\nu}_{11}} \downarrow i$$

$$S^{22} \xrightarrow{16 \epsilon_{21}} S^{14} \cup e^{22} \xrightarrow{f} K\sigma_{11}$$

$$\downarrow i$$

$$S^{22} \xrightarrow{\sigma_{14}} S^{22}$$

$$\downarrow \sigma_{14}$$

$$S^{14}$$

where $\widetilde{16}_{\ell_{21}}$ is a coextension of $16_{\ell_{21}}$ and $\overline{\nu}_{11}$ is an extension of ν_{11} . We have

$$f_* \widetilde{16\iota_{21}} = i_* \overline{\nu_{11}} \circ \widetilde{16\iota_{21}}$$

= $-i_* \{\nu_{11}, \sigma_{14}, 16\iota_{21}\}$ by Proposition 1. 8 of [11],
= $-i_* \zeta_{11}$ by (9. 3) of [11],
= $-4 \ \widetilde{2\nu_{21}}$.

PROPOSITION 4.4. The homotopy groups $\pi_j(E_7:2)$ for $j \leq 25$ are listed in the following table;

j	1,2		3	$4 \leqslant j \leqslant 10$)	11	1	2	13	14	15	
$\pi_j(E_7:2)$	0		Z	0		Ζ	Z	2	Z_2	0	Ζ	
j	16	17	18	19	20) 2	21	22		23		
$\pi_j(E_7:2)$	Z_2	Z_2	Z_4	$Z + Z_2$	Z	2	Z_2	Z_4	Z	$Z + Z_2$	$+ Z_2$	
j		24		25								
$\pi_j(E_7:2)$	$Z_2 +$	$Z_{2} +$	Z_2	$Z_2 + Z_2$								

Proof. The results of $\pi_j(E_7:2)$ for $j \leq 22$ follow immediately from the tables (4. 10), (3. 13), (4. 11) and from the exactness of the sequence of (4. 8).

132

$$\{\nu_{11}, \, \varepsilon_{14}, \, 2\iota_{22}\} \supset E^4\{\nu_7, \, \varepsilon_{10}, \, 2\iota_{18}\} \subset E^4\pi_{19}(S^7) = 0.$$

Thus we have

(4. 12)
$$\{\nu_{11}, \varepsilon_{14}, 2\iota_{22}\} \equiv 0 \mod 2\pi_{23}(S^{11}).$$

Similarly we have

(4. 13)
$$\{\nu_{11}, \mu_{14}, 2\iota_{23}\} \equiv 0 \mod 2\pi_{24}(S^{11}).$$

 $\{\nu_{11}, \eta_{14} \circ \varepsilon_{15}, 2\iota_{23}\} \supset \{\nu_{11} \circ \eta_{14}, \varepsilon_{15}, 2\iota_{23}\} = \{0, \varepsilon_{15}, 2\iota_{23}\} \equiv 0$ by Proposition 1. 2 of [11]. Thus we have

(4. 14)
$$\{\nu_{11}, \eta_{14} \circ \varepsilon_{15}, 2\iota_{23}\} \equiv 0 \mod 2\pi_{24}(S^{11}:2).$$

Similarly,

$$(4. 15) \qquad \qquad \{\nu_{11}, \eta_{14} \circ \mu_{15}, 2\iota_{24}\} \equiv 0 \qquad \text{mod} \ 2\pi_{25}(S^{11}:2).$$

Consider the commutative diagram

$$\pi_{j}(K_{F}:2) \xrightarrow{f_{*}} \pi_{j}(K_{\sigma_{11}}:2) \xrightarrow{j_{*}} \pi_{j}(K_{\widetilde{E}_{7}}:2) \xrightarrow{\vartheta} \pi_{j-1}(K_{F}:2) \xrightarrow{f_{*}} \pi_{j-1}(K_{\sigma_{11}}:2)$$

$$\uparrow^{i_{*}} \qquad \uparrow^{i_{*}} \qquad \uparrow^{i_{$$

where i, j are inclusions.

From Proposition 1.8 of [11] and the above secondary composition, coextension $\tilde{\varepsilon}_{14}$, $\tilde{\mu}_{14}$, $\eta_{14} \circ \varepsilon_{15}$ and $\eta_{14} \circ \mu_{15}$ of ε_{14} , μ_{14} , $\eta_{14} \circ \varepsilon_{15}$ and $\eta_{14} \circ \mu_{15}$ respectively are elements of order 2. Thus from the commutativity and the exactness of the above diagram. (4.16), the results of $\pi_j(K_{E_7}:2)$ for j = 23, 24, 25, are obtained.

(III) HOMOTOPY GROUPS $\pi_j(E_6:2)$ for $j \leq 22$. By Corollary 2.3,

$$H^*(\tilde{E}_6; Z_2) = Z_2[y_{32}] \otimes \varDelta(y_9, y_{11}, y_{15}, y_{17}, y_{23}, y_{33})$$

and

$$Sq^2y_9 = y_{11}, Sq^8y_9 = y_{17}, Sq^4y_{11} = y_{15}, Sq^8y_{15} = y_{23}.$$

From Lemma 2.5, there exists a cell complex $K_{\tilde{E}_{\bullet}}$ and a continuous

map $l: K_{\widetilde{E}_6} \longrightarrow \widetilde{E}_6$ such that $l_*: \pi_j(K_{\widetilde{E}_6}) \longrightarrow \pi_j(\widetilde{E}_6)$ are C_2 -isomorphism onto for $j \leq 24$, i.e, $K_{\widetilde{E}_6} = S^9 \cup e^{11} \cup e^{15} \cup e^{17} \cup e^{20} \cup e^{23} \cup e^{24}$.

By Corollary 2.8, e^{11} is attached to S^9 by η_9 .

LEMMA 4.5. $K_{\sigma_9} = S^9 \bigcup_{\sigma_9} e^{17}$ is a subcomplex of $K_{\vec{E}_6}$. Exchanging an inclusion map $K_{\sigma_9} \longrightarrow K_{\vec{E}_6}$ by a fibre map, we denote by F the fibre of this fibering. Then $H^*(F; Z_2)$ has the additive basis $\{1, a_{10}, a_{14}, a_{20}, a_{22}\}$ for degree ≤ 25 such that $Sq^4a_{10} = a_{14}$, $Sq^8a_{14} = a_{22}$, where a_i denotes agenerator of degree *i*.

Proof. From Lemma 2.5, $H^*(K\tilde{E}_6; Z_2) = \Delta(x_9, x_{11}, x_{15}, x_{17}, x_{23})$ for degree < 32 and $Sq^2x_9 = x_{11}$, $Sq^4x_{11} = x_{15}$, $Sq^8x_{15} = x_{23}$, $Sq^8x_9 = x_{17}$.

By use of Adem's relation we have relations

$$Sq^{6}x_{11} = Sq^{6}Sq^{2}x_{9} = Sq^{4}Sq^{4}x_{9} + Sq^{7}Sq^{1}x_{9},$$

$$Sq^{2}x_{15} = Sq^{2}Sq^{4}x_{11} = Sq^{5}Sq^{1}x_{11} + Sq^{6}x_{11}.$$

Since there is no cell of dimension 10 and 13, $Sq^{e}x_{11} = 0$ in $K\tilde{E}_{6}$. Since there is no cell of dimension 12 and $Sq^{e}x_{11} = 0$, $Sq^{2}x_{15} = 0$ in $K\tilde{E}_{6}$. Then e^{17} is inessential to e^{15} , that is, up to homotopy type $S^{9} \cup e^{11} \cup e^{17}$ is a subcomplex. Since $\pi_{16}(S^{9} \cup e^{11}, S^{9}) \approx \pi_{16}(S^{11}) = 0$, we have that $S^{9} \cup e^{17}$ is a subcomplex. Then, by Theorem 2. 6, we may consider that $S^{9} \cup e^{17} = K_{\sigma_{9}}$ is a subcomplex of $K\tilde{E}_{6}$.

Let $\{E_r^{**}\}$ be the mod 2 spectral sequence associated with a fibering $\{K_{\sigma_9}, i, K_{\tilde{E}_s}\}$ with the fibre F, then

$$E_2^{**} = H^*(K_{\tilde{E}_6}; Z_2) \otimes H^*(F; Z_2)$$

and

$$E_{\infty}^{**} = \bigwedge (x_9, x_{17}) \quad \text{for degree} \leq 25.$$

By concerning the cohomology exact sequence associated with this fibering, we have $H^*(F; Z_2) = \{1, a_{10}, a_{14}\}$ for degree < 18 with generator a_{10}, a_{14} such that $d_{11}(1 \otimes a_{10}) = x_{11} \otimes 1$ and $d_{15}(1 \otimes a_{14}) = x_{15} \otimes 1$. For the total degree < 27, E_2^{**} is the sum of $E_2^{**} = H^*(K_{E_6}; Z_2) \otimes \{1, a_{10}, a_{14}\}$ and $\sum_{q \ge 18} 1 \otimes H^q(F; Z_2)$. From E_2^{**} we compute E_r^{**} giving d_r trivially except $d_r(b \otimes a_{10}) = bx_{11} \otimes 1$ and $d_r(b \otimes a_{14}) = bx_{15} \otimes 1$, $b \in H^*(K_{E_6}; Z_2)$. Then we have for the total degree < 30, $E_\infty^{**} = d(x_9, x_{17}, x_{23}) \otimes 1 + \{x_{11} \otimes a_{10}, x_{15} \otimes a_{14}\}$, where we use the fact $x_{11}^2 = x_{15}^2 = 0$. Compare this with E_∞^{**} , we conclude that $x_{23} \otimes 1, x_{11} \otimes a_{10}$ must be cancelled by some elements a_{22}, a_{20} , i.e,

 $d_{23}(1 \otimes a_{22}) = x_{23} \otimes 1$ and $d_{11}(1 \otimes a_{20}) = x_{11} \otimes a_{10}$. Moreover, no other non-zero elements exists in $H^*(F; Z_2)$ for degree ≤ 25 . Thus $H_*(F; Z_2) = \{1, a_{10}; a_{14}, a_{20}, a_{22}\}$ for degree ≤ 25 .

From the above proof, a_{10} , a_{14} and a_{22} are transgressive element. Since $Sq^4x_{11} = x_{15}$ and $Sq^8x_{15} = x_{23}$, using the commutativity of Steenrod operation and transgression we have $Sq^4a_{10} = a_{14}$ and $Sq^8a_{14} = a_{22}$.

By Lemma 2.5, there exists a cell complex $K_F = S^{10} \cup e^{14} \cup e^{20} \cup e^{22}$ and a continuous map which induce C_2 -isomorphisms from $\pi_j(K_F)$ to $\pi_j(F)$ for $j \leq 24$. We identify the fiber to the total space, then we have a commutative diagram

$$(4. 17) \qquad \begin{array}{c} S^{10} \stackrel{i}{\longrightarrow} K_{F} \\ \downarrow_{\eta_{9}} \qquad \qquad \downarrow_{f} \\ S^{9} \stackrel{i}{\longrightarrow} K_{\sigma_{9}} \end{array}$$

where i is inclusion map, and the exact sequence

(4. 18)
$$\cdots \longrightarrow \pi_j(K_F : 2) \longrightarrow \pi_j(K_{\sigma_9} : 2) \longrightarrow \pi_j(K_{\tilde{E}_6} : 2)$$
$$\longrightarrow \pi_{j-1}(K_F : 2) \longrightarrow \pi_{j-1}(K_{\sigma_9} : 2) \longrightarrow \cdots$$

Consider the cell complex $K_F = S^{10} \cup e^{14} \cup e^{20} \cup e^{22}$. Since $Sq^4a_{10} = a_{14}$, e^{14} is attached to S^{10} by a representative of ν_{10} .

From $\pi_{19}(S^{10} \cup e^{14}, S^{10}) \approx \pi_{18}(S^{13}) = 0$, we may assume that $K_F = S^{10} \cup C(S^{13} \vee S^{19}) \cup e^{22}$.

Let $\alpha : S^{21} \longrightarrow S^{10} \cup C(S^{13} \lor S^{19})$ be the attaching map of e^{22} and e^{20} be attached to S^{10} by $\beta : S^{19} \longrightarrow S^{10}$. Consider the exact sequence

$$\pi_{21}(S^{10}:2) \longrightarrow \pi_{21}(S^{10} \cup e^{14} \cup e^{20}:2) \xrightarrow{\partial} \pi_{20}(S^{13} \vee S^{19}:2) \xrightarrow{(\nu_{10} \vee \beta)_*} \pi_{20}(S^{10}:2).$$

From the definition of ∂ , we have the commutative diagram

where p is a map which shrinks S^{10} to a point. Since $Sq^8a_{14} = a_{22}$, $p_*\alpha = \sigma_{14} + x\eta_{20}$ for x = 1 or 0. From the exactness of the above sequence, $0 = (\nu_{10} \lor \beta)_* \circ \partial \alpha = \nu_{10} \circ \sigma_{13} + x(\beta \circ \eta_{19})$. Thus we have $x(\beta \circ \eta_{19}) = \nu_{10} \circ \sigma_{13} \neq 0$ and x = 1. Put $\beta = a(\Delta(\iota_{21})) + b\eta_{10} \circ \varepsilon_{11} + c\nu_{11}^3 + d\mu_{10}$ for some integers a, b, c, d, then we have

$$\nu_{10} \circ \sigma_{13} = \beta \circ \eta_{19}$$

= $a(\Delta(\iota_{21})) \circ \eta_{19} + b\eta_{10}^2 \circ \varepsilon_{12} + c\nu_{10}^3 \circ \eta_{19} + d\eta_{10} \circ \mu_{11}$
= $a\nu_{10} \circ \sigma_{13} + 0 + 0 + d\eta_{10} \circ \mu_{11}$ by (3. 6) and (3. 10).

Thus by (3.3) a = 1 and d = 0. Therefore

(4. 19)
$$\beta = \Delta(z_{21}) + b\eta_{10} \circ \varepsilon_{11} + c\nu_{10}^3 \text{ where } b, c = 0 \text{ or } 1.$$
$$\partial \alpha = \sigma_{13} + \eta_{19}$$

From (4.19), Lemma 3.3 and from the exact sequence

$$\cdots \longrightarrow \pi_j(S^{21}:2) \xrightarrow{a_*} \pi_j(S^{10} \cup e^{14} \cup e^{20}:2) \longrightarrow \pi_j(K_F:2) \longrightarrow \pi_{j-1}(S^{21}:2) \xrightarrow{a_*} \cdots$$
of (3. 1), we have the next table;

(4. 20)

j	$j \leqslant 9$	10	11	12	13	14	15	16	17
$\pi_j(K_F:2)$	0	Z	Z_2	Z_2	0	Z	Z_2	Z_2	$Z_{16} + Z_4$
Generator		i*c10	i*7710	$i_*\eta_{_{10}}^2$		8213	$\widetilde{\eta_{13}}$	$\widetilde{\eta^2_{_{\perp}3}}$	$i_*\sigma_{10}, \widetilde{2\nu_{13}}$
•		10				1		<u></u>	

j	18	19	20	21
$\pi_j(K_F:2)$	$Z_{2} + Z_{2}$	$Z_2 + Z_2$	$Z_{2} + Z_{2}$	0
Generator	$i_*\overline{\nu_{10}}, i_*\varepsilon_{10}$	$i_*\eta_{10}\varepsilon_{11}, i_*\mu_{10}$	$i_*\sigma_{10}\nu_{17}, \ i_*\eta_{10}\mu_{11}$	

LEMMA 4.6. For the homomorphism $f_*: \pi_j(K_F:2) \longrightarrow \pi_F(K_{\sigma_s}:2)$, we have the following table;

(4. 21)

α =	i*110	i*7/10	$i_*\eta_{10}^2$	η_{13}	i*	σ ₁₀	2 ₁₃	$i_{*}\nu_{10}$	$i_* \varepsilon_{10}$
$f_*\alpha =$	$i_*\eta_9$	$i_*\eta_9^2$	4 <i>i</i> *۷9	$i_{*}v_{9}^{2}$	$i_*\varepsilon_9$ -	$-i_*\overline{\nu_9}$	$i_*\varepsilon_9$	$i_*\nu_9^3$	$i_*\eta_9\varepsilon_{10}$
α =	$i_*\eta_{10} \circ$	ε ₁₁	$i_{*}\mu_{_{10}}$	<i>i</i> * <i>σ</i> 102	17	$i_*\eta_{10}\mu_1$	1		
$f_*\alpha =$	0		$i_*\eta_9\mu_{10}$	<i>i</i> *v9v	17	4 <i>i</i> *59			

Proof. We shall use the next relations

136

$\eta_n^3 = 4\nu_n \text{for } n \ge 5$	by (5.5) of [11],
$\eta_n \circ \vec{\nu}_{n+1} = \nu_n^3 \text{for } n \ge 6$	by Lemma 6.3 of [11],
$\eta_9 \circ \sigma_{10} = \bar{\nu}_9 + \varepsilon_9$	by Lemma 6.4 of [11],
$\eta_n^2 \circ \varepsilon_{n+2} = 0 \text{for } n \ge 9$	by (7. 10), (7. 20) of [11],
$4\zeta_n = \eta_n^2 \circ \mu_{n+2} \text{for } n \ge 5$	by Lemma 6.7 of [11].

From (4. 17), (4. 22), it follows that the table is true except for $\alpha = \widetilde{\eta_{13}}$ and $\widetilde{2\nu_{13}}$.

From the definition of $\widetilde{\eta_{13}}$ and (4.17), we have the commutative diagram

where p is the mapping which shrinks S^{10} to a point and $\overline{\eta_9}$ is a extension of η_9 . Thus we have

 $f_*\tilde{\eta}_{13}=i_*\overline{\eta_9}\circ\tilde{\eta}_{13}=i_*\{\eta_9,\nu_{10},\eta_{13}\}\ni i_*\nu_9^2 \quad \text{by Lemma 5.5 of [11].}$

Consider the commutative diagram

$$S^{10} \xrightarrow{\gamma_{9}} S^{9}$$

$$\downarrow i \xrightarrow{\overline{\gamma_{9}}} \downarrow i$$

$$S^{17} \xrightarrow{\widetilde{2\nu_{13}}} S^{10} \cup e^{14} \xrightarrow{f} S^{9} \cup e^{17}$$

$$\overset{\nu_{10}}{\xrightarrow{}} p$$

$$S^{14}$$

$$\downarrow \nu_{11}$$

$$S^{11}$$

then we have

$$\begin{split} f_* \widetilde{2\nu_{13}} &= i_* \overline{\gamma_9} \circ \widetilde{2\nu_{13}} \in i_* \{ \gamma_9, \nu_{10}, 2\nu_{13} \} & \text{by Proposition 1. 7 of [11],} \\ &\in i_* \varepsilon_9 & \text{by (6. 1) of [11].} \end{split}$$

```
HIDEYUKI KACHI
```

PROPOSITION 4.7. The homotopy groups $\pi_j(E_{\mathfrak{s}}:2)$ for $j \leq 22$ are listed in the following table;

j	1,2	3	$4\leqslant j\leqslant 8$	9	10	11	12	13	14
$\pi_j(E_6:2)$	0	Z	0	Z	0	Z	Z_4	0	0
j	15	16	17	1	8	19	20	21	22
$\pi_j(E_6:2)$	Z	0	$Z + Z_2$	Z16 -	$+Z_2$	0	Z_8	0	0

Proof. The results of $\pi_j(E_{\delta}:2)$ for $j \neq 18, 20$, follow immediately from the table the (3. 11), (4. 20), (4. 21) and from the exact sequence (4. 18).

By (3.9) and Proposition 1.2 of [11], $\mu \in \langle \eta, \vartheta_{\ell}, 2\sigma \rangle \equiv \langle \eta, 2\sigma, \vartheta_{\ell} \rangle$ + $\langle 2\sigma, \eta, \vartheta_{\ell} \rangle$ and $\langle 2\sigma, \eta, \vartheta_{\ell} \rangle \equiv \langle \sigma, 2\eta, \vartheta_{\ell} \rangle \equiv 0$. Then, by concerning the suspension homomorphism, we obtain

$$\{\eta_9, 2\sigma_{10}, 8\iota_{17}\} \ni \mu_9.$$

By Lemma 9.1 of [11], we have

$$\{\eta_9, \eta_{10} \circ \varepsilon_{11}, 2\iota_{19}\} \ni \zeta_9.$$

Consider the commutative diagram

$$\pi_{18}(K_F:2) \xrightarrow{f_{\bullet}} \pi_{18}(K_{\sigma_9}:2) \xrightarrow{j_{\bullet}} \pi_{18}(K_{E_6}:2) \xrightarrow{\theta} \pi_{17}(K_F:2) \xrightarrow{f_{\bullet}} \pi_{17}(K_{\sigma_9}:2)$$

$$\uparrow^{i_{\bullet}} \uparrow^{i_{\bullet}} \uparrow^{i_{\bullet}$$

where j is a inclusion map $S^9 \longrightarrow S^9 \bigcup e^{11}$. By Proposition 1. 8 of [11], we have

$$j_*\mu_9 \in j_*\{\eta_9, 2\sigma_{10}, 8\iota_{17}\} = -8 \widetilde{2\sigma_{10}}.$$

From the above commutative diagram and from the tables (3. 11), (4. 20), (4. 21), we obtain

$$\pi_{18}(K_{\widetilde{E_*}}:2) \approx Z_{16} + Z_2.$$

We have the following commutative diagram

$$\pi_{20}(K_F:2) \xrightarrow{f_*} \pi_{20}(K\sigma_9:2) \longrightarrow \pi_{20}(K_{E_6}:2) \longrightarrow \pi_{19}(K_F:2) \xrightarrow{f_*} \pi_{19}(K\sigma_9:2)$$

$$\uparrow i_* \qquad \uparrow i_* \qquad \downarrow i_* \qquad i_*$$

and from Proposition 1.7 of [11]

$$j_*\zeta_9 \in j_*\{\eta_9, \eta_{10} \circ \varepsilon_{11}, 2\iota_{19}\} = -2\eta_{10} \circ \varepsilon_{11}.$$

From the exact sequence (4.18) and from the table (3.8), (4.10), (4.21), we obtain

$$\pi_{20}(K\widetilde{E}_6:2)\approx Z_8.$$

Bibliography

- [1] J. F. Adams: On the group J(X) IV, Topology, 5–1 (1966), 21–71.
- [2] S. Araki: Cohomology modulo 2 of the compact exceptional groups E_6 and E_7 , J. of Math. Osaka C.V., Vol. 12 (1961), 43-65.
- [3] S. Araki and Y. Shikata: Cohomology mod 2 of the compact exceptional group E_8 , Proc. Japan Acad., 37 (1961), 619–622.
- [4] A.L. Blakers and W.S. Massey: The homotopy groups of a triad II, Ann. of Math., 55 (1952), 192-201.
- [5] R. Bott: The stable homotopy of the classical groups, Ann. of Math., 70 (1959), 313-337.
- [6] R. Bott and H. Samelson: Application of the theory of Morse to symmetric spaces, Amer. J. Math., 80 (1958), 964–1029.
- [7] H. Cartan and J.P. Serre: Espaces fibrés et groupes d'homotopie I, II, C.R. Acad. Sci. Paris., 234 (1952), 288–290, 393–395.
- [8] J.P. Serre: Groupes d'homotopie et classes de groupes abélian, Ann. of Math., 58 (1953), 258–294.
- [9] J.P. Serre: Cohomologie modulo 2 des complexes d'Eilenberg Mac-Lane, Comm. Math. Helv., 27 (1953), 198-231.
- [10] M. Mimura: The homotopy group of Lie groups of low rank, J. Math. Kyoto Univ., 6-2 (1967), 131-176.
- [11] H. Toda: Composition methods in homotopy groups of spheres, Ann. of Math. Studies., (1962).

Mathematical Institute Nagoya University