TRANSITIVE EXTENSIONS OF CERTAIN PERMUTATION GROUPS OF RANK 3

TOSIRO TSUZUKU

To Professor Kiyoshi Noshiro on the occasion of his 60th birthday

We denote a permutation group H on a set Γ by $(H, \Gamma) . \quad(H, \Gamma)$ is called a permutation group of rank 3 if (H, Γ) is transitive and $\left(H_{a}, \Gamma\right), a \in \Gamma$, has exactly three orbits, where H_{a} is the stabiliger of a point a, namely, $\left\{\alpha \in H \mid a^{\alpha}=a\right\}$

In this note the following theorems will be proved.
Theorem 1. (\mathbf{I}). If (H, Γ) is a permutation group of rank 3 such that the lengths of orbits of $\left(H_{a}, \Gamma\right), a \in \Gamma$, are 1,1 and the order of H_{a}, then a pair of H and H_{a} is one of the following:
(1) H is the dihedral group of order 8 and H_{a} is a subgroup of order 2 which is not the center of H.
(2) H is the symmetric group of degree 4 and H_{a} is a cyclic subgroup of order 4.
(3) H is the symmetric group of degree 4 and H_{a} is a non-normal elementary abelien subgroup of order 4.
(4) H is the general linear group $G L(2,3)$ of dimension 2 over $G F(3)$ and H_{a} is a subgroup which is isomorphic to the symmetric group S_{3} of degree 3.
(5) H is the two dimensional linear fractional group $L F_{2}(7)$ over $G F(7)$ and H_{a} is a subgroup which is isomorphic to the alternating group A_{4} of degree 4.
(II). If (G, Ω) is a transitive extension of (H, Γ), then G is either
(1) $L F_{2}(7)$,
or (2) $V \cdot G L(2,3)$ where V is the two dimensional vector space over $G F(3)$ and $G L(2,3)$ acts on V in the natural way,
or (3) the alternating group A_{7} of degree 7 .
Received Nov. 29, 1966.

Theorem 2. Let (H, Γ) be a transitive group of rank 3 and let $\Delta_{0}=\{0\}$, Δ_{1}, Δ_{2} be the orbits of $\left(H_{0}, \Gamma\right), 0 \in \Gamma$. Let us assume that
(i) H_{0} is faithful on Δ_{1} and Δ_{2},
(ii) $\left(H_{0}, \Delta_{1}\right)$ is a Frobenius group whose Frobenius kernel Q and Frobenius compliment K are abelian (accordingly K is cyclic), and Q is semi-regular on Δ_{2}, and
(iii) $\left|\Delta_{1}\right| \neq\left|\Delta_{2}\right|$ and $\left|\Delta_{1}\right| \geqq 3$. (We denote the number of points in a set Σ by $|\Sigma|)$.

If $(G,(\tilde{\Gamma})$ is a transitive extension of (H, Γ), then G is the two dimensional linear fractional group $L F_{2}(11)$ over $G F(11)$ and H is a subgroup of $L F_{2}(11)$ which is isomorphic to the alternating group A_{5} of degree 5 .

For a set X of permutations on a set Σ we put

$$
F_{\Sigma}(X)=\left\{x \in \Sigma \mid x^{\sigma}=x \text { for any } \sigma \in X\right\} \text { and } f_{\Sigma}(X)=\left|F_{\Sigma}(X)\right|
$$

Proof of Theorem 1, (I). Since the stabiliger of a point has exactly two fixed points we have that $n(=|\Gamma|)$ is even and (H, Γ) is an imprimitive group with a complete system of sets of imprimitivity $\tilde{\Gamma}=\left\{\Gamma_{1}, \Gamma_{2}, \ldots, \Gamma_{\frac{n}{2}}\right\}$ such that $\left|\Gamma_{i}\right|=2$ for $i=1,2, \ldots, \frac{n}{2}$. Put $\Gamma_{i}=\left\{i, \frac{n}{2}+i\right\}$ and let H_{\imath} be the stabilizer of i in (H, Γ). Let u_{1} be the number of involutions in H_{1} and let u_{i}, for $n \geqq i \geqq 2$, be the number of involutions in H which interchange 1 and i, and which are conjugate to elements of H_{1}. Then

$$
\sum_{i=l}^{n} u_{i}=\frac{n}{2} u_{1}
$$

is the number of involutions in H which are conjugate to elements of H_{1}. Since H_{1} is transitive on $\Gamma-\Gamma_{1}$ we have that $u_{\frac{n}{2}+1}=\frac{n}{2}-1$ and $u_{i}=0$ or 1 simultaneously for all i other than 1 and $\frac{n}{2}+1$. Hence we have that $u_{1}=1$ or 3 . Assume that $u_{1}=1$ and let e be the involution of H_{1}. Then the cycle structure of e is (1) $\left(\frac{n}{2}+1\right)\left(\Gamma_{2}\right)\left(\Gamma_{3}\right) \ldots\left(\Gamma_{\frac{n}{2}}\right)$ where $\left(\Gamma_{i}\right)=$ $\left(i, \frac{n}{2}+i\right)$. Let σ be an element of H which carries 1 into 2. Then $e^{\sigma}=\left(\Gamma_{1}\right)(2)\left(\frac{n}{2}+2\right)\left(\Gamma_{3}\right) \ldots\left(\Gamma_{\frac{n}{2}}\right) . \quad$ Hence $F_{\Gamma}\left(e e^{\sigma}\right)=n-2$. Hence $n=2$ or 4. If $n=2$, then H is the dihedral group of order 8 and H_{1} is a non central subgroup of order 2 of H. If $n=4$, then H is the symmetric
group of degree 4 and H_{1} is a cyclic group of order 4 (see $\$ 126$, [1]). Assume that $u_{1}=3$, and let e_{1}, e_{2}, e_{3} be involutions of H_{1}. Since H_{1} is regular on $\Gamma-\Gamma_{1}$, each two-cycle $\left(\Gamma_{i}\right)$ appears in one (and only one) of the cycle decompositions of e_{1}, e_{2}, e_{3}. Hence we have the following three cases; let τ be an element of H which carries 1 into 2 .

$$
\text { Case (i). } \quad e_{1}=(1)\left(\frac{n}{2}+1\right)\left(\Gamma_{2}\right)\left(\Gamma_{3}\right) \ldots\left(\Gamma_{\frac{n}{2}}\right)
$$

and
$\left(\Gamma_{1}\right),\left(\Gamma_{2}\right), \ldots,\left(\Gamma_{\frac{n}{2}}\right)$ do not appear in cycle decompositions of e_{2} and e_{3}. Then $f_{\Gamma}\left(e_{1} e_{\mathrm{i}}^{\tau}\right)=n-4$. Hence $n=6$ and H is the symmetric group of degree 4 and H_{1} is an elementary abelian non-normal subgroup of order 4 of H (see $\$ 126$, [1]).

$$
\text { Case (ii). } \begin{aligned}
e_{1} & =(1)\left(\frac{n}{2}+1\right)\left(\Gamma_{2}\right) \ldots\left(\Gamma_{l+1}\right)\left(U_{l+2}\right) \ldots\left(U_{\frac{n}{2}}\right) \\
e_{2} & =(1)\left(\frac{n}{2}+1\right)\left(U_{2}\right) \ldots\left(U_{l+1}\right)\left(\Gamma_{l+2}\right) \ldots\left(\Gamma_{\frac{n}{2}}\right) \\
e_{3} & =(1)\left(\frac{n}{2}+1\right)\left(V_{2}\right) \ldots \ldots . \ldots\left(V_{\frac{n}{2}}\right)
\end{aligned}
$$

where $\left(U_{i}\right)$ and $\left(V_{i}\right), i=2,3, \ldots, \frac{n}{2}$, are two-cycles which are not equal to any one of $\left(\Gamma_{2}\right),\left(\Gamma_{3}\right), \ldots,\left(\Gamma_{\frac{n}{2}}\right)$. Then $\frac{n}{2}=2 l+1$, since e_{1} and e_{2} are conjugate each other. e_{1}^{τ} and e_{2}^{τ} are involutions of H_{2} and two-cycles $\left(\Gamma_{1}\right),\left(\Gamma_{3}\right), \ldots,\left(\Gamma_{\frac{n}{2}}\right)$ appear in the cycle decompositions of e_{1}^{τ} and e_{2}^{τ}. Hence, if $l \geqq 3$, then at least one of $e_{i}^{\tau} e_{j}, 1 \leqq i, j \leqq 2$, has more than two fixed points. This is a contradiction. Therefore $l=2$. Then H, as a permutation group on $\tilde{\Gamma}$, is doubly transitive and contains a two cycle. Hence $(H, \tilde{\Gamma})$ is the symmetric group of degree 5 , but this is impossible.

Case (iii).

$$
\begin{aligned}
& e_{1}=(1)\left(\frac{n}{2}+1\right)\left(\Gamma_{2}\right) \ldots\left(\Gamma_{l+1}\right)\left(X_{l+1}\right) \ldots \ldots\left(X_{\frac{n}{2}}\right. \\
& e_{2}=(1)\left(\frac{n}{2}+1\right)\left(Y_{2}\right) \ldots\left(Y_{l+1}\right)\left(\Gamma_{l+2}\right) \ldots\left(\Gamma_{m+1}\right)\left(Y_{m+2}\right) \ldots\left(Y_{\frac{n}{2}}\right) \\
& e_{3}=(1)\left(\frac{n}{2}+1\right)\left(Z_{2}\right) \ldots \ldots\left(Z_{m+1}\right)\left(\Gamma_{m+2}\right) \ldots\left(\Gamma_{\frac{n}{2}}\right)
\end{aligned}
$$

where $\left(X_{i}\right),\left(Y_{j}\right),\left(Z_{k}\right)$ are two-cycles which are not equal to any one of $\left(\Gamma_{2}\right)$, $\left(\Gamma_{3}\right), \ldots,\left(\Gamma_{\frac{n}{2}}\right)$. Then, since e_{1}, e_{2}, e_{3} are conjugate each other, $\frac{n}{2}=3 l+1$ and $m=2 l$. If $l \geqq 4$, then at least one of $e_{i}^{\tau} e_{j}, 1 \leqq i, j \leqq 3$, has more than two fixed points which is a contradiction. Hence $l=1$, 2 or 3. If $l=1$, then it is easily seen that H is isomorphic to $G L(2,3)$ and H_{1} is isomorphic to S_{3}. If $l=2$, then $n=14 . \quad H$ acts on $\tilde{\Gamma}$ faithfully, because if H is not faithful on $\tilde{\Gamma}$ then $e=\left(\Gamma_{1}\right)\left(\Gamma_{2}\right) \ldots\left(\Gamma_{t}\right)$ is an element of (H, Γ), and then $e e_{1}$ has more than two fixed points. This is impossible. Hence H has a faithful doubly transitive representation of degree 7 and the order of H is $7 \cdot 6 \cdot 4$. Hence H is isomorphic to $L F_{2}(7)$ and H_{1} is isomorphic to A_{4} (see $\S 166$, [1]). If $l=3$, then $r=18,|H|=10 \cdot 9 \cdot 4$, and H has a faithful doubly transitive representation of degree 10 (on $\tilde{\Gamma}$). Since e_{i} is an odd permutation on Γ, H contains a normal subgroup H of order $10 \cdot 9 \cdot 2$, which is doubly transitive on $\tilde{\Gamma}$, but this is impossible.

Proof of Theorem 1, II. We denote by $H_{(i)}$ the permutation group of Theorem 1, I, (i), and by $G_{(i)}$ a transitive extension of $H_{(i)} . \quad G_{(1)}$ does not exist, because it is a doubly transitive group of degree 5 and order $5 \cdot 4 \cdot 2$, (see §166, [1]). $\quad G_{(2)}$ does not exist and $G_{(3)} \cong L F_{2}(7)$, because they are doubly transitive groups of degree 7 and order 7.6.4 (see $\$ 166$ [1]). $G_{(4)} \cong V \cdot G L(2,3)$, because it is a solvable doubly transitive group of degree 9 and order $9 \cdot 8 \cdot 6$ (for instance, see [3]). $\quad G_{(5)} \cong A_{7}$, because it is a doubly transitive group of degree 15 and order $15 \cdot 14 \cdot 12$ (for instance, see exercises 10 (p. 162) and 4 (p. 304), [2]).

Remark. We note that the stabiligers of two points in the groups (G, Ω) of Theorem 1, (II) are not cyclic groups.

Proof of Theorem 2. Let $\left|\Delta_{1}\right|=n$ and put $\Delta_{1}=\{1,2, \ldots, n\}$ and let K be a stabilizer of 1 in $\left(H_{0}, \Delta_{1}\right)$. Since Q is semi-regular on $\Delta_{2},\left|\Delta_{2}\right| \equiv 0(n)$. We denote $\left|\Delta_{2}\right|=n r$ and put $\Delta_{2}=\{\overline{1}, \overline{2}, \ldots, \overline{n r}\}$ where we choose the point $\overline{1}$ such that the stabilizer of $\overline{1}$ in $\left(H_{0}, \Delta_{2}\right)$, denoted by K_{0}, is contained in K. We also denote $|K|=q(\geqq 2)$.

First we claim that n is odd. We assume that n is even. Let n_{0} be the number of involutions in H_{0}, and let $n_{a}, a \in \Gamma-\{0\}$, be the number of involutions in H which interchange 0 and a. Then $\{1+n(r+1)\} n_{0}=$
$\sum_{a \in T} n_{a}$ is the number of involutions in $H . \quad n_{i} \leqq q$ for $1 \leqq i \leqq n$, because if two involutions τ_{1}, τ_{2} of H interchange 0 and i, then $\tau_{1} \tau_{2}$ is contained in a subgroup $K_{i}=\left\{\sigma \in H_{0} \mid \sigma(i)=i\right\}$ of order $q . \quad n_{\bar{i}} \leqq q / r$ for $1 \leqq i \leqq n r$, because if two involutions τ_{1}, τ_{2} of H interchange 0 and \bar{i}, then $\tau_{1} \tau_{2}$ is contained in a subgroup $K_{i}=\left\{\sigma \in H_{0} \mid \sigma(\bar{i})=\bar{i}\right\}$ of order q / r. Hence $\{1+n(r+1)\} n_{0} \leqq n_{0}+n q+n r q / r=n_{0}+2 n q$, namely, $n_{0}(r+1) \leqq 2 q$. Since n_{0} is divisible by q, we have that $r=1$. This is a contradiction.

Next we claim that q is even. We assume that q is odd. Put $\tilde{\Gamma}=$ $\{\infty\} \cup \Gamma$. Let τ be an involution of G which ingerchanges ∞ and 0. Then $\tau^{-1} H_{0} \tau$ (simply denoted by $\left.H_{0}^{\tau}\right)=H_{0}$ and $Q^{\tau}=Q$. Since n, the number of subgroups of H_{0} of order q, is odd, there exists at least one subgroup X of H_{0} of order q which is invariant by τ. Since $\left|\Delta_{1}\right| \neq\left|\Delta_{2}\right|$, we have that $f_{A_{1}}(X)=1$, namely, $\tau\left(i_{0}\right)=i_{0}$ for some $i_{0} \in A_{1}$. This means that τ is an element of a group which is isomorphic to H. Since $|H|=$ odd, this is impossible. Hence q is even.

Next we claim that $q=r$. We assume that $q \neq r$. Let K_{0}^{\prime} be a subgroup of H_{0} which is conjugate to K_{0} by an element of G. Then $f_{\Lambda_{1}}\left(K_{\bullet}\right) \neq 0$, because $\left(\left|K_{0}^{\prime}\right|, n\right)=1$. Hence $K_{0}^{\prime} \sigma_{i} \leqq K$ for some i of $f_{\Lambda_{1}}\left(K_{0}\right)$, where σ_{i} is an element of Q such that $\sigma_{i}(1)=i$. Since K is cyclic, $K_{0}^{\prime} \sigma_{i}=K_{0}$. This means that if a subgroup of H_{0} is conjugate to K_{0} in G, then they are conjugate in H_{0}. Hence, by a theorem of Witt ($\S 9$, [5]), the normalizer of K_{0} in G, denoted by $N\left(K_{0}\right)$, is doubly transitive on $F_{\tilde{\Gamma}}\left(K_{0}\right)$. Since $\left(H_{0}, \Delta_{2}\right)\left(H_{0}, H_{0} / K_{0}\right)$ and K is abelian, we have that $f_{A_{2}}\left(K_{0}\right)=f_{H / K_{0}}\left(K_{0}\right)$ $=r$, hence $f\left(K_{0}\right)=r+3$. Then it is easily seen that $\left(N\left(K_{0}\right) / K_{0}, F_{\tilde{\Gamma}}\left(K_{0}\right)\right)$ is a doubly transitive group of degree $r+3, K / K_{0}$ is the stabilizer of two points $\infty, 0$ in this group, $F_{F_{\tilde{\Gamma}}\left(K_{0}\right)}\left(K / K_{0}\right)=\{\infty, 0,1\}$, and K / K_{0} is cyclic and regular on $F_{\tilde{\Gamma}}\left(K_{0}\right)-\{\infty, 0,1\}$. Hence the group $\left(N\left(K_{0}\right) / K_{0}, F_{\tilde{\Gamma}}\left(K_{0}\right)\right)$ should be one of the groups in Theorem 1, (II). From the remark at the end of proof of Theorem 1, $\left(N\left(K_{0}\right) / K_{0}, F_{\tilde{\Gamma}}\left(K_{0}\right)\right)$ can not exist, because the stabilizer of two points is cyclic. Hence $q=r$.

Let τ be an involution of G. Since r is even, τ is conjugate to an element of $H-\underset{\sigma \in G}{\cup} H_{o}^{\sigma}$ or K. Hence $f_{\tilde{\Gamma}}(\tau)=1$ or 3 . Let τ_{0} be an involution of G which interchanges ∞ and 0 . Since $H_{0}^{\tau_{0}}=H_{0}$ and $\left|\Delta_{1}\right| \neq\left|\Delta_{2}\right|, \Delta_{i}^{\tau_{0}}=\Delta_{i}$. Since $\left|\Delta_{1}\right|$ is odd, τ_{0} leaves a point of Δ_{1}, say 1 ,
invariant. Let $\alpha_{i}, i \in \Delta_{1}$, be an element of Q such that $\alpha_{2}(1)=i$. Then $\tau_{0}^{-1} \alpha_{i} \tau_{0}=\alpha_{\tau_{0}(i)}$. Hence, since $|Q|$ is odd, $\left|C_{Q}\left(\tau_{0}\right)\right|=1$ or 3 . We have that $Q=Q_{1} \times Q_{2}$ where $Q_{1}=C_{Q}\left(\tau_{0}\right)$ and $Q_{2}=\left\{\alpha \in Q \mid \alpha^{\tau_{0}}=\alpha^{-1}\right\}$. In fact, for any element α of $Q, \alpha \alpha^{\tau_{0}} \in C_{Q}\left(\tau_{0}\right)$, and hence the order of $\alpha \alpha^{\tau_{0}}$ is 1 or 3. Hence $\alpha=\left(\alpha^{2} \alpha^{\tau_{0}}\right)\left(\alpha^{2} \alpha^{2 \tau_{0}}\right)$ where $\alpha^{2} \alpha^{\tau_{0}} \in Q_{2}$ and $\alpha^{2} \alpha^{2 \tau_{0}} \in Q_{1}$. Let τ_{1} be an involution of K. Then we know that $\tau_{1}^{-1} \alpha \tau_{1}=\alpha^{-1}$ for all $\alpha \in Q$, and hence $Q_{2}=C_{Q}\left(\tau_{0} \tau_{1}\right)$. Since $\tau_{0} \tau_{1}$ is an involution which interchanges $\infty, 0$, and which fixes 1 , we have that $\left|Q_{2}\right|=\left|C_{Q}\left(\tau_{0} \tau_{1}\right)\right|=1$ or 3 . Hence $n=|Q|=3$ or 9. If $n=3$, then $q=r=2$, and we have that $G \cong L F_{2}(11)$ and $H \cong A_{5}$ (for instance, see [4]). If $n=9$, then $q=r=8,4$, or 2 , and it is easy to prove non-existence of such groups.

References

[1] Burnside, W.S., Theory of groups of finite order, 2nd. ed. Cambridge Univ. Press, 1911.
[2] Carmichael, R.D., Introduction to the theory of groups of finite order, Boston, 1937.
[3] Huppert, B., Zweifach transitive, auflosbare Permutations-gruppen, Math. Zeitschr. 68 (1957). 126-150.
[4] Ito, N., A note on transitive permutation groups of degree p, Osaka Math. J. 14 (1962), 213-218.
[5] Wielandt, H., Finite permutation groups, Acad. Press, 1964.

Nagoya University

