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ON A HYPOELLIPTIC BOUNDARY VALUE PROBLEM

TADATO MATSUZAWA

§ 1. Introduction.

This paper is devoted to the investigation of the hypoellipticity of

the following first boundary value problem:

Lu = utt + (a{x9 t)ux)x + g{x, t)uxt + b(x, t)ux + b°(x, t)ut + c(x, t)u

= f(x, t) in Ω ,

(1.2) u(x,t)\M = 0, \x\<R ,

where Ω is an open rectangular domain in (x, ί)-plane:

Ω = (-R <x < R) x (0 <t<T) R> 0, T > 0 .

We assume that the coefficients a(x, t), b(x, t), b°(x, t) and c(x, t) are all

C°° functions in Ώ satisfying the following conditions:

(1.3) ΈLea(x,t) ^ 0 in β ,

(1.4) for all x with \x\ < R, the function t •-> Re a(x, t) has only finite

zeros of order less than or equal to I (^>0) in the interval [0 ^ t ^ T]

(1.5) |Im a(x, t)\ ^ C υ Re a(x, t) in Ώ (C > 0) ,

(1.6) |Im ax(x, t)\ ^ C[Re a(x, t)ψ2 in Ώ ,

(1.7) t |Im b(x, t)\2 S C Re α(a;, ί) in Ώ ,

(1.8) |flf(a;, t) | ^ ^.[Re α(a;, t)]1/2 in 5, 0 < €l < 1 ,

(1.9) |f|rt(aj, ί)| ^ C[Re a(x, t)ψ2 in 5 .

We set Ω = (-i? < a? < #) X [0 ^ t < T). The main result of this

paper is to prove the following theorem.

Received March 12, 1975.
1) We use the symbols C, C1, . . . to express the different positive constants

throughout this paper.
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THEOREM 1.1. Suppose that the operator L given in (1.1) satisfies

the condition (1.3) ~(1.9). Then any distribution ue@'(Ω) satisfying (1.1)

and (1.2)2) with fix, t) e C^φ) must be a C°° function in Ω.

We remark that if we consider the partial differential operator of

first order

(1.10) Lx = — + ia(x, t)— + c(x, t) in Ω ,
dt dx

a sufficient condition of Nirenberg and Treves (cf. [10], [11]) for the

operator Lγ to be hypoelliptic is expressed by (1.3) and (1.4). This is

a necessary and sufficient condition when a(x, t) is analytic in Ώ. Our

problem is motivated by this fact (cf. [6]) and the proof of Theorem 1.1

will be obtained in the following paragraphs by a refinement of the

method used in [2] and [4]. For the equations of the second order with

real coefficients we refer to [2] and [9].

EXAMPLES. The following operators satisfy the condition (1.3) —(1.7)

in a neighbourhood of the origin.

(1.11) L2 = — + ta(x, t) + b(x, t)— + b\x, t)— + c(x, t) ,
dt2 dx2 dx dt

Re a(x, t) > 0 in Ώ,b,b° and c are arbitrary complex valued

C°° functions in Ώ,

ξ f^ + (1 + i)t[t -
(1.12) 3 t dX dX

+ b\x,t)4r +c(x,t),
ot

£ integer, ^ 0 g(x) is a real valued C°° function in

(—R X x X R),b°,c are arbitrary C°° functions in Ω.

§2. Preliminaries for the proof of Theorem 1.1.

LEMMA 2.1. ([9], Lemma 1.7.1) Let a{x,t) be the function given in

§1. Then there exists a positive constant C such that

(2.1) \as(x, t)\2 ^ C Re a(x, t) (x, t) e Ώ .

Being suggested by [2] and [4], we now introduce the norm ||| | | |

2) By the partial hypo-ellipticity of L in t, condition (1.2) is meaningful in the
sense of distributions (cf. [1], Ch. 4).
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and its dual norm ||| |||' by

where || || is the usual L2-norm on Ω and ζv, w} is the value of v e &(Ω)
evaluated at w.

LEMMA 2.2. Let L be the operator given in (1.1). We have the
following estimate with some positive constant C

(2.2) \\\v\\\ ^ C \\v\\ + \\\Lv\\\' , v e C?φ), v(x, 0) = 0 .

Proof. Obviously we have

(2.3) \φ>, v>\ ^ \\\Lυ\\\' \\\v\\\ , v e CtΦ), v(x, 0) = 0 .

Next, integrating by parts, we have

- Re <bvx, v> — Re <bQvti v} — Re ζcv, v} .

For the term of the right hand side, we have for any positive number
δ

|<Im bvx, v}\ = |<ί1/2 Im bvX9 t~
1/2v}\

On the other hand, for any ε > 0, we easily have

\\t-ϊ/2v\\2^ε\\vt\\2 + C(ε)\\v\\2 .

Thus, by virtue of the assumption (1.7), we are given the inequality

|<Im bvx, v>\ ̂  δ |

For the remaining terms we have

\<gtvx, v>\ ^ δ || VRi^^H2 + -Iψ- IMP ,

\<cυ,V>\£C"\W.
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Taking δ and ε sufficiently small, we have

This, combining with (2.3), gives the estimate (2.2). Q.E.D.

LEMMA 2.3. Let a(x9t) be as above, then we have

(2.4)

(2.5)

(2.6) | | | I

for all veCfφ), (v(x9θ) = 0 for (2.6)) with some positive constant C.

Proof. For any w e CQ(Ω), we have

<axvx, w} = ζvx, axw}

= —<!», cίχWχ> - <y> aχχW>y .

Taking account of the assumption (1.6) and Lemma 2.1, we have

\\\w\\\,

from which follows the estimate (2.4). By the same way we have (2.5).

As in the proof of Lemma 2.2, we have

<Im bvx, wy = — ζv, Im bwxy — ζv, Im bxwy ,

\(lmbvx,wy\ ^ \<t~1/2v,tι/2lmbwxy\ + C |

which imply (2.6).

Now we introduce the norm || ||(8|fc), with s any real number and k

non negative integer (cf. [1], §2.6), defined by

R,,*, = (2*)-1 Γ ί \ΰ(ξ, t)Πl + \ξ\2)sdξdt + t \\Dlv\\lHR%) ,
JO J Rξ j=0

ύ(ξ, t) = I e~ixίv(x, t)dx , v e Cΐ(R%) .

We denote by H(Stk)(R%) the completion of C%(R2

+) in the norm || | | ( > i i ) .

LEMMA 2.4. There exists a positive constant C such that

(2.7) IMI(i/«+i),« ^ C \\\v\\\ , v e CtΦ),. v(x, 0) = 0 .
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Proof. Since we have

Re a(x, t) <; d\/Re a(x, t) , (x> t) e Ώ ,

If we consider the differential operator

L4 = — + i Re a(x, t)— in Ω ,

we have

On the other hand, as a particular case of Theorem I in [10], it follows

that

IMI(i/«+i),i) ^ C2\\L,v\\ v e Co(Ω), v(x,0) = 0

with another constant C2 > 0. Combining the above investigations, we

have (2.7). Q.E.D.

By using Lemma 2.2 and Lemma 2.4 we now come to the main

estimate:

LEMMA 2.5. There exists a positive constant C such that

(2.8) ||i>||(,fi) ^ CQ\v\\ + \\\Lv\\\') , v e C"(β), v(x,0) = 0, ίe = j .

LEMMA 2.6. Every v e H(0ί2)(β2

+) Π δ'φ) such that v(x,0) = C

|7 < oo belongs to H(e2)(R2

+) with ε = .

Proo/. The inequality (2.8) is valid for all v e# ( 2 . 2 )(# 2

+) Π ^(fl),

, 0) = 0. Indeed, we can find a sequence vά e C^φ) such that v̂ Caj, 0)

= 0, Da

xD
β

tVj - Da

xDξv -> 0, j -> oo, when α + ^ ^ 2. Hence

—> 0, which implies that \\\Lv3 — Lv\\\' -*Q. In particular,

So it follows from (2.8) applied to vs that

Next if v satisfies the required conditions, we choose χ e D^(Ω) so that

O g χ ^ l and χ = 1 in a neighbourhood ω of supp. v and we set
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v, = χ(l - δ*ΔYιv .

Here (1 — SιΔ)~ιv is defined as the inverse Fourier transform of

vs = (2π)-' f β«*(l + δψy'viξ, t)dξ .
J Rξ

It is clear that vδ is then in H{22){R\) D £'φ), and that vδ—>v in U

norm as δ —»0. Hence we may apply (2.8) to vδ to conclude that |M|(β,D

< oo provided that we can show that WI^M' remains bounded when

δ —> 0. To prove the last assertion we must prepare some remarks which

correspond to 1°~4° of [2].

1°. We have

2 J -°° 1 + f

Since

K(x) = l e - | a ? l ,

it follows that any derivative of (1 — δ2Δ)~ιv{x, t) decreases faster than

any power of δ as δ —> 0 if (x, t) $ ω.

2°. If Q is a differential operator of order j < 2 (in —^—) with
~ \ dx /

coefficients in C°°(Ώ), it follows that

(2.9) ||(1 - δ2Δ)~ιQu\\ ^ C \\u\\ , u e L\Ω) Π ε'φ) .

3°. When χβCoΦ) we have

(2.10) | | |χ(l - ΛO-^HI ^ C || |w|| | , w e C?(5) .

Indeed, we have

(2.11) ||[χ(l - δ*Δ)-ιw\\\ g C{\\wt\\ + \\w\\) , w e C?(fi)

and

" ^ ) ^ (χd - δ2jyιw

^ C(\\w\f + | |VReα(l - δ2J)-'wx\\2) .

For the second term of the right hand side, we have
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Reα(l

By virtue of 1°, partial integration proves

V , t)

= A f exp (-\χ-y\)wRea{x,t) - VRe a{y, t))wvdy
δ J \ δ J

= A J exp (- | a ?~ y |)(VRe α(i/, t))vw(i/,

+ A f
δ J

exp (—l£ziM)(VReό(iΓt) - VRe o(y, t))w(y, t)dy .
\ δ J

By Lemma 2.1, we can see that VReαO, t) is uniformly Lipschitz con-

tinuous in x and thus the U norm of the last two terms is bounded

above by ||w||2. This estimate combined with (2.11) gives (2.10).

Completion of the proof of Lemma 2.6. We recall that with the

notations introduced above it remains to prove that HIL ÎH' is bounded

as δ —> 0. In the neighbourhood ω of supp. v we have (1 — δ2Δ)vδ = v

and

(1 - δ2Δ)Lvδ = (1 - δ2Δ)(P2

tvδ + (α(α>, t)vδx)x

+ (g(x, t)vδxt) + bvδxt + b°vδt + cvδ

= vtt + (a(x, t)vx)x + gvxt + bvx + b°vt + cv

- 2tf(flx(x, t)vδxx)x - δ\axx{x, t)vδx)x

- 2δ2gxvδxx - δ2gxxvδxt

- 2δ2bxvδxx - δ2bxxvδx - 2δ2b°xvδtx

- δ2b°xxvδt - 2δ2cxvδx - 2δ2cxxvδ .

In view of 1° it follows that we have

(1 - δ2Δ)Lv = Lv + 2δ2(ax(x9 t)vδxx)x + δ2Bxvδ + δ2B2vδt + hδ ,

where B1 and B2 are second order (in — ) operators, and where hδ is

\ dx)

a function such that it vanishes in ω, supp. hδ c supp. χ and ||fca||-»0

as δ-+0. Hence
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Lvδ = χ i{(l - δ'ΔY'Lv + 2δ2(l - δ2Δ)~Kaxvδxx)x

+ δ\l d2A)-lB{vd + δ\l - δ*ΔyιB*vδt + (1 - δ2Δ)~ιhδ ,

where %! is a function in Cj°(β) which is equal to 1 in supp. χ. We re-

mark that from 3° we have

(2.13) | | | Z l ( l - δ*ΔY'f\\\' ^ C\\\f\\\' , fe&Φ) Π g'φ) .

Therefore, it follows that

The last three terms of (2.12) are bounded in U norm in view of 2°

and by the assumption v e ^2)Φ) ΓΊ £\Ω). For the second term, by (2.13),

2° and (2.4), we have

^ C \\\δXaxvδxx)x\\\'

^ 2C (lll^α^^lir + |||^2α,DΛ^||r)
£ C \\v,\\ £ C" \\v\\ .

This completes the proof of Lemma 2.6.

§ 3 . Prooϊ of Theorem 1.1.

Given a function ψ(x, t) e CQ(Ω) and an integer k ^ 2, we may as-

sume, by the partial hypoellipticity of L in t (cf. [1], §4.3), that ψu

e H(s,k)(R2

+) Π Sfφ) for some real number s. For the proof of Theorem

1.1 it suffices to show that s can be replaced by s + ε,ε = . In-
i + 1

deed, it follows that u e H\°s

c

)k)φ) for any s and k, which means that

u 6 C~φ).
Let E be a pseudo-differential operator (in x) with symbol e(ξ) =

(1 + ξψ2 (cf. [3]), and set v = χ£7ψ2i where χ e Cs°(ώ). If we can show

that v e H(t,Λ) for every χ and ψ we will have Eψu e Hfe%φ), hence

M e iϊ(f+e,2) since E is elliptic. It is clear that v e HM(R\) Π ̂ (β),

c, 0) = 0, so in view of Lemma 2.6 it remains only to show that

f < oo. We note that E/ = χEψ is a compactly supported pseudo-

differential operator (in x) of order s with parameter t ^ 0, (cf. [3])

and Lv = L £ ^ . Taking account of E'Lu = J^/ e L2(β) and IH^/IH < oo,

it now sufficies to show that
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We have

LE'u - E'f = 2E[ut + E'ttu + [aD2

x,E']u + [gDxDt9E'\u

+ [bDx,E']u + [b*Dt9E']u + [c,Ef]u

= [aDliE^u + E"u + E"'ut ,

where E" and Ef" are compactly supported pseudo-differential operators
(in x) of order <̂ s with parameter t ^ 0. Obviously 11 JS7r/^ 11 < oo and
\\E'"ut\\ < oo and \\\gDxE'tu\\\; < oo by (1.8) and (2.5), so we shall analyse
the first term in the right hand side. We have

laDl,E'] = [aDX9E']Ds + aΌxE'x ,

and

\\\\aΌl,E'\u\\\ ^ IHEαD^tf^lir + \\\aDxE'xu\\\' .

By (2.5) the last term is estimated by \\Exu\\ < oo. For any WGCQΦ)

we have

K[aDx,E']ux,w>\

Since the order of [aDX9E']x is ^s the first term is estimated by
with another constant C. Let σ[aDx,E'] be a symbol of [aDX9E']. A
simple calculation (cf. [3]) proves the equality

σ[aDX9E
r\ = a-σiEJ + axσ(E2) + E3 ,

where Eu E2 and E3 are compactly supported pseudo-differential operators
(in x) of order <^s and <^s — 1, respectively. This equality leads
us, by partial integration and by use of (2.4), to the following estimate

\φLDX9E
r\u9wx\ ^ C\

The above investigation implies that

\\\laDl,E']u\\\'< oo .

Thus we have |||L'v|||/ < oo and this completes the proof of Theorem 1.1.
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Added in proof. An investigation for the many variable cases will be given in a
future publication.




