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ON A HYPOELLIPTIC BOUNDARY VALUE PROBLEM
TADATO MATSUZAWA

§1. Introduction.

This paper is devoted to the investigation of the hypoellipticity of
the following first boundary value problem:

Lu = uy, + (a(x, Duz), + 9(x, Dug, + b, Hu, + bz, Du, + c(x, Hu

(1.1 .
= f(z, 1) in 2,

1.2) u(z, t)lt:o =0, le <R,

where 2 is an open rectangular domain in (z, ¢)-plane:

R=(—-R<z<RBRXO<tLD R>0,T>0.

We assume that the coefficients a(zx,t), b(x, t), b%«,t) and c(x,t) are all
C= functions in 2 satisfying the following conditions:

1.3 Rea(x,t) =0 in 2,

1.4) for all z with || < R, the function ¢+~ Rea(x,t) has only finite
zeros of order less than or equal to ¢ (=0) in the interval [0 <t < T

(1.5) [Im a(z, t)| < C” Re a(x, t) in 2 (C>0),
(1.6) [ Im a.(z, t)] < C[Re a(z, t)]** in 2,

a1.7 t |Im b(z, t) < C Re a(z, t) in 2,

(1.8) l9@,0] < SRea(, h*  in 2, 0< s <1,
1.9 |9:(z, D)| < C[Re a(z, )] in 2.

We set 0 =(—R<z<R)X[0<t<T). The main result of this
paper is to prove the following theorem.

Received March 12, 1975.
1) We use the symbols C, C%, ... to express the different positive constants
throughout this paper.
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THEOREM 1.1. Suppose that the operator L given in (1.1) satisfies
the condition (1.3)~(1.9). Then any distribution u e 2'(Q) satisfying (1.1)
and (1.2 with f(x,t) e C=(3) must be a C~ function in 0.

We remark that if we consider the partial differential operator of
first order

(1.10) Lo=2 +iu@ % +e@t inQ0,
ot ox

a sufficient condition of Nirenberg and Treves (cf. [10], [11]) for the
operator L, to be hypoelliptic is expressed by (1.3) and (1.4). This is
a necessary and sufficient condition when a(x,?) is analytic in 2. Our
problem is motivated by this fact (cf. [6]) and the proof of Theorem 1.1
will be obtained in the following paragraphs by a refinement of the
method used in [2] and [4]. For the equations of the second order with
real coefficients we refer to [2] and [9].

ExAMPLES. The following operators satisfy the condition (1.3) ~(1.7)
in a neighbourhood of the origin.

0° 0° 0 0
1.11) L, =— + ta(x,t)— + bz, t)— + bz, t)— + c(x,t),
WD) L= o + tale, )0 + D@, O + D@, ) — + o, )

Rea(z,t) > 0in 2,b,b° and ¢ are arbitrary complex valued
C= functions in £,

L= 4 81t — g@P-2 + 0 + o1t — g1
ot ox? ox
1.12)

+ b2, t)% te(@,t)

¢ integer, =0;g9(x) is a real valued C~ function in
(—R X X R),b° ¢ are arbitrary C~ functions in 2.

§2. Preliminaries for the proof of Theorem 1.1.

LEMMA 2.1. ([9], Lemma 1.7.1) Let a(x,t) be the function given in
8§1. Then there exists a positive constant C such that
2.1) la,(x, )P < C Re a(z, t) (x,)el.

Being suggested by [2] and [4], we now introduce the norm ||| - |||

2) By the partial hypo-ellipticity of L in £, condition (1.2) is meaningful in the
sense of distributions (ef. [1], Ch. 4).
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and its dual norm ||| - ||| by

ullP = llwlP + |IVRe aus|P + [|ulf ,

, 1w, wy|
ol = sup [lwl]]

b

where ||-|| is the usual L:norm on £ and {v,w) is the value of v ¢ 2'(J)
evaluated at w.

LEMMA 2.2. Let L be the operator given in (1.1). We have the
following estimate with some positive constant C

(2.2) |l < Clloll + [IILollr,  veCe@), v(x,0)=0.
Proof. Obviously we have
(2.3) KLw, )| < (||l llvlll,  veCe(@), v(x,0)=0.

Next, integrating by parts, we have

—Re{Lv,v) = [|v,|l" + |[[vVRe av,| + Re<g,v.,7) + Re<gv,, 7,
— Re {bv,, 7y — Re (0,;, ) — Re<ev, ) .

For the term of the right hand side, we have for any positive number
0

[{Im bv,, 7| = |[<t* Im bv,, t~/*T)|
< 6<E|bPv., TS + %“t-wmpz :
On the other hand, for any ¢ > 0, we easily have
TP < el|vs|f* + CC) [0 .
Thus, by virtue of the assumption (1.7), we are given the inequality

[CIm bv., W] < 3| VRE G0, + < |lof + % ol .
For the remaining terms we have
0102, 7| < 8 VR av,|F + Effl ol ,

K002, 5| < el VREa@w,|P + 121 »
7
[<b%,, Y] < 8 [|velP + % o]

Kev, oy < C”|v|f" .
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Taking 6 and ¢ sufficiently small, we have

—RelLw, ) =z C,|||v]Iff — Cv|P
= CilIvlIP = Collwll - [ll]]] -

This, combining with (2.8), gives the estimate (2.2). Q.E.D.

LEMMA 2.3. Let a(zx,t) be as above, then we have

2.9 llazv:|ll" < Cllvll
2.5) Navs|ll" < Cllvll ,
(2.6) ITm bv,|l|" < C(lvell + [[vID

for all ve Ce (D), (w(z,0) = 0 for (2.6)) with some positive constant C.
Proof. For any w e C(9), we have

OV WY = Vg QW)
= —{V,0,W;» — <V, Qp, W) .

Taking account of the assumption (1.6) and Lemma 2.1, we have
Kazva wH| < Cllv]] - [llwll] ,

from which follows the estimate (2.4). By the same way we have (2.5).
As in the proof of Lemma 2.2, we have

Imbv,, w) = —<{v,Im dw,» — v, Imb,w) ,
[KIm bv,, wp| < [T, /2 Im bw,p| + C ||v]|||w]|
= C (vl + llID [llwll]

which imply (2.6).
Now we introduce the norm |[| - ||, With s any real number and &
non negative integer (cf. [1], §2.6), defined by

ol = @ [ [ 16 OF QL + |eRrdedt + 3 1D e,
0 JRg j=0
06,0 = [0, s, veCs(E).

We denote by H,(R%) the completion of Cy(R%) in the norm || - ||, -
LEMMA 2.4. There exists a positive constant C such thot

2.7 Hv”(l/(£+l),1) = Clvlll, Ve C(T(AQN)’ v(2,0) =0.
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Proof. Since we have

Rea(x,t) < C,WRealz, ) , (x,t) e,
<CGlplF, veCo@ .

If we consider the differential operator

Lo

0 . 2 .
L,=—" 4+ tRea(x, t)—— in
4 at+ ( )ax

we have
[[ILo|f = [|v ][ + [|[Re avg|[ .

On the other hand, as a particular case of Theorem I in [10], it follows
that

1]/, = Col|Lyvl| ve C?(g), v(x,0) =0

with another constant C, > 0. Combining the above investigations, we
have (2.7). Q.E.D.

By using Lemma 2.2 and Lemma 2.4 we now come to the main
estimate:

LEMMA 2.5. There exists a positive constant C such that

2.8) [[9]ln < CUI + 1LV, ve (@), v(@,0) = 0, (e= Zil).

LEMMA 2.6. Ewvery veH,,(R%) N &) such that v(x,0) =0 and

ILollf < o belongs to Hy,(B2) with ¢ = — Jlr -

Proof. The inequality (2.8) is valid for all ve H,,(R%) N &9,
v(x,0) = 0. Indeed, we can find a sequence v; ¢ Cs($) such that v(, 0)
=0, D:Div; — DiDfv — 0, j— oo, when a« + g < 2. Hence |[Lv; — Lv||
— 0, which implies that |[|Lv; — Lv||' — 0. In particular,

lim ||| Lo, ||/ < ||| Lo])) .

So it follows from (2.8) applied to v; that

im |v;lle,n = CAlvl] + LI -

Next if v satisfies the required conditions, we choose ye Dy(J) so that
0<y=<1and y=1 in a neighbourhood o of supp.v and we set



92 TADATO MATSUZAWA

v, = (1 — &) .

Here (1 — 8*4)~v is defined as the inverse Fourier transform of
A+ &1EP0E, D)

v, = @) j et (1 + FE)15(E, tde .
Rg

It is clear that v, is then in H,(R%) N &' (@), and that v, »v in L?
norm as 6 — 0. Hence we may apply (2.8) to v, to conclude that ||v||, .,
< oo provided that we can show that |||Lv;||/ remains bounded when
d—0. To prove the last assertion we must prepare some remarks which
correspond to 1°~4° of [2].

1°. We have
1 -1z — - - —_ - * iz d&
e =Fla+ =@ | o Trge e <e<e.
Since

vy = (1 — &) "oz, ) = 5 IK( 2o y)v(y, tdy, K@) = %e"“ ,
it follows that any derivative of (1 — ¢°4)~w(x,t) decreases faster than
any power of § as 6 — 0 if (x,t) s w.

2°, If Q is a differential operator of order 7 <2 (in —;——) with
x

coefficients in C=(9), it follows that

2.9 A —oD7Qu < Cllull, ueLD) Ne@D .
3°. When yeCs() we have

(2.10) @ — @D~ w||| < Clilwlll,  weCH(@) .

Indeed, we have

(2.11) @ = @D 7wl < Clwill + llwl),  weCp(@)

and

IKRe a(z, Y(x(A — 8*)7'w)y, (XA — 34~ 'w),p|
< C(jw|P + ||[VRe a(l — &4 w,|P) .

For the second term of the right hand side, we have
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[[vRe a(l — 6°4) 7 w,|*
= |1 — &#4)"'VReaw, + [vVReaD,, (1 — &N~ w|
< 2||¥Reaw,|] + 2|[[VRe aDq, (1 — &'~ Tw|f .

By virtue of 1°, partial integration proves

[vRe aD,, (A — 6°4)~Tw(x, t)
_ 4 _lz =y _
=5 I exp ( 5 )(«/Re a(z, t) — vRe aly, )w,dy

_ A _ |z — ]
=4 [ exp( =yl )(«/”*‘_Re @, 1), w(, dy

A |z =y _
+ 4 j exp( Loy )(«/Re W@, T — vRe a(y, D)wly, Hdy .

By Lemma 2.1, we can see that vRea(z,t) is uniformly Lipschitz con-
tinuous in 2 and thus the L? norm of the last two terms is bounded
above by ||w|?. This estimate combined with (2.11) gives (2.10).

Completion of the proof of Lemma 2.6. We recall that with the
notations introduced above it remains to prove that [||Lv,|| is bounded
as 6 > 0. In the neighbourhood w of supp.v we have (1 — &?Mv; = v
and

1 — &MLw, = (1 — 3D, + (a(x, £)v55)s
+ (9@, O)V550) + DVszs + 005 + €V,
= vy + (&, DV2)s + GV + DV, + b, + cv
— 20402(%, D)Vs00)5 — 0(Aga(, D)V50)5
— 20°9 V500 — 0’922Vt
— 200 ,V;55 — 005,08 — 20°0%0;,,
— 002,05 — 20%C, 05, — 20°C450; .

In view of 1° it follows that we have

1 — FDLY = Lo + 26%a.(, D)V;22)s + 0°Bw,; + 6°Bvs + b,

where B, and B, are second order (in ai> operators, and where 7, is
x

a function such that it vanishes in w, supp. #; C supp. x and ||k,)| — 0
as 6 — 0. Hence
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v, = xi(A — 4Ly + 26°(1 — 8*4) " (@pVs20) 2

L
2.12
212) + &1 — ) 'Bw; + 8*Q — DB, + 1 — 87k, ,

where y, is a function in Cy(2) which is equal to 1 in supp.y. We re-
mark that from 3° we have

(2.13) @ =D fi = CHSIN fed(@n e .
Therefore, it follows that
M@ — D Lo||| < Cl||Lo]|f .

The last three terms of (2.12) are bounded in L? norm in view of 2°
and by the assumption v e ,,(2) N (). For the second term, by (2.13),
2° and (2.4), we have

[17:0° (1 — 824) " @oVs0)2 I
= Cl|6%(0V500)a 1/
=< 2C (|[|0°@2zVsz2lll" + [[10°0eDoViszs]l[)
= Ol = C7 o] -

This completes the proof of Lemma 2.6.

§3. Proof of Theorem 1.1.

Given a function v(x,t) e C3(2) and an integer k = 2, we may as-
sume, by the partial hypoellipticity of L in ¢ (cf. [1], §4.3), that Ju
eH, R N &'($) for some real number s. For the proof of Theorem

1
41
deed, it follows that ueH‘(‘;fk)(f)) for any s and %, which means that
ue C=(9).

Let £ be a pseudo-differential operator (in x) with symbol e(¢) =
(A + &) (cf. [3]), and set v = yEyu where yc Cy(2). If we can show
that veH,, for every y and 4 we will have E«pueHl(‘:fz)(f)), hence
ue H,,, since E is elliptic. It is clear that ve H,,(R2) N (D),
v(2,0) =0, so in view of Lemma 2.6 it remains only to show that
[ILv|| < co. We note that E’ = yE+ is a compactly supported pseudo-
differential operator (in x) of order s with parameter ¢ = 0, (cf. [3])
and Lv = LE'u. Taking account of E'Lu = E’f ¢ LAJ) and |||E'f]|| < oo,
it now sufficies to show that

1.1 it suffices to show that s can be replaced by s 4 ¢, =

IILEfw — E'f||| < oo .
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We have

LE'w — E'f = 2Eu, + E,u + [aD3, E'lu + [9D,D,, E'lu
+ [bD,, E'lu + [0°Dy, E'Ju + [c, E'Ju
= [aD:, E'lu + E"u + E"u, ,

where E” and E’” are compactly supported pseudo-differential operators
(in z) of order <s with parameter ¢ = 0. Obviously [|[E"u|| < c and
|1E"u,|| < oo and |||gD Eul||l < oo by (1.8) and (2.5), so we shall analyse
the first term in the right hand side. We have

[aDi, E’] = [aD,, E'1D, + aD,E’, ,
and
[|[[aD3, E'Tu|||" < ||[{aDg, E'lu.|ll" + |||aD Eulll .

By (2.5) the last term is estimated by ||Eu|| < co. For any we Cy(D)
we have

KleD g, E' vy, w)|
é ’<[aDz5 E,]:cu, w>| + |<[G/D‘.,,, E,]u, w.‘c>] .

Since the order of [aD,, E’], is <s the first term is estimated by C||w]|
with another constant C. Let o[aD,,E’] be a symbol of [aD,,E’]l. A
simple calculation (c¢f. [3]) proves the equality

olaD,, E'] = a-o(E) + a,0(E;) + K,

where E.,, E, and E, are compactly supported pseudo-differential operators
(in x) of order <s and <s — 1, respectively. This equality leads
us, by partial integration and by use of (2.4), to the following estimate

[KlaD,, E'Ju, w,| < Cll|w]l] .
The above investigation implies that
[laDz, EJull]|" < oo .
Thus we have |||Lv|||' < o and this completes the proof of Theorem 1.1.
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Added in proof. An investigation for the many variable cases will be given in a
future publication.





