ON A HYPOELLIPTIC BOUNDARY VALUE PROBLEM

TADATO MATSUZAWA

§ 1. Introduction.

This paper is devoted to the investigation of the hypoellipticity of the following first boundary value problem:

$$
\begin{align*}
L u & =u_{t t}+\left(a(x, t) u_{x}\right)_{x}+g(x, t) u_{x t}+b(x, t) u_{x}+b^{0}(x, t) u_{t}+c(x, t) u \tag{1.1}\\
& =f(x, t) \quad \text { in } \Omega \\
& \left.u(x, t)\right|_{t=0}=0, \quad|x|<R \tag{1.2}
\end{align*}
$$

where Ω is an open rectangular domain in (x, t)-plane:

$$
\Omega=(-R<x<R) \times(0<t<T) \quad R>0, T>0 .
$$

We assume that the coefficients $a(x, t), b(x, t), b^{0}(x, t)$ and $c(x, t)$ are all C^{∞} functions in $\bar{\Omega}$ satisfying the following conditions:

$$
\begin{equation*}
\operatorname{Re} \alpha(x, t) \geqq 0 \quad \text { in } \bar{\Omega}, \tag{1.3}
\end{equation*}
$$

(1.4) for all x with $|x|<R$, the function $t \mapsto \operatorname{Re} a(x, t)$ has only finite zeros of order less than or equal to $\ell(\geqq 0)$ in the interval $[0 \leqq t \leqq T]$

$$
\begin{gather*}
|\operatorname{Im} a(x, t)| \leqq C^{1)} \operatorname{Re} a(x, t) \quad \text { in } \bar{\Omega}(C>0), \tag{1.5}\\
\left|\operatorname{Im} a_{x}(x, t)\right| \leqq C[\operatorname{Re} a(x, t)]^{1 / 2} \quad \text { in } \bar{\Omega}, \tag{1.6}\\
t|\operatorname{Im} b(x, t)|^{2} \leqq C \operatorname{Re} a(x, t) \quad \text { in } \bar{\Omega}, \tag{1.7}\\
|g(x, t)| \leqq \frac{\varepsilon_{1}}{2}[\operatorname{Re} a(x, t)]^{1 / 2} \quad \text { in } \bar{\Omega}, 0<\varepsilon_{1}<1, \tag{1.8}\\
\left|g_{t}(x, t)\right| \leqq C[\operatorname{Re} a(x, t)]^{1 / 2} \quad \text { in } \bar{\Omega} .
\end{gather*}
$$

We set $\tilde{\Omega}=(-R<x<R) \times[0 \leqq t<T)$. The main result of this paper is to prove the following theorem.

Received March 12, 1975.

1) We use the symbols C, C^{1}, \ldots to express the different positive constants throughout this paper.

Theorem 1.1. Suppose that the operator L given in (1.1) satisfies the condition (1.3)~(1.9). Then any distribution $u \in \mathscr{D}^{\prime}(\tilde{\Omega})$ satisfying (1.1) and (1.2) ${ }^{2)}$ with $f(x, t) \in C^{\infty}(\tilde{\Omega})$ must be a C^{∞} function in $\tilde{\Omega}$.

We remark that if we consider the partial differential operator of first order

$$
\begin{equation*}
L_{1}=\frac{\partial}{\partial t}+i a(x, t) \frac{\partial}{\partial x}+c(x, t) \quad \text { in } \Omega \tag{1.10}
\end{equation*}
$$

a sufficient condition of Nirenberg and Treves (cf. [10], [11]) for the operator L_{1} to be hypoelliptic is expressed by (1.3) and (1.4). This is a necessary and sufficient condition when $a(x, t)$ is analytic in $\bar{\Omega}$. Our problem is motivated by this fact (cf. [6]) and the proof of Theorem 1.1 will be obtained in the following paragraphs by a refinement of the method used in [2] and [4]. For the equations of the second order with real coefficients we refer to [2] and [9].

EXAMPLES. The following operators satisfy the condition (1.3)~(1.7) in a neighbourhood of the origin.

$$
\begin{equation*}
L_{2}=\frac{\partial^{2}}{\partial t^{2}}+t a(x, t) \frac{\partial^{2}}{\partial x^{2}}+b(x, t) \frac{\partial}{\partial x}+b^{0}(x, t) \frac{\partial}{\partial t}+c(x, t), \tag{1.11}
\end{equation*}
$$

$\operatorname{Re} a(x, t)>0$ in $\bar{\Omega}, b, b^{0}$ and c are arbitrary complex valued C^{∞} functions in $\bar{\Omega}$,

$$
\begin{align*}
L_{3}= & \frac{\partial^{2}}{\partial t^{2}}+t^{3}[t-g(x)]^{2 e} \frac{\partial^{2}}{\partial x^{2}}+(1+i) t[t-g(x)]^{6} \frac{\partial}{\partial x} \\
& +b^{0}(x, t) \frac{\partial}{\partial t}+c(x, t), \tag{1.12}\\
& \ell \text { integer, } \geqq 0 ; g(x) \text { is a real valued } C^{\infty} \text { function in } \\
& (-R \times x \times R), b^{0}, c \text { are arbitrary } C^{\infty} \text { functions in } \bar{\Omega} .
\end{align*}
$$

§ 2. Preliminaries for the proof of Theorem 1.1.

Lemma 2.1. ([9], Lemma 1.7.1) Let $a(x, t)$ be the function given in §1. Then there exists a positive constant C such that

$$
\begin{equation*}
\left|a_{x}(x, t)\right|^{2} \leqq C \operatorname{Re} a(x, t) \quad(x, t) \in \bar{\Omega} \tag{2.1}
\end{equation*}
$$

Being suggested by [2] and [4], we now introduce the norm ||| $\cdot||\mid$
2) By the partial hypo-ellipticity of L in t, condition (1.2) is meaningful in the sense of distributions (cf. [1], Ch. 4).
and its dual norm $\left\|\left.\|\cdot\|\right|^{\prime}\right.$ by

$$
\begin{aligned}
& \|u\|^{2}=\left\|u_{t}\right\|^{2}+\left\|\sqrt{\operatorname{Re} a} u_{x}\right\|^{2}+\|u\|^{2}, \\
& \|v\|^{\prime}=\sup _{w \in C_{0}^{\infty}(\tilde{\Omega})} \frac{|\langle v, w\rangle|}{\|w \mid\|},
\end{aligned}
$$

where $\|\cdot\|$ is the usual L^{2}-norm on $\tilde{\Omega}$ and $\langle v, w\rangle$ is the value of $v \in \mathscr{D}^{\prime}(\tilde{\Omega})$ evaluated at w.

Lemma 2.2. Let L be the operator given in (1.1). We have the following estimate with some positive constant C

$$
\begin{equation*}
\|v\|\|\leqq C\| v\|+\|\|v\|^{\prime}, \quad v \in C_{0}^{\infty}(\tilde{\Omega}), v(x, 0)=0 \tag{2.2}
\end{equation*}
$$

Proof. Obviously we have

$$
\begin{equation*}
|\langle L v, \bar{v}\rangle| \leqq|\|L v\||^{\prime} \mid\|v\| \|, \quad v \in C_{0}^{\infty}(\widetilde{\Omega}), v(x, 0)=0 \tag{2.3}
\end{equation*}
$$

Next, integrating by parts, we have

$$
\begin{aligned}
-\operatorname{Re}\langle L v, \bar{v}\rangle= & \left\|v_{t}\right\|^{2}+\left\|\sqrt{\operatorname{Re} a} v_{x}\right\|^{2}+\operatorname{Re}\left\langle g_{t} v_{x}, \bar{v}\right\rangle+\operatorname{Re}\left\langle g v_{x}, \bar{v}_{t}\right\rangle \\
& -\operatorname{Re}\left\langle b v_{x}, \bar{v}\right\rangle-\operatorname{Re}\left\langle b^{0} v_{t}, \bar{v}\right\rangle-\operatorname{Re}\langle c v, \bar{v}\rangle
\end{aligned}
$$

For the term of the right hand side, we have for any positive number δ

$$
\begin{aligned}
\left|\left\langle\operatorname{Im} b v_{x}, \bar{v}\right\rangle\right| & =\left|\left\langle t^{1 / 2} \operatorname{Im} b v_{x}, t^{-1 / 2} \bar{v}\right\rangle\right| \\
& \left.\leqq\left.\delta\langle t| b\right|^{2} v_{x}, \bar{v}_{x}\right\rangle+\frac{1}{\delta}\left\|t^{-1 / 2} v\right\|^{2}
\end{aligned}
$$

On the other hand, for any $\varepsilon>0$, we easily have

$$
\left\|t^{-1 / 2} v\right\|^{2} \leqq \varepsilon\left\|v_{t}\right\|^{2}+C(\varepsilon)\|v\|^{2} .
$$

Thus, by virtue of the assumption (1.7), we are given the inequality

$$
\left|\left\langle\operatorname{Im} b v_{x}, \bar{v}\right\rangle\right| \leqq \delta\left\|\sqrt{\operatorname{Re} a} v_{x}\right\|^{2}+\frac{\varepsilon}{\delta}\left\|v_{t}\right\|^{2}+\frac{C(\varepsilon)}{\delta}\|v\|^{2} .
$$

For the remaining terms we have

$$
\begin{aligned}
\left|\left\langle g_{t} v_{x}, \bar{v}\right\rangle\right| & \leqq \delta\left\|\sqrt{\operatorname{Re} a} v_{x}\right\|^{2}+\frac{C(\delta)}{\delta}\|v\|^{2}, \\
\left|\left\langle g v_{x}, \bar{v}_{t}\right\rangle\right| & \leqq \varepsilon_{1}\left(\left\|\sqrt{\operatorname{Re} a} v_{x}\right\|^{2}+\left\|v_{t}\right\|^{2}\right), \\
\left|\left\langle b^{0} v_{t}, \bar{v}\right\rangle\right| & \leqq \delta\left\|v_{t}\right\|^{2}+\frac{C^{\prime}}{\delta}\|v\|^{2} \\
|\langle c v, \bar{v}\rangle| & \leqq C^{\prime \prime}\|v\|^{2} .
\end{aligned}
$$

Taking δ and ε sufficiently small, we have

$$
\begin{aligned}
-\operatorname{Re}\langle L v, \bar{v}\rangle & \geqq C_{1}\| \| v\left\|^{2}-C_{2}\right\| v \|^{2} \\
& \geqq C_{1}\| \| v\left\|^{2}-C_{2}\right\| v\|\cdot\| v \| .
\end{aligned}
$$

This, combining with (2.3), gives the estimate (2.2).
Q.E.D.

Lemma 2.3. Let $a(x, t)$ be as above, then we have

$$
\begin{align*}
\left\|\left\|a_{x} v_{x}\right\|\right\|^{\prime} & \leqq C\|v\| \tag{2.4}\\
\left\|a v_{x}\right\| \|^{\prime} & \leqq C\|v\| \tag{2.5}
\end{align*}
$$

$$
\begin{equation*}
\left\|\operatorname{Im} b v_{x}\right\| \|^{\prime} \leqq C\left(\left\|v_{t}\right\|+\|v\|\right) \tag{2.6}
\end{equation*}
$$

for all $v \in C_{0}^{\infty}(\tilde{\Omega}),(v(x, 0)=0$ for (2.6)) with some positive constant C.
Proof. For any $w \in C_{0}^{\infty}(\tilde{\Omega})$, we have

$$
\begin{aligned}
\left\langle a_{x} v_{x}, w\right\rangle & =\left\langle v_{x}, a_{x} w\right\rangle \\
& =-\left\langle v, a_{x} w_{x}\right\rangle-\left\langle v, a_{x x} w\right\rangle
\end{aligned}
$$

Taking account of the assumption (1.6) and Lemma 2.1, we have

$$
\left|\left\langle a_{x} v_{x}, w\right\rangle\right| \leqq C\|v\| \cdot\| \| w \|
$$

from which follows the estimate (2.4). By the same way we have (2.5). As in the proof of Lemma 2.2, we have

$$
\begin{aligned}
\left\langle\operatorname{Im} b v_{x}, w\right\rangle & =-\left\langle v, \operatorname{Im} b w_{x}\right\rangle-\left\langle v, \operatorname{Im} b_{x} w\right\rangle \\
\left|\left\langle\operatorname{Im} b v_{x}, w\right\rangle\right| & \leqq\left|\left\langle t^{-1 / 2} v, t^{1 / 2} \operatorname{Im} b w_{x}\right\rangle\right|+C\|v\|\|w\| \\
& \leqq C^{\prime}\left(\left\|v_{t}\right\|+\|v\|\right)\|w\|
\end{aligned}
$$

which imply (2.6).
Now we introduce the norm $\|\cdot\|_{(s, k)}$, with s any real number and k non negative integer (cf. [1], § 2.6), defined by

$$
\begin{gathered}
\|v\|_{(s, k)}^{2}=(2 \pi)^{-1} \int_{0}^{\infty} \int_{R_{\xi}}|\hat{v}(\xi, t)|^{2}\left(1+|\xi|^{2}\right)^{s} d \xi d t+\sum_{j=0}^{k}\left\|D_{t}^{j} v\right\|_{L^{2}\left(R_{+}^{2}\right)}^{2}, \\
\hat{v}(\xi, t)=\int e^{-i x \xi} v(x, t) d x, \quad v \in C_{0}^{\infty}\left(\bar{R}_{+}^{2}\right) .
\end{gathered}
$$

We denote by $H_{(s, k)}\left(\bar{R}_{+}^{2}\right)$ the completion of $C_{0}^{\infty}\left(\bar{R}_{+}^{2}\right)$ in the norm $\|\cdot\|_{(s, k)}$.
Lemma 2.4. There exists a positive constant C such that

$$
\begin{equation*}
\|v\|_{(1 /(\varepsilon+1), 1)} \leqq C\|v\|, \quad v \in C_{0}^{\infty}(\widetilde{\Omega}), v(x, 0)=0 \tag{2.7}
\end{equation*}
$$

Proof. Since we have

$$
\begin{aligned}
\operatorname{Re} a(x, t) & \leqq C_{1} \sqrt{\operatorname{Re} a(x, t)}, \quad(x, t) \in \bar{\Omega}, \\
& \leqq C_{1}^{2}\|v\|^{2}, \quad v \in C_{0}^{\infty}(\widetilde{\Omega}) .
\end{aligned}
$$

If we consider the differential operator

$$
L_{4}=\frac{\partial}{\partial t}+i \operatorname{Re} a(x, t) \frac{\partial}{\partial x} \quad \text { in } \tilde{\Omega},
$$

we have

$$
\left\|L_{4} v\right\|^{2}=\left\|v_{t}\right\|^{2}+\left\|\operatorname{Re} a v_{x}\right\|^{2}
$$

On the other hand, as a particular case of Theorem I in [10], it follows that

$$
\|v\|_{(1 /(\ell+1), 1)} \leqq C_{2}\left\|L_{4} v\right\| \quad v \in C_{0}^{\infty}(\tilde{\Omega}), v(x, 0)=0
$$

with another constant $C_{2}>0$. Combining the above investigations, we have (2.7).
Q.E.D.

By using Lemma 2.2 and Lemma 2.4 we now come to the main estimate:

Lemma 2.5. There exists a positive constant C such that

$$
\begin{equation*}
\|v\|_{(e, 1)} \leqq C\left(\|v\|+\| \| v \|^{\prime}\right), \quad v \in C_{0}^{\infty}(\tilde{\Omega}), \quad v(x, 0)=0,\left(\varepsilon=\frac{1}{\ell+1}\right) \tag{2.8}
\end{equation*}
$$

Lemma 2.6. Every $v \in H_{(0,2)}\left(R_{+}^{2}\right) \cap \mathscr{E}^{\prime}(\tilde{\Omega})$ such that $v(x, 0)=0$ and $\|L v\| \|^{\prime}<\infty$ belongs to $H_{(e, 2)}\left(R_{+}^{2}\right)$ with $\varepsilon=\frac{1}{\ell+1}$.

Proof. The inequality (2.8) is valid for all $v \in H_{(2.2)}\left(R_{+}^{2}\right) \cap \mathscr{E}^{\prime}(\tilde{\Omega})$, $v(x, 0)=0$. Indeed, we can find a sequence $v_{j} \in C_{0}^{\infty}(\widetilde{\Omega})$ such that $v_{j}(x, 0)$ $=0, D_{x}^{\alpha} D_{t}^{\beta} v_{j}-D_{x}^{\alpha} D_{t}^{\beta} v \rightarrow 0, j \rightarrow \infty$, when $\alpha+\beta \leqq 2$. Hence $\left\|L v_{j}-L v\right\|$ $\rightarrow 0$, which implies that $\left\|\left\|v_{j}-L v\right\|\right\|^{\prime} \rightarrow 0$. In particular,

$$
\overline{\lim }\left\|\mid L v_{j}\right\|\left\|^{\prime} \leqq\right\| L v\left\|\|^{\prime}\right.
$$

So it follows from (2.8) applied to v_{j} that

$$
\overline{\lim }\left\|v_{j}\right\|_{(\varepsilon, 1)} \leqq C\left(\|v\|+\| \| v \|^{\prime}\right) .
$$

Next if v satisfies the required conditions, we choose $\chi \in D_{0}^{\infty}(\widetilde{\Omega})$ so that $0 \leqq \chi \leqq 1$ and $\chi=1$ in a neighbourhood ω of supp. v and we set

$$
v_{\delta}=\chi\left(1-\delta^{2} \Delta\right)^{-1} v
$$

Here $\left(1-\delta^{2} \Delta\right)^{-1} v$ is defined as the inverse Fourier transform of $\left(1+\delta^{2}|\xi|^{2}\right)^{-1} \hat{v}(\xi, t)$:

$$
v_{\delta}=(2 \pi)^{-1} \int_{R_{\xi}} e^{i x \xi}\left(1+\delta^{2} \xi^{2}\right)^{-1} \hat{v}(\xi, t) d \xi .
$$

It is clear that $v_{\dot{\delta}}$ is then in $H_{(2,2)}\left(R_{+}^{2}\right) \cap \mathscr{E}^{\prime}(\widetilde{\Omega})$, and that $v_{\dot{\delta}} \rightarrow v$ in L^{2} norm as $\delta \rightarrow 0$. Hence we may apply (2.8) to v_{δ} to conclude that $\|v\|_{(e, 1)}$ $<\infty$ provided that we can show that $\left\|\mid L v_{0}\right\| \|^{\prime}$ remains bounded when $\delta \rightarrow 0$. To prove the last assertion we must prepare some remarks which correspond to $1^{\circ} \sim 4^{\circ}$ of [2].
1°. We have

$$
\frac{1}{2} e^{-|x|}=\mathscr{F}^{-1}\left[\left(1+\xi^{2}\right)^{-1}\right]=(2 \pi)^{-1} \int_{-\infty}^{\infty} e^{i x \xi} \frac{d \xi}{1+\xi^{2}}, \quad-\infty<x<\infty .
$$

Since

$$
v_{\delta}=\left(1-\delta^{2} \Delta\right)^{-1} v(x, t)=\delta^{-1} \int K\left(\frac{x-y}{\delta}\right) v(y, t) d y, \quad K(x)=\frac{1}{2} e^{-|x|}
$$

it follows that any derivative of $\left(1-\delta^{2} \Delta\right)^{-1} v(x, t)$ decreases faster than any power of δ as $\delta \rightarrow 0$ if $(x, t) \notin \omega$.
2°. If Q is a differential operator of order $j \leqq 2\left(\right.$ in $\left.\frac{\partial}{\partial x}\right)$ with coefficients in $C^{\infty}(\bar{\Omega})$, it follows that

$$
\begin{equation*}
\left\|\left(1-\delta^{2} \Delta\right)^{-1} Q u\right\| \leqq C\|u\|, \quad u \in L^{2}(\widetilde{\Omega}) \cap \varepsilon^{\prime}(\widetilde{\Omega}) \tag{2.9}
\end{equation*}
$$

3°. When $\chi \in C_{0}^{\infty}(\tilde{\Omega})$ we have

$$
\begin{equation*}
\left\|\left\|\chi (1 - \delta ^ { 2 } \Delta) ^ { - 1 } w \left|\|\leqq C \mid\| w\| \|, \quad w \in C_{0}^{\infty}(\widetilde{\Omega})\right.\right.\right. \tag{2.10}
\end{equation*}
$$

Indeed, we have

$$
\begin{equation*}
\left\|\left[\chi\left(1-\delta^{2} \Delta\right)^{-1} w\right]_{t}\right\| \leqq C\left(\left\|w_{t}\right\|+\|w\|\right), \quad w \in C_{0}^{\infty}(\tilde{\Omega}) \tag{2.11}
\end{equation*}
$$

and

$$
\begin{aligned}
& \mid\left\langle\operatorname{Re} a(x, t)\left(\chi\left(1-\delta^{2} \Delta\right)^{-1} w\right)_{x}, \overline{\left.\left(\chi\left(1-\delta^{2} \Delta\right)^{-1} w\right)_{x}\right\rangle \mid}\right. \\
& \quad \leqq C\left(\|w\|^{2}+\left\|\sqrt{\operatorname{Re} a}\left(1-\delta^{2} \Delta\right)^{-1} w_{x}\right\|^{2}\right)
\end{aligned}
$$

For the second term of the right hand side, we have

$$
\begin{aligned}
& \left\|\sqrt{\operatorname{Re} a}\left(1-\delta^{2} \Delta\right)^{-1} w_{x}\right\|^{2} \\
& \quad=\left\|\left(1-\delta^{2} \Delta\right)^{-1} \sqrt{\operatorname{Re} a} w_{x}+\left[\sqrt{\operatorname{Re} a} D_{x},\left(1-\delta^{2} \Delta\right)^{-1}\right] w\right\|^{2} \\
& \quad \leqq 2\left\|\sqrt{\operatorname{Re} a} w_{x}\right\|^{2}+2\left\|\left[\sqrt{\operatorname{Re} a} D_{x},\left(1-\delta^{2} \Delta\right)^{-1}\right] w\right\|^{2} .
\end{aligned}
$$

By virtue of 1°, partial integration proves

$$
\begin{aligned}
& {\left[\sqrt{\operatorname{Re} a} D_{x},\left(1-\delta^{2} \Delta\right)^{-1}\right] w(x, t)} \\
& =\frac{A}{\delta} \int \exp \left(-\frac{|x-y|}{\delta}\right)(\sqrt{\operatorname{Re} a(x, t)}-\sqrt{\operatorname{Re} a(y, t)}) w_{y} d y \\
& =\frac{A}{\delta} \int \exp \left(-\frac{|x-y|}{\delta}\right)(\sqrt{\operatorname{Re} a(y, t)})_{y} w(y, t) d y \\
& \quad+\frac{A}{\delta^{2}} \int \exp \left(-\frac{|x-y|}{\delta}\right)(\sqrt{\operatorname{Re} a(x, t)}-\sqrt{\operatorname{Re} a(y, t)}) w(y, t) d y
\end{aligned}
$$

By Lemma 2.1, we can see that $\sqrt{\operatorname{Re} a(x, t)}$ is uniformly Lipschitz continuous in x and thus the L^{2} norm of the last two terms is bounded above by $\|w\|^{2}$. This estimate combined with (2.11) gives (2.10).

Completion of the proof of Lemma 2.6. We recall that with the notations introduced above it remains to prove that $\left\|\left.\left\|L v_{\delta}\right\|\right|^{\prime}\right.$ is bounded as $\delta \rightarrow 0$. In the neighbourhood ω of supp. v we have $\left(1-\delta^{2} \Delta\right) v_{\dot{\delta}}=v$ and

$$
\begin{aligned}
& \left(1-\delta^{2} \Delta\right) L v_{\dot{\delta}}=\left(1-\delta^{2} \Delta\right)\left(D_{t}^{2} v_{\dot{\delta}}+\left(a(x, t) v_{\partial x}\right)_{x}\right. \\
& +\left(g(x, t) v_{\dot{\delta} x t}\right)+b v_{\dot{\delta} x t}+b^{0} v_{\bar{\delta} t}+c v_{\dot{\delta}} \\
& =v_{t t}+\left(a(x, t) v_{x}\right)_{x}+g v_{x t}+b v_{x}+b^{0} v_{t}+c v \\
& -2 \delta^{2}\left(a_{x}(x, t) v_{\dot{\delta} x x}\right)_{x}-\delta^{2}\left(a_{x x}(x, t) v_{\dot{\delta} x}\right)_{x} \\
& -2 \delta^{2} g_{x} v_{\delta x x}-\delta^{2} g_{x x} v_{\dot{\delta} x t} \\
& -2 \delta^{2} b_{x} v_{\partial x x}-\delta^{2} b_{x x} v_{\dot{\delta}} x-2 \delta^{2} b_{x}^{0} v_{\partial t x} \\
& -\delta^{2} b_{x x}^{0} v_{\dot{\delta} t}-2 \delta^{2} c_{x} v_{\delta x}-2 \delta^{2} c_{x x} v_{\dot{\delta}} .
\end{aligned}
$$

In view of 1° it follows that we have

$$
\left(1-\delta^{2} t\right) L v=L v+2 \delta^{2}\left(a_{x}(x, t) v_{\delta x x}\right)_{x}+\delta^{2} B_{1} v_{\delta}+\delta^{2} B_{2} v_{\delta t}+h_{\dot{\delta}}
$$

where B_{1} and B_{2} are second order (in $\frac{\partial}{\partial x}$) operators, and where h_{δ} is a function such that it vanishes in ω, supp. $h_{\delta} \subset \operatorname{supp} . \chi$ and $\left\|h_{\delta}\right\| \rightarrow 0$ as $\delta \rightarrow 0$. Hence

$$
\begin{align*}
L v_{\delta}= & \chi_{1}\left(1-\delta^{2} \Delta\right)^{-1} L v+2 \delta^{2}\left(1-\delta^{2} \Delta\right)^{-1}\left(a_{x} v_{\delta x x}\right)_{x} \tag{2.12}\\
& +\delta^{2}\left(1-\delta^{2} \Delta\right)^{-1} B_{1} v_{\delta}+\delta^{2}\left(1-\delta^{2} \Delta\right)^{-1} B^{2} v_{\partial t}+\left(1-\delta^{2} \Delta\right)^{-1} h_{\partial}
\end{align*}
$$

where χ_{1} is a function in $C_{0}^{\infty}(\widetilde{\Omega})$ which is equal to 1 in supp. χ. We remark that from 3° we have

$$
\begin{equation*}
\left\|\chi_{1}\left(1-\delta^{2} \Delta\right)^{-1} f\right\|\left\|^{\prime} \leqq C\right\| \mid\| \|^{\prime}, \quad f \in \mathscr{D}^{\prime}(\tilde{\Omega}) \cap \mathscr{E}^{\prime}(\tilde{\Omega}) . \tag{2.13}
\end{equation*}
$$

Therefore, it follows that

$$
\left\|\left\|\chi_{1}\left(1-\delta^{2} \Delta\right)^{-1} L v\right\|\right\|^{\prime} \leqq C|\|L v\||^{\prime}
$$

The last three terms of (2.12) are bounded in L^{2} norm in view of 2° and by the assumption $v \in_{(0,2)}(\tilde{\Omega}) \cap \mathscr{E}^{\prime}(\tilde{\Omega})$. For the second term, by (2.13), 2° and (2.4), we have

$$
\begin{aligned}
& \left\|\chi_{1} \delta^{2}\left(1-\delta^{2} \Delta\right)^{-1}\left(a_{x} v_{\delta x x}\right)_{x}\right\| \|^{\prime} \\
& \quad \leqq C\| \| \delta^{2}\left(a_{x} v_{\delta x x} x_{x} \|\left.\right|^{\prime}\right. \\
& \quad \leqq 2 C\left(\| \| \delta^{2} a_{x x} v_{\delta x x}\| \|^{\prime}+\left\|\delta^{2} a_{x} D_{x} v_{\dot{\delta x x}}\right\| \|^{\prime}\right) \\
& \quad \leqq C^{\prime}\left\|v_{\dot{\delta}}\right\| \leqq C^{\prime \prime}\|v\| .
\end{aligned}
$$

This completes the proof of Lemma 2.6.

§ 3. Proof of Theorem 1.1.

Given a function $\psi(x, t) \in C_{0}^{\infty}(\widetilde{\Omega})$ and an integer $k \geqq 2$, we may assume, by the partial hypoellipticity of L in t (cf. [1], §4.3), that ψu $\in H_{(s, k)}\left(\bar{R}_{+}^{2}\right) \cap \mathscr{E}^{\prime}(\tilde{\Omega})$ for some real number s. For the proof of Theorem 1.1 it suffices to show that s can be replaced by $s+\varepsilon, \varepsilon=\frac{1}{\ell+1}$. Indeed, it follows that $u \in H_{(s, k)}^{\mathrm{1oc}}(\widetilde{\Omega})$ for any s and k, which means that $u \in C^{\infty}(\widetilde{\Omega})$.

Let E be a pseudo-differential operator (in x) with symbol $e(\xi)=$ $\left(1+\xi^{2}\right)^{s / 2}$ (cf. [3]), and set $v=\chi E \psi u$ where $\chi \in C_{0}^{\infty}(\tilde{\Omega})$. If we can show that $v \in H_{(e, k)}$ for every χ and ψ we will have $E \psi u \in H_{(c, 2)}^{\text {1oc }}(\tilde{\Omega})$, hence $u \in H_{(s+6,2)}^{\mathrm{Ioc}}$ since E is elliptic. It is clear that $v \in H_{(0,2)}\left(\bar{R}_{+}^{2}\right) \cap \mathscr{E}^{\prime}(\widetilde{\Omega})$, $v(x, 0)=0$, so in view of Lemma 2.6 it remains only to show that $\|L v\| \|^{\prime}<\infty$. We note that $E^{\prime}=\chi E \psi$ is a compactly supported pseudodifferential operator (in x) of order s with parameter $t \geqq 0$, (cf. [3]) and $L v=L E^{\prime} u$. Taking account of $E^{\prime} L u=E^{\prime} f \in L^{2}(\tilde{\Omega})$ and $\left\|\left\|E^{\prime} f\right\|<\infty\right.$, it now sufficies to show that

$$
\left\|\left||L E| u-E^{\prime} f\right|\right\|<\infty .
$$

We have

$$
\begin{aligned}
L E^{\prime} u-E^{\prime} f= & 2 E_{t}^{\prime} u_{t}+E_{t t}^{\prime} u+\left[a D_{x}^{2}, E^{\prime}\right] u+\left[g D_{x} D_{t}, E^{\prime}\right] u \\
& +\left[b D_{x}, E^{\prime}\right] u+\left[b^{0} D_{t}, E^{\prime}\right] u+\left[c, E^{\prime}\right] u \\
= & {\left[a D_{x}^{2}, E^{\prime}\right] u+E^{\prime \prime} u+E^{\prime \prime \prime} u_{t} }
\end{aligned}
$$

where $E^{\prime \prime}$ and $E^{\prime \prime \prime}$ are compactly supported pseudo-differential operators (in x) of order $\leqq s$ with parameter $t \geqq 0$. Obviously $\left\|E^{\prime \prime} u\right\|<\infty$ and $\left\|E^{\prime \prime \prime} u_{t}\right\|<\infty$ and $\left\|g D_{x} E_{t}^{\prime} u\right\| \|^{\prime}<\infty$ by (1.8) and (2.5), so we shall analyse the first term in the right hand side. We have

$$
\left[a D_{x}^{2}, E^{\prime}\right]=\left[a D_{x}, E^{\prime}\right] D_{x}+a D_{x} E_{x}^{\prime},
$$

and

$$
\|\left[\left[a D_{x}^{2}, E^{\prime}\right] u\| \|^{\prime} \leqq\left.\left\|\left[a D_{x}, E^{\prime}\right] u_{x}\right\|\right|^{\prime}+\left\|\mid a D_{x} E_{x}^{\prime} u\right\| \|^{\prime}\right.
$$

By (2.5) the last term is estimated by $\left\|E_{x}^{\prime} u\right\|<\infty$. For any $w \in C_{0}^{\infty}(\widetilde{\Omega})$ we have

$$
\begin{aligned}
& \left|\left\langle\left[a D_{x}, E^{\prime}\right] u_{x}, w\right\rangle\right| \\
& \quad \leqq\left|\left\langle\left[a D_{x}, E^{\prime}\right]_{x} u, w\right\rangle\right|+\left|\left\langle\left[a D_{x}, E^{\prime}\right] u, w_{x}\right\rangle\right|
\end{aligned}
$$

Since the order of $\left[a D_{x}, E^{\prime}\right]_{x}$ is $\leqq s$ the first term is estimated by $C\|w\|$ with another constant C. Let $\sigma\left[a D_{x}, E^{\prime}\right]$ be a symbol of $\left[a D_{x}, E^{\prime}\right] . A$ simple calculation (cf. [3]) proves the equality

$$
\sigma\left[a D_{x}, E^{\prime}\right]=a \cdot \sigma\left(E_{1}\right)+a_{x} \sigma\left(E_{2}\right)+E_{3}
$$

where E_{1}, E_{2} and E_{3} are compactly supported pseudo-differential operators (in x) of order $\leqq s$ and $\leqq s-1$, respectively. This equality leads us, by partial integration and by use of (2.4), to the following estimate

$$
\left|<\left[a D_{x}, E^{\prime}\right] u, w_{x}\right| \leqq C \mid\|w\|
$$

The above investigation implies that

$$
\left\|\left[a D_{x}^{2}, E^{\prime}\right] u\right\| \|^{\prime}<\infty .
$$

Thus we have $\|L v\| \|^{\prime}<\infty$ and this completes the proof of Theorem 1.1.

References

[1] Hörmander, L.: Linear partial differential operators, Springer Verlag, 1964.
[2] Hörmander, L.: Hypoelliptic second order differential equations, Acta Math., 119 (1968), 147-171.
[3] Hörmander, L.: Fourier integral operators, I, Acta Math., 127 (1971), 79-183.
[4] Kato, Y.: On a class of hypoelliptic differential operators, Proc. Japan Acad. 46, No. 1 (1970), 33-37.
[5] Matsuzawa, T.: Sur les équations $u_{t t}+t^{\alpha} u_{x x}=f(\alpha \geqq 0)$, Nagoya Math. J., Vol. 42 (1971), 43-55.
[6] Matsuzawa, T.: On some degenerate parabolic equations I, Nagoya Math. J. 51 (1973), 57-77, II, Nagoya Math. J. 52 (1973), 61-84.
[7] Matsuzawa, T. (with Y. Hashimoto) : On a class of degenerate elliptic equations, Nagoya Math. J. 55 (1974), 181-204.
[8] Mizohata, S.: Solutions nulles et solutions non analytiques, J. Math. Kyoto Univ. (1962), 271-302.
[9] Oleinik, O. A. and Radkevič, E. V.: Second order equations with nonnegative characteristic form, Amer. Math. Soc., 1973.
[10] Treves, F.: A new method of proof of the subelliptic estimates, Comm. Pure Applied Math., 24 (1971), 71-115.
[11] Treves, F.: Analytic-hypoelliptic partial differential equations of principal type, Comm. Pure Applied Math., 24 (1971), 537-570.

Department of Mathematics
Nagoya University

Added in proof. An investigation for the many variable cases will be given in a future publication.

