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NON-LINEAR ELLIPTIC OPERATORS ON A COMPACT
MANIFOLD AND AN IMPLICIT FUNCTION THEOREM

TOSHIKAZU SUNADA

Introduction

Many problems in differential and analytic geometry seem to have
something to do with the study of non-linear partial differential equa-
tions of elliptic type. For instance, the classical Weyl and Minkowski
problems for a convex surface have been studied by H. Weyl, H. Lewy,
and L. Nirenberg using the iteration method for the construction of
solutions of certain non-linear equations of elliptic type (see [6]). Also,
M. Kuranishi [3] constructed the effective complete family of deforma-
tions of complex analytic structures on a given compact complex mani-
fold as the solution space of another non-linear equation of elliptic type
whereby the basic idea in his work is to apply an implicit function
theorem to the non-linear operator of a Banach space, and to construct
the bifurcation of solutions explicitly.

In this paper, we will make researches with some geometric struc-
tures of the solution spaces of non-linear elliptic systems of partial dif-
ferential equations defined on a compact manifold, by using the gen-
eralized bifurcation method in (infinite dimensional) Frechet manifolds.
The central theme of the present paper is to investigate an Implicit
Function Theorem (I.F.T.) for non-linear elliptic operators in the category
of the Frechet topology. In his monograph [9], R. S. Palais has devel-
oped a very general culculus for non-linear differential operators on a
C°°-manifold from a global point of view. Following the formulation of
Palais, we shall deal with operators acting on the space of global cross
sections of a C00-fiber bundle. In the case of opertors acting on smooth
functions, namely in the case of those on a trivial line bundle, we have
announced our results in [10].

We will now describe the results of the present paper. Let L be a
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(non-linear) differential operator from Γ(E) to Γ(F), where E and F are
C°°-fiber bundles on a compact manifold M, and Γ(E) (resp. Γ(F)) denotes
the space of C°°-global cross sections of E (resp. F). We suppose that
L is elliptic at se Γ(E), namely, its linearization dsL of L at se Γ(E)
by the Gateaux derivation (it always exists) is a linear elliptic operator
from Γ(TSE) to Γ(TL{S)F), where TS(F) (resp. TLiS)(F)) denotes the vector
bundle s~ιTF(E) (resp. Lis^'TFiF)) induced by s (resp. L(s)) from TF(E)
(resp. TF(F)), that is known as the vector bundle along the fiber of E
(resp. F). We state in Theorem 1, §4, that the solution space ©s =
{t e Γ{E) L(t) = L(s)} is i ocally a finite dimensional subset in Γ(E) around
s. To state more precisely, there is an open neighborhood U of s in
Γ(E) with respect to the C°°-topology such that ©s Π tt is diffeomorphic
to a locally closed set of the finite dimensional vector space TS(<S) =
{v G Γ(TSE) dsL(v) = 0}. This theorem is in part a generalization of a
result of J. Moser [4], who proved that, without the assumption of ellip-
ticity, the solution space is of zero-dimension when dsL is injective.
Later, M. Ise proposed the conjecture that the local dimension of ©s at
s is not greater than the dimension of Ts(©) in the case where E and
F are trivial line bundles. Our result is in a sense a verification of this
conjecture.

In order to prove Theorem 1, we have to construct the bίfurccation
operator Φ related to the operator L, based on the Hodge-Kodaira de-
composition, and show that Φ endows a local diffeomorphism. Although
it is easy to show that the linearization of Φ is an isomorphism of cer-
tain Frechet spaces, we can not immediately apply the usual I.F.T. to
the operator Φ, because it does not hold in general for Frechet space.
For this reason, by utilizing the so-called I.L.H.-method introduced in

Λ

H. Omori [7] and the regularity of solutions of a non-linear elliptir equa-
tion (see A. Douglis-L. Nirenberg [1]), we prove a modified Implicit Func-
tion Theorem in certain Frechet spaces with the C°°-topology, which is a
unified method of non-linear global analysis and infinite dimensional
geometry (see [2], [5]).

The contents of this paper are as follows: To begin with, in § 1,
we review of the manifold structure of the space of global sections of
C°°-fiber bundles and the notion of non-linear elliptic operators, following
Palais [9]. In §2, we will explain two simple examples of non-linear
elliptic (overdetermined elliptic) operators. Some general results about
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linear elliptic operators with C^-coefficients, for instance, the classical
theory of Hodge-Kodaira's decomposition, which we shall utilize in the
later sections, are summarized in §3. In § 4, we state the main theorem
of this paper, and apply the theorem to the examples given in § 2. We
also apply in § 5 a modified implicit function theorem to the study of
the solution space of non-linear equations. Using the results in § 3, we
prove an I.F.T. for elliptic operators in §6. The proof is based mainly
upon the regularity of solutions. Finally, in § 7, we give a more precise
result for the solution space under an additional assumption. In the
course of our arguments there, we shall need the notion of the minimal
elements.

Interesting examples and applications to differential and analytic
geometry will be discussed in a forthcoming paper.

The author is grateful to Professor Mikio Ise for suggesting the
present problem and for his advices in the course of preparation of this
paper.

§ l Review of the manifold structure of the space of global sections

We now fix our notations and recall some results which will be used
later. Specifically, we define the (non-linear) differential operators act-
ing on the space of cross sections of a C°°-fiber bundle, using the notion
of the jet bundles and the jet extension mapping. As for the definitions
and the results summerized here, we refer to Palais [8] as a standard
reference.

Let M be a compact w-dimensional C°°-manifold without boundary,
and let π: E-+M be a C°°-fiber bundle over M. For an integer k ;> n/2 + 1,
we get a C°°-Hilbert manifold Wk(E), called the Sobolev manifold of
degree k, defined as the set of all global cross sections of E whose
(distributional) derivatives of order ^ k with respect to any local co-
ordinates are square integrable.

Let Γh(E) denote the space of sections of E of class Ch. This is a
Banach manifold under so-called Ck topology. The Sobolev embedding
theorem states that if h ^ 0 and k > (n/2) + h, then Wk(E) c Γh(E) and
the inclusion mapping is continuous.

We shall define a differentiate structure for Γ(E) = Γ°°(E), the
space of global C°°-cross sections of E, by expressing the C°°-topology as
the inverse limit of the topologies of Wk(E):
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Γ(E) = lim Wk(E) = Π W*(E) .
< k>n/2

Then the Frechet manifold Γ(E) is called an /.L.H.-manifold (the in-

verse limit of Hubert manifolds; see [7]).

From the local triviality of fiber bundle π: E —> X, it follows that

the projection π is a submersion (namely, its differential dπ\ TE-+TX

is surjective), whence that Ker(dπ) is a vector subbundle of the tangent

bundle TE of E. This vector bundle over E will be denoted by TF(E),

and is usually called the tangent bundle along the fiber of E. If

s e Γ(E), then the induced bundle s~ιTF(E) by s is a vector bundle over

M which we denote simply by TS(E). Then, the space of cross section,

Γ(TSE), plays a role of the tangent space at s of the Frechet manifold

For any continuous section s e Γ°(E), we define a vector bundle neigh-

borhood of s in E by a vector bundle ξ over M, such that ξ is an opew

subbundle of E and seΓ°(f). Then, for any fiber bundle E, seΓ%E),

and any neighborhood U of s(M) in Z<7, there exists a vector bundle neigh-

borhood ξ of s in E with £ cz [7. Moreover, if s e ΓCE*) we can choose

ξ so that s is the zero section of ξ in this case ξ is clearly isomorphic

to TS(E).

Using the vector bundle neighborhoods, we have a covering

where in the union ξ runs over all open vector bundle neighborhoods of

E and Wk(ξ) is an open submanifold of Wk(E).

Next we shall define (non-linear) differential operators acting on the

space of cross sections of a fiber bundle. For this purpose, we const-

ruct first the m-jet bundle JmE of E, as follows: For a given eeE

with π(e) = x and local cross sections su s2 of E defined around x with

s^x) = s2(x) = e, we choose a chart around x in ilί, a local trivialization

of i? around x, and a chart around e in the fiber £7̂  = π~\x) respectively;

under these conditions, if the m-th order Taylor expansions of sλ and s2

coincide each other, we say that st and s2 have the same m-jet at x. This

defines an equivalence relation on the set of local cross sections s of E

around x with s(x) = e. The set of equivalence classes is denoted by

JmEe and the equivalence class containing s is denoted by jm(s)x. Put

Jf(E) = {JeeEJmEe and τr$m): /?(£/) -> E denotes the projection given by
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πίm)(J$Ee) = e We define a C°°-fiber bundle over M

τr(w): JmE -> M ,

whose total space is J%E and whose projection is the composition π{m)

= 7ro4m). Then bundle JmE is called the m-jet bundle of Ef and the

mapping j m : Γ(S) -* Γ(JmE) defined by jm(s)(x) = ira(s)^ is called the m-

/eί extension mapping.

Now let ί7 be another C°°-fiber bundle over M. Then a mapping

L: r(Z?) —> Γ(F) will be called a (non-linear) differential operator of order

m from E to F if it can be factored as

Γ{E) - ^ > Γ(JmE) - ^ > Γ(F) ,

where T: /mi? -> F is a C'-fiber bundle mapping over M.

In the case of the operator L acting on smooth functions, a local ex-

pression of L with respect to local coordinates is represented as follows:

Choose the local coordinates xu , xn in a coordinates neighborhood U in

M. In this case, the jet extension mapping is given by the derivation of

order ^ m: C°°(ί7) —> C*(U)N

9 that is furnished by u *-+{Dau}lalχm, where

N denotes the number of multi-indices « = (<*!,-••,«») with |α| = J ] α* <̂  m,

and Dα denotes the partial derivation dai/dx^ danldxa

n

n as usual. Fur-

ther, the fiber bundle mapping :U X RN -*U X R is given by an element

of C°°(£7 X RN), say F(a, ̂ /(α)). Then the operator: C°°(t7) -> C°°(U) induced

by L is of the form:

L(u) = F(a?, Z)α^) .

Every (non-linear) differential operator L of order m can be ex-

tended to a C°°-mapping of the Hubert manifolds:

Lm . φ*(E) _, wk~m(F)

for A; > in 12) + m. Then the Frechet derivative dsL
(k) of L(A) at s e Γ(£?)

is a linear mapping of Γβ(ϊ7*#) into TL{S)(Wk-mF), where Γβ(T7*^) (resp.

TLw{Wk"mF)) denotes the tangent space of Hubert manifold Wk(E) at s

(resp. Wk~m(F) at L(s)). Now we have canonical identification:

Ts(WkE) - Wk(TsE) ,

Γ i w(TF*-wiO - W*-»(TLiβ)F) ,

and have a linear differential operator of order m:
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dsL:Γ(TsE)->Γ(TLiS)F) ,

which is called the linearization of L at s, with the property (dsL)m =
dsL

m namely, the extension of linearization of L coincides with the
Frechet derivative of the extension. We can also get dsL by Gateaux
derivation; more precisely, let ξ be a vector bundle neighborhood of s
in E and ζ that of L(s) in F. Then for Γ(ξ)

—(L(s + ίw) - L(s))

converges in the C~-topology to dsL(u) as t -> 0. Therefore, if L has a
local expression as above, its linearization can be expressed by

dMu) = Σ dF(x'yW) Dau .

Since the operator dsL is a linear differential operator of order m,
we can consider the leading symbol σm(dsL) in a usual manner. Namely
this is a bundle homomorphism

σm(dsL): p~'TsE - p-*TLwF

over the cotangent space Γ*M of M (p denotes the projection Γ*M—>M).
Here, we define the ellipticity of non-linear differential operators, namely
L will be called elliptic (resp. over determined elliptic) at s if σm(dsL) is
an isomorphism (resp. monomorphism) outside the zero section of T*M,
that is to say, if dsL is a linear elliptic (resp. over determined elliptic)
operator of m-th order in the usual sense. We notice that if L is el-
liptic at s, then there exists a neighborhood 11 of s such that for any
ueVL, duL is elliptic. This is a simple consequence of the definition of
ellipticity.

§ 2. Examples

Firstly, we give a very simple example of non-linear elliptic operator
acting on complex-valued C°°-functions. We let R denote the real num-
bers, Zthe integers, and Tn = Rn/(2πZ)n the flat torus with the natural
flat metric, where (2πZ)n = 2πZ x x 2πZ denotes the lattice with the
side of length 2π. The point of Tn is usually represented by the angular
parameters xu •,#» (0 ^ xt < 2ττ). We consider a non-linear elliptic
operator L defined as
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Lu = Δu + F(u)

where Δ stands for the usual Laplacian: (32/dxl) + ••• + (d2/3x2

n), and

F : C - ^ C a n analytic function. Then, the linearization of L a t / e C°°(M)

is given by

dfL{u) = Δu + F'(J)u .

Here, ί1' is the usual derivative of F. Hence, for all / e C^iM), the
operator L is elliptic at /. In particular, in a special case where Fin)
= u + u2, and / = 0, we have

d0L(u) = Δu + u^ .

We notice that the dimension of Ker d0L over C is 2w.(**)

Secondarily, we consider a more geometric example. Let (M,g) be
a compact Riemannian manifold with the metric g, and let π: Λf x M —> M
be the proposition on its first factor: π(x, y) = x. Then, we may con-
sider M X M as a trivial fiber bundle over M with projection TΓ, and
the space of cross sections, Γ(M x M), can be identified with C°°(ikί,M),
which is the space of C°°-mappings of M to M, by putting s(x) = (x, φ{x))
(φeC~(M x M)). We here denote by S2M = S2(Γ*M) the symmetric co-
variant tensor bundle of degree 2. We can then define the operator

L:Γ(M x M)->Γ(S2M)

by putting L(φ) = φ*g for >̂ e Γ(M x M) = C°°(M, M), where φ*g is the
tensor field induced from g by φ (notice that g eΓ(S2M)).

Now, to see that L is a differential operator of first order, we shall
write down a local expression of L; let gtj denote the components of g
with respect to a local coordinate system (x19 - - , xn) around x namely,
gυ = g(d/dxί9 d/dxj), and also let (yl9 , yn) be the one around φ(x). Then,
we have

where ψι = yt o ?̂. Thus, we see that L is in fact a differential operator
of first order.

Next, we determine the linearization of L, at the identity mapping
IdeC°°(M,M). For this sake, we identify ΓId(M x M) with TM as fol-

w This case was suggested by K. Masuda (see also §4).
**> i n ^ e r e a i case, the solution u— 0 is isolated in the solution space of Lu=0.
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lows: ΓId(M x l ) - (Idy'TFiM x M) = {UYιπ-ιTM = TM. We can then
prove:

LEMMA 1. Under the identification of TU(M x M) with TM men-

sioned above, we have

dmL(X) = Sexg ,

where X denotes a C^-vector field, and ££x denotes the Lie derivative

with respect to X.

Proof. Define now the mapping φ: TM —> M x M by

φ(v) = (p(v), exp v) ,

where p: TM —> M denotes the bundle projection and exp: TM -> M de-

notes the exponential mapping with respect to the Riemannian metric g.

As is well-known, for a small positive number ε, ψ defines the bundle

isomorphism of Tε(M) = {v e TM ;\\v\\<ε} onto an open subbundle of M xM

containing the diagonal Δ(M) c M x M such that φ(0x) — (x,x) and the

linearization dQφ: Γ{TM) —> Γ(TM) at the zero-section of TM is the

identity mapping of ΓiTM). Hence, it is enough to show that

We take a local chart (U; xl9 •••,»„) of M, and let X = Σ< 1*0/3^) be

a C°°-vector field. For a small ί, we put

^(exp tX) =

Then, we have

= lim Uφ(tX)*g - g) =
t

i m Uφ(tX)g g) ( ( Σ Λ i ( p ( t χ ) ) |
-o t I dt \iJ dxe dxk

By the way, it is obvious that {d\dΐ)ψ\x, ίf)| t_0 = f4; whence we obtain

-^ifft + Σ 9iS- + Σ 9tj?Pt = se g .
α^ Λ i oXt 3 dxkJke

This completes the proof.
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REMARK. A vector field X satisfying that &xg = 0 is called a
Killing vector field.

The operator L defined above is not elliptic at Id eC°°(M,M).
However, we have from [8]

LEMMA 2. The leading symbol of dmL is injective (namely, dmL is
over determined elliptic).

§ 3. Summary of the Hodge-Kodaira theory for linear elliptic operators

We will now summarize the Hodge-Kodaira theory for linear elliptic
operators on a compact manifold which we shall need in later sections.
The proofs will be found in Palais [8].

In what follows, E and F will denote C°° vector bundles over M, and
we consider a linear elliptic operator of m-th order:

D: Γ(E) -* Γ(F) .

Furthermore, we assume once and for all that there is given on M a
Riemannian metric g = (#^) and a hermitian metric <( , yE in F (resp. <( , yF

in F). We denote by dM(g) = Vdet (gij)dxί Λ Λ dxn the volume ele-
ment of M with respect to g, and by (s, r)E the ZΛinner product on Γ(E)
(resp. (t, u)F on Γ(F)), which is defined by

(s, r)E = I <s, r}EdM(g) , (t, w)*. = | <ί> u)FdM(g) .
JM JM

Let D* now denote the formal adjoint operator of D with respect to these
inner products, that is, D* is given by

for every s e Γ(E), t e Γ(F). In fact, D* becomes also an elliptic operator
of m-th order.

As before, we denote by JkE (resp. JkF) the Λ-jet bundle of ί7 (resp.
F) and by ; t : Γ(E) —> Γ(JkE) the &-jet extension mapping. In this case,
Jk(E) is a vector bundle and j k is a linear mapping. Introducing a
metric in JkE (resp. in JkF), we can define the Sobolev inner product
of degree k as follows:
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(s9r)Etk = I <jks,jkryjuEdM(g) ,
J M

(t,u)Fik = I (jkt,jkuyJkFdM{g) .
J M

We put further

I|β||J.* = (*,«)..*.

Then, by the Sobolev space Wk(*) of degree &, we mean the completion

of Γ(*) with respect to the Sobolev norm \\-\\Φtk (* denotes E or F). We

would like to point out here that the Sobolev space Wk(E) coincides with

the Sobolev manifold introduced in § 1 in the case where π:E-*M is a

vector bundle.

From the definition of the Sobolev space, we have a natural inclu-

sion : Wk+1aWk. Rellich' s lemma asserts that the inclusion: Wk+1<zWk

is a compact operator of Hubert spaces. Thus, we get a discrete chain

of Hubert spaces:

W° => W1 D Z> Wk D .

such that lim Wk = Π Wk = Γ.

The Sobolev inner product defined as above, however, seems to be

inconvenient to investigate the properties of elliptic operators. There-

fore, we will introduce another inner product of Γ(*) which is equiv-

alent to the Sobolev norm: We put first

[JE (resp. [JF) is a formally self-adjoint strongly elliptic operator of
order 2m (called the Laplacian associated with D). We define then the
inner products in Γ(E) and Γ(F) related to the Laplacian •* by the
following:

where & is a non-negative integer and s,reΓ(E),t,ueΓ(F). Denote

further by Hk(E) (resp. by Hk(F)) the completions of Γ(E) (resp. of Γ(F))

with respect to the inner product [, ]Etk (resp. [, ]Ftk). It is clear that

L 9 J*,0 = = ( > )̂ c
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Hereafter, • (resp. Hk and Γ represents either [JE or [JF (resp.

Hk(E) or Hk(F), and Γ(E) or Γ(F)), for the brevity. Some well known

properties of the Laplacian • which we will need are as follows:

(1)" (Garding inequality) For any s e F, it holds: (\Js,s) ^ C0||s||2w

— ||s||o, where ||s||TO denotes the Sobolev norm of seΓ of degree m.

(2) (A-priori estimate), ||β||2TO+* ^ CΊQKQ + D*ll* + WΦ- «?o and Cx

are constants not depending on seΓ).

LEMMA 3. Hk is isomorphic to the Sobolev space Wkm as Banach

spaces.

Proof. By virtue of the Garding inequality for the Laplacian • ,

we have

On the other hand, if we make use of (1) and (2), one has a inequality

(3) IKD + l ) β | | * ^ const. || s||2w+fc

for all k ;> 0. For, from the Garding inequality, it follows that

II (D + 1)8 Ho II 8 Ho ^ ( ( • + 1)S, S\ ^ Co || 8 \\l ̂  COnst. II8 |U II8 Ho ,

which proves that | |(Π + l)sllo ^ const. ||s||TO. Combining this inequality

and (2), we have

l|s||2m+fc ^ const. (||(Π + l)β||* + \\s\\o) ύ const. (||(Π + D^ll* + HSIU)

^ const. (||(D + Dβ||* + const. | |(Q + l)s||0) ^ const. | |(Q + l)s\\k .

This proves (3).

We now claim that the norm [s]k = [s, s]ψ is equivalent to the Sobolev

norm ||s||mfc. First we consider the case when k is even ( = 2ί). The

above inequality (3) yeilds

I>, s]k = ( (• + 1)% s) = ((Π + D's, (Π + D's)
^ const. ||s||2

2

m = const. ||s||2fcw .

While it is clear that

[sys]k <: const. ||s||ϊWkm 9

since ( • + 1)̂  is a differential operator of order 2£m. Hence, we can

conclude that [s, s]k is equivalent to | |s | |L when k is even. Next, when

k is odd ( = 2S + 1), we have similarly



186 TOSHIKAZU SUNADA

[s,s]k = ((• + 1)(Π + D'*,O + D's) ̂  const. | | O + D'*lli

^ const. ||s||^+2,m = const. | |s | |L .

Furthermore, we have

[8,s]k ^ const. | | O + D^lli ^ const. \\s\\2

km ,

where we use the inequality: ( O + l) s> s) ^ IIsHi- Thus we get the
same conclusion in this case, too. This completes the proof of the lemma.

REMARK. According to the above lemma, we know that D can be

extended to /?<*>: Hk(E) -> Hk~\F).

Now, we introduce for every λeC the space

Γλ = { s e Γ ; Π β = **] .

If Γλ Φ (0), we call λ an eigen-value of •• Since (Π s > s ) ^ 0> a ^ eigen-

value are non-negative. We can now establish the following basic prop-

erties of eigen-value of Laplacian:

PROPOSITION, ( i ) The set of eigen-value of • is discrete:

0 ^ λ0 < λx < λ2 < > oo .

(ii) The eigen-space Γλ is a finite dimensional vector space for any

eigen-value λ.

(iii) We have a Hk-orthogonal decomposition

where the summation runs over all eigen-value of ••

(iv) The decomposition in (iii) is orthogonal with respect to the U-

inner product.

Proof. It is first to be noticed that the operator • + 1 has the

abstract inverse operator A (namely, A([] + D = O + 1M — Id). In

fact, for t e Γ, the operator s —> (s, t) (s e H') is bounded with respect to

the ίP-topology. Hence, by Riesz's representation theorem, there is u e H1

such that [s, u\ = (s, t). In particular, for any seΓy we have

This implies that O + ̂ u — *• I n view of hypoellipticity of elliptic

operator • + 1 (it is due to the α-priori estimate), if follows that ueΓ.
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The uniqueness of u with (• + l)u — t is clear. Therefore, • + 1 has
the inverse A. Moreover, from the definition of inner product [, ]k, we
have

[As, t]k = [s, t}k_λ = [s, At]k ,

[As]k = [s]k_2 ,

and so A has the extension Am : Hk -> Hk+2. By the way, we know that
the inclusion: Hk+2 —»Hk is a compact operator by Rellich's lemma.
These imply that A (= Aa)) is a self adjoint compact operator of Hk.
Hence, it follows from the Riesz theorem for the self adjoint compact
operators of Hubert spaces that, for any given λ e R, Eλ(A) — {seHk

As = λs} are mutually orthogonal subspaces of Hk, and Hk is their Hubert
space direct sum. Moreover, the spaces Eλ(A) are finitely dimensional,
and the set {λ e R Eλ(A) Φ (0)} of eigenvalues of A has no limit points
possibly except zero. If s e Eμ(A)9 then As = μs and this means that
/ι(Π + l)s = s. From the hypoellipticity of • + 1, we have seΓa/μ)^.
In other words, this implies that

Γλ = S1/tf+1)(A) .

This gives the proof of (i),(ii), and (iii).
Now we prove (iv). It suffices to show that the orthogonal projection

7r* onto Eλ in Hk coincides with π\. For this purpose, we take s e Eλ(A)
and t e Hk. Since [As, t]fc = [s, ί ] ^ , we have λ[s, t]k = [s, ί]fc_!. This
implies that if fe, , sr) are the orthonormal basis of Eλ in Hk, then
(il/Vλ)s19 - , (1/Vλ)sr) are the orthonormal basis for J?A in Hk~\ Let
πk: Hk -> Eλ be the orthogonal projection in Hk, defined by

for teHk. Then, we have the equality:

ί-l L V/ JA -lVX i = l /

= Σ [<.
i l

This implies, in particular, that π\ = πj. q.e.d.
We put Pjf = τr}>(i+1): H

k —> Γλ, and we call in particular H — P°o the
harmonic projection associated with the Laplacian ••
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COROLLARY 1. For any s e Γ, the Fourier expansion

converges in C°°-topology of Γ to s.

COROLLARY 2 (Hodge-Kodaira). There is a operator G:Γ->Γ, called

the Green operator, such that

s = Hs + \JGs = Hs + G\Js

for seΓ.

Proof. We put

Since \JP°λ = λP°λ, we have

8 = Σ ̂  - Pis + Σ P°>8 = Hs + • Σ 4-p^s = Hs

Λ^O λ>o λ>o X

LEMMA 4. [Gs]k+2 ̂  const. [s]k. Especially, G has a extension Gm : Hk

Proof. By the definition of G9 we have

lGs]U2 = | Σ 4 P ^ 1 2 = Σ -|[^s]L2 ^ const. Σ t^s] |
U>0 X JU + 2 ^>0 /^ >l>0

= const. ([s]2

k — [Hs]D <̂  const. [s]| ,

where we use the fact (λ + l)2[P,s]| = [Pλsfk+2. q.e.d.

COROLLARY. Im (D*){k+1) (resp. ImDa+υ) is a closed subspace in

Hk(E) {resp. in Hk(F)).

Proof. Since Hk(E) = ΓQ(E) 0 (Σ,>o Θ Λ(ίD), it is enough to show

that Imφ*)<*+1> = Σ;>oθΓ/#). We take s = Σ o o ^ e Σ . > o θ Γ

Then, we have

s = Q(*+2)(j(*)s = (D*yk+1)D<k+2)G{k)seΊm(D*yk+1) .

Conversely, let s = φ*) ( f c + 1 ) ί e Im (D*)( fc+1). Then, for any ueΓ0(E)

(w, β) = (M, (2?*)(*+1)ί) = (DM, 0 = 0 .
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This implies our assertion.

REMARK, (i) In particular, I m ΰ * = lim φ*) (*+ 1 ) (resp. ImD

\imDa+1)) is a closed subspace in Γ(E) (resp. in Γ(F)).

(ii) Γ0(E) = Ker D, Γ0(F) = Ker JD*.

§ 4. Main theorems

In this section, we let E and F denote C°°-fiber bundles over M, and
let L be a (non-linear) differential operator of m-th order from Γ(E) to
Γ(F) which is elliptic at seΓ(E), namely, its linearization dsL is an
elliptic operator from Γ(TSE) to Γ(TL(S)F).

Since the linearization means, roughly speaking, to replace locally
the non-linear mapping L by an approximating linear mapping, and
further we know that the dimension of the solution space of a linear
elliptic equation is finite. We may therefore expect that the dimension
of the solution space of any non-linear elliptic equations oughts to be
finite. In order to make exact the formulations, we now introduce some
notations:

Γt(@) = {ue Γ(TSE) dsL{u) = 0} .

We regard ©s as a topological subspace of Γ(E) with the induced topol-
ogy. It is here noticed that the dimension of Γβ(©) is finite.

THEOREM 1. Let L be a (non-linear) differential operator which is
elliptic at seΓ(E). Then the solution space ©s is locally a finite dimen-
sional subset in Γ(E) near s. More precisely, there is a neighborhood
II of s in Γ(E) with respect to the C°°-topology such that ©s Ω U is
diffeomorphic to a locally closed set in finite dimensional vector space
Γ.(@).

REMARK. ( i ) Even if L is elliptic at any s e Γ(E), the solution
space is not in general globally of finite dimension.

(ii) In order to show that the solution space has more fine struc-
tures (for example, manifold structure, analytic space structure), we need
to suppose more precise assumption of L: Γ(E) —> Γ(F) (see, §7).

(iii) Though L is overdetermined elliptic at s e Γ(E), the above as-
sertion is also valid.
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Return now to the examples in §2. In the first example, we put

L(u) = Δu + u + u2. Thus,

©o = {u e C°°(Tn) Δu + u + u2 = 0} ,

Γo(@) = {u e COT) Δu + u = 0} .

Hence, the solution space ©0 must be, by the above theorem, locally realized

in To(©)> which is the eigen space of Δ corresponding to — 1 . We make

expand u e C°°(Γn) in Fourier series:

U(χ) = ^

where <#,?> = x£x + + a?n?n. If ^ e Γo(©)> then ^ is expressed by

u{x) = ^ " V Z i

where c±< (i = 1, ,n) are arbitrary complex numbers. From this point

of view, we shall parametrize Γo(@) by the coordinate (c19 e_19 , cn, e_n).

Then, the solution space ©0 is realized in Γo(@) a s follows:

{(Ci, C_ί9 , Cn, C_J G Γo(©) i ^iC-l = * * * = Cn0-n = 0} .

Hence, @0 is an analytic set with singularity (in fact, it consists of the

2w-union of ti-planes). Especially, the solution u(x) parametrized by

((?!, 0, , cn, 0) is expressed by

u(x) =
ζ

(cξ = cl1 - . φ ) ,

where kζ can be determined by inductive process.

Next, in the second example, the solution space ©Id = {φ e C°°{M, M)

L(φ) = φ*g = g] containing the identity mapping is no other than the

isometry group of Riemannian manifold (M,g), and ΓId(©) = {XeΓ(TM);

dmL(X) = sexg — 0} is the Lie algebra of Killing vector fields, which is

identified with the Lie algebra of the isometry group. As is well-known,

©Id is a (finitely dimensional) compact Lie group. Therefore, in this

case we can know the global structure of the solution space.

§ 5. Bifurcation

We keep the notations of previous sections. In this section, we shall

construct the bifurcation operator^**** associated with L in order to prove

<***> ^ye refer to as for this concept the lecture note due to L. Nirenberg: Func-
tional Analysis, Courant Instituts of Mathematical Science, New York Univ., 1960/1961.
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Theorem 1. Without loss of generality we can assume that E and F are
C°°-vector bundles over M, and s and L(s) are zero sections of Γ(E) and
Γ(F) respectively, because the statement of Theorem 1 is local in its
nature, and if necessary we can choose vector bundle neighborhoods.
From this view point, we put

Γo(@) = {ue Γ(E); dQL(u) = 0} ,

and we put D = d0L for the sake of simplicity. From our assumption,
D is a linear elliptic operator.

Applying the theorem of Hodge-Kodaira to the elliptic operator D,
stated in §3, we have the direct decompositions:

Γ(E) = Γo(S)ΘImί)* ,

Γ(F) = Ker D * Θ I m O ,

which are orthogonal with respect to the ZΛinner products.
We put furthermore

H = HB:Γ(E)-*TQ(<&),

K = GFΠF- Γ(F) -+ImD = Σ P°Ftχ

Since Im D and Im D* are closed subspaces of the Frechet spaces, these
are also Frechet spaces with the induce topology. By Γo(©) 0 Im D, we
mean the direct sum of Frechet spaces Γo(@) and Im D. Then, we define
the non-linear operator which we want to call the bifurcation operator:

φ: r(E) -> Γo(@) θ Im D

by putting Φ(t) = H(t) θ XoL(t). Notice that Φ(0) = (0,0).

LEMMA 5. The linearization d0Φ: Γ(E) —> Γo(©) 0 Im D is an isomor-

phism of Frechet spaces.

Proof. From the definition of Φ, we have

doφ(u) = H(u) 0 K o d0L(u) .

Since K is the projection onto Imfl, it follows that

d,Φiu) = H(u) © D{u) .

We first prove that d0Φ is surjective. Indeed, let w = wλ © w2 e Γo(@) ®
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Im Ό. We put u = w, + D*GFw2 e Γ(E) = Γ0(<S) Θ ImD*. If we use the
fact that HD* == 0, DD*GFw2 = w2 - HFw2 = w2, and Dwx = 0, we have

+ HD*GFw2 + Dwλ + DD*GFw2 = w, + w2 f

so that d0Φ(u) — w. In order that d0Φ is injective, we assume that
H(u) = 0 and DCw) = 0. According to Corollary 2, in § 3, we have
u = Hu + G[Ju = 0 + GD*Du = 0. This shows that do$ is injective. By
the open mapping theorem in Frechet space, d0Φ gives an isomorphism.

THEOREM 2. Φ maps a neighborhood U of 0 in Γ(E) dίffeomor-
phically onto a neighborhood of Φ(0) — (0,0).

So as to prove this theorem, we shall utilize a slight variation of
the so-called implicit function theorem (I.F.T.), which will be discussed
in the later section.

As was noted, the usual I.F.T. for Banach spaces asserts that if ψ
is a C^-mapping (in the sense of Frechet derivative) of a Banach space
X into a Banach space Y, if ^(0) = 0, and if do<p is isomorphic, then ψ
gives a local diίFeomorphism around the zero point. The proof is quite
elementary, and we use intrinsically the fact that X and Y are Banach
spaces. In our case, however, Γ(E) and Γ0(©)ΘImD are considered as
Frechet spaces with the C~-topology, and I.F.T. for Frechet spaces is
not in general valid (cf. [2]). Therefore, Lemma 5 does not immediately
imply Theorem 2. Under such circumstances, we need to use the more
precise culculus of the bifurcation operator Φ in the Sobolev space Hk

so as to prove Theorem 2 (see, § 6).

By using a standard bifurcation method of non-linear functional
analysis, the proof of Theorem 1 can be derived from this theorem, as
follows: In fact, let U, ̂  and SB2 be neighborhoods respectively in
Γ(E), ToCS), and Im D such that 0 e U, 0 e 83̂  0 6 332, and the mapping
Φ: U -> SSx Θ 8S2 is diffeomorphic. Then a C°°-mapping Q: ^ 0 9S2 ->
Ker D* 0 Im D = Γ(F) can be defined such that in the diagram:

t
( ) = Xer D* φ Im D ,

the commutative relation QΦ = L is valid. If we define the mapping:
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R: SSx Θ 932 -* Ker D*

by ίί = HFLΦ~ι (as was noted before iϊ^ denotes the harmonic projec-

tion: - Γ(F)->KerZ>*), we obtain

Q(u19 u2) = i2(^, ^2) Θ ^ 2 >

where te< e SS< (i = 1,2). Indeed,

Q(uu u2) = HFLΦ~\ul9 u2) Θ KLΦ~\u19 u2) ,

and if we put Φu = ux®u2y then ^2 = KoL(u). Hence, the above Q(uuu2)

is equal to #(X, u2) 0 w2.

Thus it follows at once that under the diffeomorphism Φ, ©' = {(%, 0)

e asx Θ SS2 β(w, 0) = 0} is diffeomorphically mapped onto <S0 Π U. This

proves that ©0 ΓΊ U is diffeomorphic to the set of zeros of finitely many C°°-

functions defined on an open set 2Sχ of the finite dimensional vector space

Γo(©); namely that of zeros of the mapping

(Note that KerD* is of finite dimension).

REMARK. When L is an overdetermined elliptic system at s, namely

the leading symbol σm(dsL) is injective, Ker £>* is in general an infinitely

dimensional vector space. But, the assertion of Theorem 1 is valid also

in this case by similar arguments as above.

COROLLARY. // dsL: Γ(TSE) -> Γ(TLwF) is surjectίve, the solution

space @s has a manifold structure of finite dimension around s with the

tangent space Γ,(@) at s.

Proof. Rince Ker 2)* = 0, R( , 0) is the constant 0-mapping. Hence,

@o fi l l id diffeomorphic to an open neighborhood of Γo(®) q.e.d.

§ 6. The Proof of Theorem 2

This section is devoted to the proof of Theorem 2, keeping the situ-

ation of previous sections.

We regard the Frechet spaces which we consider in this section as

the inverse limits of Hubert spaces:

Γ{E) = lim Hk(E) , Γ(F) = lim Hk(F) ,

Im D = lim Im Da) , Im D* = lim Im (Z>*)(*} .
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Now we consider the extension of D = d0L

D(k) = (dJL)™: Hk(E) -> ί P - ^ F ) ,

and the orthogonal decomposition of Hk:

Hk(E) = Γ0(<S) Θ Im φ*)<*+1> ,

fl*-1^ = Ker D* Θ Im Z)(fc) .

As is noticed of in § 3, their decompositions are orthogonal with respect

to the ZΛinner product, too. Then we have

LEMMA 6. The restriction of Da)

Dijo i I m φ*)c*+i) : I m φ*)(*+i> _> i m χ)(*)

is an isomorphism of Hilbert spaces.

Proof. First, we note that the restriction is surjective. For, let

uelmD™. Then, there is weHk(E) with D{k)w = u. Writing

w = wί + w2e Γo(@) Θ Im φ*) (*+»

we see that w = D(fe)w = Dwι + D(k)w2 = D(Ww2. So, D(fc) |Im (I>*)(*+1) is

surjective. That D(k)\ϊm (D*)ik+1) is injective is obvious from Ker D Π

Im φ*)<*+1> = 0. q.e.d.

Next, we define the non-linear operator of Hilbert spaces:

Φk: Hk(E) -> Γo(@) θ Im Z?(ft)

by putting Φk(t) = H(*}(t) ΘίC α " 1 ) oL(fc)(ί) for ί G Hk(E). Here, we suppose

that k^kQ = (l/m)(m + [n/2] + 1).

PROPOSITION 2. Γfee mapping Φk is C°° in a sense of Frechet deri-

vative, and is an extension of Φ defined in § 5. Moreover, for £ ^> k,

we have

and dQΦk: H
k(E) -» Γo(©) 0 Im D(fc> is an isomorphism.

REMARK. Namely, {Φk}^^ is an I.L.H.-mapping of I.L.H.-spaces [7],

Proof. The first half of Proposition follows at once from the" defi-

nition of Φk if we note that the direct decompositions are common to

any Hk. The last statement follows from the above lemma and an
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argument that is similar to the proof of Lemma 4 in §5. q.e.d.
Hence, if we apply the usual implicit function theorem in Banach

spaces to the mapping Φk9 we get

PROPOSITION 3. Φk maps a neighborhood Uk of 0 in Hk(E) diffeo-

morphically onto a neighborhood $*_! of Φ(0) = (0,0) in Γ 0(©)θ ImD{k).

This proposition, however, does not immediately lead to our desired
results, because we don't know whether we can take in general a sequence

for £^k. But, if we make use of a result of A. Douglis and L. Nirenberg
[1], we obtain the following weak form:

PROPOSITION 4. There exists a sequence of neighborhood {Uk}k^ko of

0 in Hk(E) and {SVJ^o of 0(0) = (0,0) in Γo(©) θ Im Dm such that
( i ) uk: Uk —* SSfc_! is a diffeomorphίsm for k^> kQ.

(ii) For jβ9 k ^ k0, we have

n ne, (τo(©) θ im D) n x^ = (ro(©) θ im D) n »^x.

where as before, k0 = (l/m)(m + [n/2] + 1).

Before we proceed to prove this proposition, we define the notion of
elliptic element of L as follows: Up to the present, we have considered
the linearization of L only at the C"-section seΓ(E). Of course, for
any s e Hko(E), we can always define the Gateaux derivative (= Frechet
derivative) dsL at s, which is a linear differential operator possibly with
the lower differentiable coefficients. In this case too, we can define the
leading symbol of dsL as a continuous homomorphism

p~ιE -> p-ψ ,

and if this homomorphism is bijective, we call a cross section s e Hko(E)
an elliptic element of L. As a matter of fact, if L is elliptic at s e Γ(E),
then s is an elliptic element of L.

For the proof of the above statement, we need the following lemma
about the C°°-regularity of solutions of a non-linear differential equation
of elliptic type, which is due to A. Douglis and L. Nirenberg [1] (see
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Theorem 5):

LEMMA 7. Let ueHko(E) be an elliptic element of L. We assume

that Lao)u is a C°°-section of F. Then, ueΓ(E).

After these preliminary remarks, let us turn to the proof of Prop-

osition 4. Let ttfco and 83*O_! be open neighborhoods such that UkQ consists

of elliptic elements of L and Φko: Uko —> Uko^ is a diffeomorphism. (We

notice that the set elliptic elements of L is open in Hko). Then it is

enough to show that for k >̂ k0 we can choose open neighborhoods Uk,

S3fc_i so that Φk: Uk —» 9Sfc_i is diffeomorphic, and

n nk - r(E) n uk0,
(Γo(@) θ ImD) Π iβk_x = (Γo(@) Θ I m ΰ ) n »*„.! .

We observe first that for any t e Γ(E) Π Ufco, there is a neighborhood

llfc(ί) of t in Hk(E) such that Φfc is a local diffeomorphism of Ufe(ί) onto

ΦkQϊk(t)). For this purpose, we show that the linearization

dtΦk: Hk(E) -> Γo(@) θ Im D(fc)

is an isomorphism of Hubert spaces. From the injectivity of dtΦko, it

is clear that a homomorphism dtΦk is also injective. To indicate the

surjectivity, let (uuu2) e Γ0(@)φImD ( f c ). Then, there is a (wuw2) eT0((g)

0 Im (D*)(fco+1) = Hk°(E) such that dtΦko(wl9w2) = (^,^ 2), since Φfco is a dif-

feomorphism. In view of the definition of Φfco, we have

so

djj^iwd = HFdtL
(k°Xw2)

+ u2 .

Since ^ 2 eImZ) ( f t ) and HFdtL^(w2)e Γ(F), it follows that

Hk~ι{F). Hence, according to the iP-regularity of linear elliptic operator

d L with C°°-coefficient (we notice that t e Γ(E))9 we have w2 e Hk(E) and

so (w19w2) eHk(E). This implies that surjectivity of dtΦk, and by I.F.T.,

Φk gives a local diffeomorphism around t.

We put



NON-LINEAR ELLIPTIC OPERATORS 197

where the union runs over all t e Γ(E) Γ) UkQ. Then it is clear that Uk

is an open neighborhooe of 0 in Hk(E), 93fc_1 an open neighborhood in
H*-\F), and Γ(E) Π Uk = Γ(E) Π H*o.

Finally we would like to show that (Γ0(©)Θ Imfl) Π »*_! = (To(@) θ
ImD) Π »,.„_!. Given u = (u19 u2) e (Γo(©) θ Imΰ) Π %ko_19 there is a w =
(wlf w2) e Uko with Φko(w) = w. From the similar argument as above, we
have

Therefore, owing to Lemma 6 we have w e Γ(E), and so w e Γ(E) Γ) UkQ.
By the definition of 93fc-1, we have u = Φk(w) e 9Sfc_1. The inverse inclu-
sion is obvious. This completes the proof of Proposition.

We now put

n = r{E) n uk0,
ImZ)) Π S S ^ .

Then, it follows immediately from Proposition 4 that Φ:U-*Ϊ8 gives a
diffeomorphism with respect to the Frechet topology.

§7. Final remarks

In this section, under an additional assumption, we shall state the
more precise result as for the solution spaces.

In Theorem 1, we showed that the solution space of an elliptic
operator is locally of finite dimension, which is in fact realized as the set of
zeros of finitely many C°°-functions on a finite dimensional vector space.
In general, the set of zeros of C°°-functions has a complicated structure.
We want therefore to seek a sufficient condition so that the solution space
has a manifold structure in a local sense.

In the case of smooth mappings, the inverse image of a point is
locally a smooth manifold around the point where the mapping has
maximal rank. In analogy to the notion of maximal rank of C°°-mapping,
we introduce the notion of minimal elements as follows: As cross sec-
tion s 6 Γ(E) will be called a locally minimal element of L, if L is
(overdetermined) elliptic at s and there is an open neighborhood XI of s
such that dim Γβ(@) <̂  dim Ker dtL for any teU.

In the elliptic case, index dtL = dim Ker dtL — dim Coker dtL is con-
stant independent on t e l l (we assume that U is connected), since the
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index of elliptic operator is homotopy invariant. Hence, the above con-

dition is equivalent to :

dim Coker dtL :> dim Coker dsL ,

for any t e U. In particular, if dsL is onto, s is a locally minimal element.

EXAMPLE. Let (M, g) be a Riemannian manifold. We consider the

differential operator introduced in § 2:

L:COO(M,M)->Γ(S2M) ,

L(φ) = φ*g .

As is noticed in §2, L is overdetermined elliptic at Id 6 C°°(Λf, M). Here,

we show that Id is a locally minimal element of L. For this purpose,

we denote by Qι{M) the diffeomorphism group of M, which is open in

C°°(M,M). We take φιe@(M) and let g1 = L(φx) = φfg. We define

Lλ: C°°(M, M) -> Γ(S2M) by Lxp = p * ^ . So we have

Lλφ = ^ * ^ = y>*y>fflΓ = ( ^ ) * # = LRφt(φ)

where R9X is the C°°-fiber bundle mapping (diffeomorphism) defined by

(x,y) -> (x,<px(g)), namely, Rωi: M x M —>M x M, and J K ^ ) = 9^. There-

fore cίmLi = dφiLdlάRφp so that dim Ker dψxL = dim Ker dτJLx = dim Ker ίZIdL,

since d I d# f* is an isomorphism and (M, ̂ ) is isometric to (M, βr) by p t.

This shows that Id is minimal.

We now return to the first situation. We put p — dim T,(©).

LEMMA 8. Let seΓ(E) be a locally minimal element of L. Then,

there is an open neighborhood W ( c H) of s in Γ(E) such that

p = dim Γ,(©) = dim Ker dtL

for any t e VJ.

Proof. Let 11 be an open set as in the avove definition. Then

{dtL}ten is a continuous family of elliptic operators over the topological

space 11. Therefore, by the upper semi-continuity of the dimension of

the kernel of an elliptic operator, there is an open neighborhood 11; c 11

p = dim (Γ,(©)) = dim Ker (dsL)

^ dim Ker (dtL)

for all teW. This proves the lemma. q.e.d.
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THEOREM 3. Let s be a locally minimal element of L. Then the

solution space ©5 is locally a p-dimensional C^-manifold around s with

the tangent space Γβ(@) at s.

Proof. As the argument in § 5, we assume that E and F are vector

bundles and that s = L(s) = 0 (0-section). Also, we adopt the notations

of preceeding sections. We set

©ί = {t e ΓiE) KLit) - 0} .

Then, ©o is locally a C°°-manifold around the 0-point, with the tangent

space t + Ker(Kdtd) at ίe©J, that is an affine subspace of Γ(E). For,

under the local diffeomorphism Φ: Γ(E) -> T0(<S) 0 Im D, ©J is diffeomorphic

to the open neighborhood of 0 in Γo(©). We need the following lemma

for the proof of Theorem 3.

LEMMA 9. HFL^ = 0 around 0.

Proof. We notice that HFL: ©J -> Ker Z?* is a C°°-mapping of finitely

dimensional C~-manifold ©J. Hence, it is enough to show that dt(HFL(£0

= 0 near 0. Let ue Tt(<3ζ) = ί + Ker (KdtL). Then, from our assump-

tion, we have

dim Ker d0L — dim Ker dtL , and Ker (KdtL) Z) Ker d£L ,

so that Ker (KdtL) = Ker e^L and dt{ΉFL&Q){ri) = HFdtL(u) = Hr(ff) = 0.

Returning to the proof of Theorem 3, we now show that ©0 = ©J

near 0. From the dfinition, it is obvious that ©£ D ©0. Take u e ©$

near 0. Since HFLu = 0 by Lemma 9, we have

LM = iϊ^L^ + KLu = 0 .

This completes the proof of Theorem 3.
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