M. NakaiNagoya Math. J.Vol. 56 (1974), 105-119

A TEST FOR PICARD PRINCIPLE

MITSURU NAKAI

A nonnegative locally Hölder continuous function P(z) on $0 < |z| \le 1$ will be referred to as a *density* on $0 < |z| \le 1$. The *elliptic dimension* of a density P(z) at z=0, dim P in notation, is defined to be the dimension of the half module of nonnegative solutions of the equation $\Delta u(z) = P(z)u(z)$ on the punctured unit disk $\Omega: 0 < |z| < 1$ with boundary values zero on |z| = 1. After Bouligand we say that the *Picard principle* is valid for a density P at z=0 if dim P=1. The purpose of this paper is to establish the following practical test:

THEOREM. The Picard principle is valid for a density P(z) on $0 \le |z| \le 1$ at z = 0 if there exists a closed subset E of Ω such that $\Omega - E$ is connected and z = 0 is an irregular boundary point of the region $\Omega - E$ for the harmonic Dirichlet problem and

(1)
$$\int_{a-E} P(z) \log \frac{1}{|z|} dx dy < \infty.$$

As a direct consequence of the theorem we see that if $P \in L^p(\Omega - E)$ (1 for an admissible exceptional set <math>E as stated in the theorem, then the Picard principle is valid for P. Needless to say, here and also in the theorem the exceptional set E may be empty. We must also remark that (1) is *not* necessary for the validity of Picard principle as is seen by a simple example $P(z) = |z|^{-2}$ (cf. no. 12). The proof of the theorem will be given in nos. 9–8. In the last no. 12 we state four unsettled important problems related to elliptic dimensions.

1. Let P(z) be a density on $0 < |z| \le 1$, i.e. $P(z) \ge 0$ and P(z) is locally Hölder continuous: $|P(z_1) - P(z_2)| \le A_\tau |z_1 - z_2|^{z_\tau}$ for every z_1 and z_2 in $0 < r \le |z| \le 1$ where $A_\tau \in (0, \infty)$ and $\lambda_\tau \in (0, 1]$ are constants which may depend on $r \in (0, 1)$. Such a density P can be considered to be a density on $\Omega: 0 < |z| < 1$ which is the restriction to Ω of a density on

Received March 22, 1974.

 $\hat{\varOmega} : 0 < |z| < \infty$. Let $\hat{P}(z)$ be the symmetric extension of a density P(z) on $0 < |z| \le 1$ to $\hat{\varOmega} : \hat{P}(z) = P(z)$ on Ω and $\hat{P}(z) = P(1/\bar{z})$ for $1 \le |z| < \infty$. Then $\hat{P}(z)$ is a density on $\hat{\varOmega}$ and $\hat{P} \circ \tau = \hat{P}$, where τ is the involution of $\hat{\varOmega}$ about |z| = 1, i.e. $\tau(z) = 1/\bar{z}$.

The basic tool of our proof is the unique solvability of the Dirichlet problem. Let R be a region in $\hat{\Omega}$ bounded by a finite number of disjoint analytic Jordan curves and Q be a density on $\hat{\Omega}$. For any $\varphi \in C(\partial R)$ there exists a unique function $Q_{\varphi}^R \in C(\overline{R})$ such that $Q_{\varphi}^R = \varphi$ on ∂R and Q_{φ}^R is a solution of $\Delta u = Qu$ on R. If $Q \equiv 0$, then we use the standard notation H_{φ}^R instead of Q_{φ}^R . The unique existence of H_{φ}^R can be seen e.g. by the Perron-Brelot method as can be found in any text book (cf. e.g. Tsuji [18]). By the same method we can see the unique existence of Q_{φ}^R but the following integral equation method is preferable for our purposes in the sense that it clarifies the relation between Q_{φ}^R and H_{φ}^R . Let $H_R(z,\zeta)$ be the harmonic Green's function on R (cf. e.g. [18]) and consider the integral operator

$$(Tf)(z) = -rac{1}{2\pi}\int_{R}H_{R}(z,\zeta)Q(\zeta)f(\zeta)d\xi d\eta \qquad (\zeta = \xi + i\eta) \; .$$

It is elementary to check that $f \in C^{\alpha}(D)$ implies $Tf \in C^{\alpha+1}(D)$ ($\alpha = 0, 1$) and $\Delta Tf = Q \cdot f$ on D ($\alpha = 1$) for an open set D in R and for an f on R for which Tf can be defined (cf. e. g. Miranda [9]). It is also easy to see that $f \in C(\overline{R})$ implies $Tf \in C(\overline{R})$ with Tf = 0 on ∂R , and that T is a compact operator from $C(\overline{R})$ into itself. By the maximum principle for subharmonic functions we see that 1 is not the proper value of T and therefore by the Riesz-Schauder theory, $I + T : C(\overline{R}) \to C(\overline{R})$ is bijective (cf. e.g. Yosida [19]). Hence Q_{φ}^{R} is obtained as $(I + T)^{-1}H_{\varphi}^{R}$:

$$Q_{\varphi}^{R}(z) = H_{\varphi}^{R}(z) - \frac{1}{2\pi} \int_{\mathbb{R}} H_{R}(z,\zeta) Q(\zeta) Q_{\varphi}^{R}(\zeta) d\xi d\eta .$$

By the fact that $\varphi \to H_{\varphi}^R$ is a positive linear operator from $C(\partial R)$ into $C(\overline{R})$ with norm 1 and by the maximum principle of subharmonic functions, we see that $\varphi \to Q_{\varphi}^R$ is a positive linear operator from $C(\partial R)$ into $C(\overline{R})$ with norm 1.

Fix a $\zeta_0 \in R$ and let R_n be the region obtained from R by deleting the closed disk about ζ_0 with radius 1/n for large integer n and T_n be the corresponding integral operator: $C(\overline{R}_n) \to C(\overline{R}_n)$. Then $u_n = (I_n)$

 $+T_n)^{-1}H_R(\cdot,\zeta_0)$ forms a decreasing sequence dominated by $H_R(\cdot,\zeta_0)$, and if we denote by $G_R(\cdot,\zeta_0)$ the limit function, then

$$G_R(z,\zeta_0) = H_R(z,\zeta_0) - rac{1}{2\pi} \int_R H_R(z,\zeta) Q(\zeta) G_R(\zeta,\zeta_0) d\xi d\eta \; .$$

The function $G_R(z,\zeta)$ is referred to as the *Green's function* of $\Delta u = Qu$ on R. By (3) we see that $G_R(\cdot,\zeta) \in C^1(\overline{R} - \{\zeta\})$ and $\partial G_R(z,\zeta)/\partial t = \partial H_R(z,\zeta)/\partial t + O(1)$ as $z \to \zeta$ where t=x and y. By this and by the Green formula we have the symmetry $G_R(z,\zeta) = G_R(\zeta,z)$. We denote by $C^\omega(\partial R)$ the class of real analytic functions on ∂R . If $\varphi \in C^\omega(\partial R)$, then H^R_φ is easily seen to belong to $C^1(\overline{R})$, and by (2) we see that $Q^R_\varphi \in C^1(\overline{R})$. By the Green formula

$$Q_{\varphi}^{R}(z) = \frac{1}{2\pi} \int_{\partial R} \varphi(\zeta) \frac{\partial}{\partial \nu_{\epsilon}} G_{R}(z,\zeta) ds_{\zeta}$$

where $\partial/\partial\nu$ denotes the inner normal derivative and ds is the line element. This is primarily derived for $\varphi \in C^{\omega}(\partial R)$ but the denseness of $C^{\omega}(\partial R)$ in $C(\partial R)$ assures the validity of (4) for every $\varphi \in C(\partial R)$. As a consequence of (4) we have the Harnack inequality and the Harnack principle for nonnegative solutions of $\Delta u = Qu$.

2. For a density P(z) on $0 < |z| \le 1$ we shall study the half module $\mathscr P$ of nonnegative solutions u of the equation $\Delta u(z) = P(z)u(z)$ on the punctured disk $\Omega: 0 < |z| < 1$ with boundary values zero on $\beta: |z| = 1$. For the study of $\mathscr P$ we need to consider the half module $\mathscr P$ of nonnegative bounded solutions of $\Delta u = Pu$ on Ω with continuous boundary values on β . Let Ω_t be 0 < |z| < t and β_t be |z| = t for $t \in (0,1]$. Thus $\Omega_1 = \Omega$ and $\beta_1 = \beta$. We also consider auxiliary classes $\mathscr P_t$ and $\mathscr P_t$ of nonnegative and nonnegative bounded solutions of $\Delta u = Pu$ on Ω_t with boundary values zero and continuous boundary values on β , respectively. In particular $\mathscr P_1 = \mathscr P$ and $\mathscr P_1 = \mathscr P$. The boundary point z = 0 is of parabolic character (cf. Brelot [1], Ozawa [14], Royden [17]) in the following sense:

$$\mathscr{P}_t \cap \mathscr{B}_t = \{0\} .$$

Let $u \in \mathscr{P}_t \cap \mathscr{B}_t$. Since $\Delta u = Pu \geq 0$, u is subharmonic on Ω_t . For any $\varepsilon > 0$ $s_{\epsilon}(z) = -\varepsilon \log |z| - u(z)$ is superharmonic on Ω_t with $\liminf_{z \to \vartheta_t} s_{\epsilon}(z) \geq 0$. The minimum principle for superharmonic functions yields $s_{\epsilon}(z) \geq 0$ for every $\varepsilon > 0$ and therefore u = 0 on Ω_t . For any $u \in \mathscr{B}_t$ let $u_{t,s}$

be the solution of $\Delta u = Pu$ on $\Omega_t - \overline{\Omega}_s$ (0 < $s < t \le 1$) with boundary values u on β_t and zero on β_s . As a consequence of (5) we have

$$(6) u(z) = \lim_{s \to 0} u_{t,s}(z)$$

on Ω_t . In fact, let $v=\lim_{s\to 0}u_{t,s}\in \mathcal{B}_t$. Then $0\leq v\leq u$ on Ω_t with v=u on β_t . Thus $u-v\in \mathcal{P}_t\cap \mathcal{B}_t$, i.e. (6) is valid. Therefore $u\in \mathcal{B}_t$ is determined uniquely by its boundary values φ on β_t . We shall denote this u by $P_{\varphi}^{a_t}$. Then $\varphi\to P_{\varphi}^{a_t}$ is a positive linear operator from $C(\beta_t)$ into $\mathcal{B}_t\ominus \mathcal{B}_t$ with norm 1.

Fix a t and an s with $0 < s < t \le 1$. Consider the operator $S = S_{s,t}$ from \mathcal{P}_t into \mathcal{P}_s given by $Su = u - P_u^{a_t}$. Then S is a bijective half linear operator between \mathcal{P}_t and \mathcal{P}_s (Heins [4], Ozawa (15,16]). If Su = 0, then $u = P_u^{a_s}$ and u is bounded, i.e. $u \in \mathcal{P}_t \cap \mathcal{B}_t$ and u = 0. Thus S is injective. Let $v \in \mathcal{P}_s$ and $u_r = P_v^{a_t - a_r}$ where $\overline{v} = v$ on β_r and $\overline{v} = 0$ on β_t (0 < r < s) and $w_r = u_r - v \ge 0$. Since $\{u_r\}$ is increasing as $r \to 0$, if $u = \lim_{r \to 0} u_r$ is convergent, then $u \in \mathcal{P}_t$ and $\lim_{r \to 0} w_r = P_u^{a_s}$ and Su = v, i.e. S is surjective. Let $f_t u$ be the flux $\int_0^{2\pi} [\partial u (re^{i\theta})/\partial r]_{r=t} t d\theta$ and $D_A(\varphi) = \int_A (|\nabla \varphi(z)|^2 + P(z)\varphi(z)^2) dx dy$ where $\nabla \varphi = (\varphi_x, \varphi_y)$. Then by the Green formula

$$f_r u_r - f_t u_r = D_{\mathfrak{g}_t - \overline{\mathfrak{g}}_r}(u_r)$$
, $f_r v - f_s v = D_{\mathfrak{g}_s - \overline{\mathfrak{g}}_r}(v) = D_{\mathfrak{g}_t - \overline{\mathfrak{g}}_r}(v)$

where we set v=0 on $\Omega_t-\Omega_s$. Again by the Green formula we see the Dirichlet principle: $D_{\alpha_t-\bar{\alpha}_r}(u_r) \leq D_{\alpha_t-\bar{\alpha}_r}(v)$. Hence

$$0 \le -f_t u_r \le -f_s v - f_r (u_r - v) .$$

Since $u_r - v \ge 0$ and $u_r - v = 0$ on β_r , we have $f_r(u_r - v) \ge 0$. Therefore

$$0 \le \lim_{r \to 0} \sup \left(-f_t u_r \right) \le -f_s v < \infty$$

and $\lim_{r\to 0} u_r = \infty$ does not hold and thus $u = \lim_{r\to 0} u_r$ is convergent. This means that dim P depends only on the behavior of P at z=0.

Another consequence of (5) and actually of (6) is

$$\int_{a_1} |\nabla u(z)|^2 \, dx dy < \infty$$

for every $u \in \mathcal{B}_t$ and $s \in (0, t)$. This will play the essential role in the

next no. 3. For 0 < r' < r < s, the Dirichlet principle which is a simple consequence of the Green formula yields $D_{a_s}(u_{s,r}) = D_{a_s-\bar{a}_{r'}}(u_{s,r'}) \le D_{a_s-\bar{a}_{r}}(u_{s,r}) = D_{a_s}(u_{s,r})$ where we have set $u_{s,r} = 0$ on $\overline{\Omega}_r$ and $u_{s,r'} = 0$ on $\overline{\Omega}_{r'}$. By (2) and (6) we have

$$\lim_{r'\to 0}\frac{\partial}{\partial a}u_{s,r'}(z)=\frac{\partial}{\partial a}u(z)$$

where a = x and y, and by the Fatou lemma

$$D_{\mathfrak{g}_{\mathfrak{s}}}(u) \leq \lim_{r' \to 0} \inf D_{\mathfrak{g}_{\mathfrak{s}}}(u_{s,r'}) \leq D_{\mathfrak{g}_{\mathfrak{s}}}(u_{s,r}) < \infty$$

for any fixed $r \in (0, s)$ and in particular we have (7).

3. The mean operation $u \to u^*$ is useful for the study of subharmonic functions. Let u be defined on Ω_t such that

$$u^*(r) = \frac{1}{2\pi} \int_0^{2\pi} u(re^{i\theta})d\theta$$

can be defined for $r \in (0, t)$. This is the case e.g. when u is subharmonic on Ω_t . If u is bounded subharmonic on Ω_t , then u can be extended to |z| < t so as to be subharmonic by giving the value $\limsup_{z\to 0} u(z)$ at z = 0, and hence we have (cf. e.g. Tsuji [18])

(8)
$$\ell(u) \equiv \lim_{r \to 0} \frac{1}{2\pi} \int_0^{2\pi} u(re^{i\theta}) d\theta = \lim_{z \to 0} \sup u(z) .$$

If $u \in \mathcal{B}_t$, then u is bounded subharmonic on Ω_t and therefore the above relation (8) is applicable to every $u \in \mathcal{B}_t$.

We now maintain that for any $u \in \mathcal{B}_t$ there exists an exceptional closed subset $E = E_u$ of (0,t) with finite logarithmic measure

$$(9) \qquad \qquad \int_{\mathbb{R}} d\log r < \infty$$

such that

(10)
$$\lim_{|z| \in E, z \to 0} u(z) = \ell(u) .$$

For the proof consider Fourier coefficients $c_n(r)$ and $s_n(r)$ $(n = 1, 2, \cdots)$ of $u(re^{i\theta})$ for any $r \in (0, t)$ as a function of θ :

$$egin{align} \left\{ egin{align} &c_n(r) = rac{1}{\pi} \int_0^{2\pi} u(re^{i heta}) \cos n heta d heta \ &s_n(r) = rac{1}{\pi} \int_0^{2\pi} u(re^{i heta}) \sin n heta d heta \ \end{matrix}
ight. \end{split}$$

for $n = 1, 2, \cdots$. On setting

$$\varphi(r) = \left(\sum_{n=1}^{\infty} n^2 (c_n(r)^2 + s_n(r)^2)\right)^{1/2}$$

we assert that

(11)
$$\int_0^1 \varphi(r) d\log r \leq \frac{1}{\pi} \int_{a_t} |\nabla u(z)|^2 dx dy < \infty .$$

Observe that

$$u(re^{i\theta}) = u^*(r) + \sum_{n=1}^{\infty} (c_n(r)\cos n\theta + s_n(r)\sin n\theta)$$

for $(r,\theta) \in (0,t) \times T$ with $T = (-\infty,\infty)/\text{mod } 2\pi$ and thus

$$u_{\theta}(re^{i\theta}) = \sum_{n=1}^{\infty} (-nc_n(r)\sin n\theta + ns_n(r)\cos n\theta)$$
.

Therefore, in view of $|\nabla u(re^{i\theta})|^2 = u_r(re^{i\theta})^2 + r^{-2}u_{\theta}(re^{i\theta})^2$, we have

$$r^{-2} arphi(r)^2 = rac{1}{\pi} \int_0^{2\pi} r^{-2} u_ heta(re^{i heta})^2 d heta \leq rac{1}{\pi} \int_0^{2\pi} |arphi u(re^{i heta})|^2 \, d heta \; .$$

A fortiori

$$\int_0^t \varphi(r)^2 d\log r \leq \frac{1}{\pi} \int_0^{2\pi} \int_0^t |\nabla u(re^{i\theta})|^2 \, r dr d\theta \,\, ,$$

i.e. (11) is valid. Next set

$$a_n = \int_{t/(n+2)}^{t/(n+1)} \varphi(r)^2 d \log r$$

for $n=1,2,\cdots$. By (11) we have $\sum_{n=1}^{\infty} a_n < \infty$. We can find a decreasing sequence $\{\varepsilon_n\}$ converging to zero such that $\sum_{n=1}^{\infty} \varepsilon_n^{-2} a_n < \infty$. Let

$$E_n = \{r \in [t/(n+2), t/(n+1)]; \varphi(r) \geq \varepsilon_n\}$$

and

$$E = E_u = \left(\bigcup_{n=1}^{\infty} E_n\right) \cap (0, t)$$

which is a closed subset of (0, t). Observe that

$$\int_E d\log r = \sum_{n=1}^\infty \varepsilon_n^{-2} \int_{E_n} \varepsilon_n^2 d\log r \le \sum_{n=1}^\infty \varepsilon_n^{-2} \int_{E_n} \varphi(r)^2 d\log r = \sum_{n=1}^\infty \varepsilon_n^{-2} a_n,$$

i.e. we have (9). By the Schwarz inequality

$$(u(re^{i\theta}) - u^*(r))^2 = \left(\sum_{n=1}^{\infty} \left(nc_n(r)\frac{\cos n\theta}{n} + ns_n(r)\frac{\sin n\theta}{n}\right)^2 \right)$$
$$\leq \left(\sum_{n=1}^{\infty} n^{-2}\right) \cdot \left(\sum_{n=1}^{\infty} n^2(c_n(r)^2 + s_n(r)^2)\right).$$

Therefore we conclude that $|u(re^{i\theta})-u^*(r)| \leq 6^{-1/2}\pi\varphi(r)$. For an arbitrary $\varepsilon>0$ there exists by (8) an $r_1\in(0,t)$ such that $|u^*(r)-\ell(u)|<\varepsilon/2$ for every $r\in(0,r_1)$. Let n be such that $6^{-1/2}\pi\varepsilon_n<\varepsilon/2$ and set $r_0=\min(r_1,t/(n+1))$. Then

$$|u(re^{i\theta}) - \ell(u)| \le 6^{-1/2}\pi\varphi(r) + |u^*(r) - \ell(u)| < \varepsilon$$

for every $r \in (0, r_0) - E$, i.e. we have (10).

4. The *P-unit* e_t on Ω_t is the function in \mathscr{B}_t with $e_t | \beta_t = 1$. Using the *P-unit* $e = e_1$ on $\Omega = \Omega_1$ consider the equation

(12)
$$\Delta v(z) + 2V \log e(z) \cdot V v(z) = 0$$

on Ω . Let v be a bounded nonnegative solution of (12) on Ω_s . Then the following maximum-minimum principle is valid for $t \in (0, s)$:

(13)
$$\sup_{z \in \mathcal{Q}_t} v(z) = \max_{z \in \beta_t} v(z) , \qquad \inf_{z \in \mathcal{Q}_t} v(z) = \min_{z \in \beta_t} v(z) .$$

By an easy computation one sees that $ev \in \mathscr{B}_s$. Let $c = \max_{\beta_t} v$ and $c' = \min_{\beta_t} v$. Then since $ev, ce, c'e \in \mathscr{B}_t$ and $c'e \leq ev \leq ce$ on β_t , we see, by (6) or by the remark after (6) in no. 2, that $c'e \leq ev \leq ce$ on Ω_t and thus $c' \leq v \leq c$ on Ω_t , i.e. (13) is valid.

5. Using results in nos. 3 and 4 we now maintain that under the assumption

$$(14) \ell(e) > 0$$

the following limit

(15)
$$\lim_{z \to 0} u(z)/e(z) = \ell(u)/\ell(e)$$

exists for every $u \in \mathcal{B}$.

For the proof, let E_u and E_e be exceptional sets in no. 3 for u and e on Ω , respectively. Then $E=E_u\cup E_e$ is also a closed subset of (0,1) and (9) implies that

$$\int_E d\log r < \infty.$$

From this it follows that there exists a strictly decreasing sequence $\{r_n\}$ coverging to zero in (0,1)-E. Let ε be an arbitrary number in $(0,\ell(e))$. By (10) there exists an N such that

$$|u(z) - \ell(u)| < \varepsilon$$
, $|e(z) - \ell(e)| < \varepsilon$

for every $z \in \beta_{r_n}$ with n > N. Let $u_e = u/e$. Then again by an easy computation u_e is a solution of (12). Since $u \le ce$ on β with $c = \max_{\beta} u$, (6) or the remark after (6) in no. 2 implies that $u_e \le c$ on Ω , i.e. u_e is bounded on Ω . Thus the maximum-minimum principle in no. 4 is applicable to u_e . Since

$$\frac{\ell(u) - \varepsilon}{\ell(e) + \varepsilon} \le u_e(z) \le \frac{\ell(u) + \varepsilon}{\ell(e) - \varepsilon}$$

on β_{r_n} , we have the same inequality on Ω_{r_n} . Therefore

$$\frac{\ell(u) - \varepsilon}{\ell(e) + \varepsilon} \le \lim_{z \to 0} \inf \frac{u(z)}{e(z)} \le \lim_{z \to 0} \sup \frac{u(z)}{e(z)} \le \frac{\ell(u) + \varepsilon}{\ell(e) - \varepsilon}$$

is valid for every $\varepsilon \in (0, \ell(e))$ and (15) follows.

6. Let u be a continuous function on $\Omega \cup \beta$ such that u is a solution of $\Delta u = Pu$ on Ω . Then the condition

$$u(e^{i\theta}) = \left[\frac{\partial}{\partial r}u(re^{i\theta})\right]_{r=1} = 0$$

for every $\theta \in T = (-\infty, \infty)/\text{mod } 2\pi$ implies that $u \equiv 0$ on Ω .

Let \hat{P} be the symmetric extension to $\hat{\Omega}$ of P and fix a $t \in (0,1)$. Let R be the annulus t < |z| < 1/t. Consider the solution u_1 of $\Delta u = \hat{P}u$ on R with boundary values u(z) on |z| = t and $-u(1/\bar{z})$ on |z| = 1/t. By the symmetry of \hat{P} about |z| = 1, $u_1(\tau(z))$ is also a solution of $\Delta u = Pu$ where $\tau(z) = 1/\bar{z}$. Since $u_1(\tau(z)) + u_1(z) = -u(1/(1/\bar{z})) + u(z) = 0$ on |z| = t and similarly on |z| = 1/t, we have $u_1(z) + u_1(\tau(z)) = 0$ on R and in particular $u_1 = 0$ on |z| = 1. Thus $u_1(z) = u(z)$ on $t \leq |z| \leq 1$. This means that u has a C^2 -extension to an open set containing $\Omega \cup \beta$. In

particular $f(r) = r^{-2}u_{\theta\theta}(re^{i\theta})$ is continuous on [t,1] for any fixed $\theta \in T$ and the same is true of $g(r) = P(re^{i\theta})$. Consider the Cauchy problem for the linear ordinary equation

$$\varphi''(r) + r^{-1}\varphi'(r) + g(r)\varphi(r) = f(r)$$

whose coefficients are continuous on [t, 1] with the initial condition

$$\varphi(1) = \varphi'(1) = 0$$

on [t,1]. Then $u(re^{i\theta})$, as a function of r, is a solution of this problem besides the trivial solution $\varphi(r) \equiv 0$. By the uniqueness of the solution of the Cauchy problem we have $u(re^{i\theta}) \equiv 0$ on [t,1] for any fixed $\theta \in T$, and since t is arbitrary in (0,1), we conclude that $u(z) \equiv 0$ on Ω .

7. Let $G_{g-\bar{g}_t}(z,\zeta)$ be the Green's function of $\Delta u = Pu$ on $\Omega - \bar{\Omega}_t$ and $H_{g-\bar{g}_t}(z,\zeta)$ the harmonic Green's function. We simply denote by $H(z,\zeta)$ the harmonic Green's function of Ω and hence of |z| < 1, i.e.

$$H(z,\zeta) = \log \left| \frac{1 - \overline{\zeta}z}{z - \zeta} \right|.$$

by (3) we have

$$0 < G_{\varrho-\bar{\varrho}_{\bullet}}(z,\zeta) \le H_{\varrho-\bar{\varrho}_{\bullet}}(z,\zeta) \le H(z,\zeta)$$
.

Since $G_{a-\bar{a}_t}(z,\zeta) \leq G_{a-\bar{a}_s}(z,\zeta)$ for $0 < s \le t < 1$, the Harnack principle assures the existence of

$$G(z,\zeta) = \lim_{t\to 0} G_{\varrho-\bar{\varrho}_t}(z,\zeta)$$

which will be referred to as the Green's function of $\Delta u = Pu$ on Ω .

Under the assumption that the limit (15) exists for every $u \in \mathcal{B}$ we next prove the existence of

(16)
$$K(\zeta) \equiv \lim_{z \to 0} G(z, \zeta) / e(z) \in \mathscr{P}$$

for every fixed $\zeta \in \Omega$ (cf. Heins [4], Hayashi [3]).

Suppose $\zeta \in \Omega - \overline{\Omega}_t$ $(t \in (0,1))$ and let $c(\zeta) = \max_{\beta_t} G(\cdot,\zeta)$ and $c'(\zeta) = \min_{\beta_t} e$. Since $G(\cdot,\zeta)$ and $(c(\zeta)/c'(\zeta))e$ are in \mathcal{B}_t and the former is dominated by the latter on β_t , $\{G(z,\cdot)/e(z); z \in \Omega_t\}$ is a uniformly bounded family of positive solutions of $\Delta u = Pu$ on $\Omega - \overline{\Omega}_t$ for every $t \in (0,1)$. Hence by the Harnack principle $\{G(z,\cdot)/e(z); z \to 0\}$ is a normal family on each compact set in Ω . Contrary to the assertion assume the limit

(16) does not exist. Then there exist two sequences $\{z_{j,n}\}$ (j=1,2) in Ω coverging to zero such that

$$K_j(\zeta) = \lim_{n \to \infty} G(z_{j,n}, \zeta) / e(z_{j,n})$$

exist on Ω (j=1,2) and $K_1(z) \not\equiv K_2(z)$ on Ω . Clearly $K_j \in \mathscr{P}$ (j=1,2). For any $u \in \mathscr{B}$ let $u_t = u_{1,t}$ as in (6) and $G_t(z,\zeta) = G_{\varrho-\bar{\varrho}_t}(z,\zeta)$. By (4)

$$u_t(z) = -rac{1}{2\pi}\int_0^{2\pi} u_t(e^{i\theta}) \left[rac{\partial}{\partial r} G_t(z, re^{i\theta})
ight]_{r=1} d heta$$

for $z \in \Omega - \overline{\Omega}_t$. On letting $t \to 0$ we have

$$u(z) = -rac{1}{2\pi} \int_0^{2\pi} u(e^{i heta}) iggl[rac{\partial}{\partial r} G(z, re^{i heta}) iggr]_{r=1} d heta$$

for every $z \in \Omega$ and a fortiori

$$\frac{u(z_{j,n})}{e(z_{j,n})} = -\frac{1}{2\pi} \int_0^{2\pi} u(e^{i\theta}) \left[\frac{\partial}{\partial r} \left(\frac{G(z_{j,n}, re^{i\theta})}{e(z_{j,n})} \right) \right]_{r=1} d\theta$$

for j = 1, 2. By (15), on letting $n \to \infty$, we have

$$\ell(u)/\ell(e) = -rac{1}{2\pi}\int_0^{2\pi}u(e^{i heta})iggl[rac{\partial}{\partial r}K_j(re^{i heta})iggr]_{r=1}d heta$$

for j=1,2. On setting $L(z)=K_1(z)-K_2(z)$, we conclude that

$$\int_0^{2\pi} u(e^{i\theta}) \left[\frac{\partial}{\partial r} L(re^{i\theta}) \right]_{r=1} d\theta = 0$$

for every $u \in \mathcal{B}$ and hence for every $u \in C(\beta)$. Thus

$$L(e^{i\theta}) = \left[\frac{\partial}{\partial r} L(re^{i\theta})\right]_{r=1} = 0$$

on T and therefore, by no. 6, $L(z) \equiv 0$, i.e. $K_1(z) \equiv K_2(z)$, a contradiction.

8. Under the assumption (16) we finally conclude that any function u(z) in \mathcal{P} is a constant multiple of K(z), i.e. dim P=1 and thus the Picard principle is valid (cf. Martin [8], Nakai [11], S. Itô [5], etc.).

For any u in \mathscr{P} , let $\hat{u}_{t,s}$ be the solution of $\Delta u = Pu$ on $\Omega_t - \overline{\Omega}_s$ (0 < s < t < 1) with boundary values u on β_t and zero on β_s . Let $G_s(z,\zeta) = G_{g-\overline{g}_s}(z,\zeta)$. Fix a $z \in \Omega - \overline{\Omega}_t$. The Green formula applied to u and $G(z,\cdot)$ for the region $\Omega - \overline{\Omega}_t$ yields

$$2\pi u(z) = -\int_{\beta_t} G(z,\zeta) \frac{\partial}{\partial \nu_\zeta} u(\zeta) ds_\zeta + \int_{\beta_t} u(\zeta) \frac{\partial}{\partial \nu_\zeta} G(z,\zeta) ds_\zeta$$

and also to $G_s(z,\cdot)$ and $\hat{u}_{t,s}$ for the region $\Omega_t - \overline{\Omega}_s$ with making $s \to 0$ yields

$$0 = - \int_{\beta_t} G(z,\zeta) \frac{\partial}{\partial \nu_{\rm r}} \hat{u}_t(\zeta) ds_{\zeta} + \int_{\beta_t} u(\zeta) \frac{\partial}{\partial \nu_{\rm r}} G(z,\zeta) ds_{\zeta}$$

where $\hat{u}_t = \lim_{s\to 0} \hat{u}_{t,s} \in \mathcal{B}_t$ with $\hat{u}_t = u$ on β_t . Subtraction of the latter from the former in the above two identities gives

$$u(z) = rac{1}{2\pi} \int_0^{2\pi} G(z, te^{i heta}) \left[rac{\partial}{\partial r} (\hat{u}_t(re^{i heta}) - u(re^{i heta}))
ight]_{r=t-0} td heta \; .$$

Since $u(re^{i\theta}) - \hat{u}_t(re^{i\theta}) \geq 0$ on Ω_t and zero on β_t ,

$$d\mu_t(heta) = rac{1}{2\pi} e(te^{i heta}) iggl[rac{\partial}{\partial r} (u_t(re^{i heta}) - u(re^{i heta})) iggr]_{r=t-0} td heta \geq 0$$

on U. Let

$$K(z,\zeta) = G(z,\zeta)/e(\zeta)$$
.

By (16), $K(z,\zeta)$, as a function of ζ , is continuous on $(|\zeta| < 1) - \{z\}$ and K(z,0) = K(z), and we have

$$u(z) = \int_0^{2\pi} K(z, te^{i\theta}) d\mu_t(\theta)$$

for $z \in \Omega - \overline{\Omega}_t$. Fix a $t_0 \in (0,1)$ and a $z_0 \in \Omega - \overline{\Omega}_{t_0}$. Since $K(z_0,\zeta)$, as a function of ζ , is a bounded solution of (12) on Ω_{t_0} , (13) implies that

$$a=\inf_{a_{t_0}}K(z_0,\zeta)>0.$$

Set $c_t = \int_0^{2\pi} d\mu_t(\theta)$. Then $0 \le c_t \le u(z_0)/a$ for $t \in (0,t_0)$, and thus we can find a decreasing sequence $\{t_n\} \subset (0,t_0)$ coverging to zero such that $c = \lim_{n \to \infty} c_{t_n}$ exists. Hence by

$$u(z) = \int_0^{2\pi} (K(z, te^{i\theta}) - K(z)) d\mu_{t_n}(\theta) + c_{t_n}K(z) ,$$

we deduce

$$|u(z) - cK(z)| \le c_{t_n} \sup_{|\zeta| < t_n} |K(z, \zeta) - K(z, 0)| + |c_{t_n} - c| \cdot K(z)$$

for $z \in \Omega - \overline{\Omega}_{t_n}$. On letting $n \to \infty$, we conclude that u(z) = cK(z) on Ω .

9. We are ready to proceed to the proof of our theorem. All we have to prove is that the condition (1) implies (14), i.e. $\ell(e) > 0$. Then, by no. 5, (15) is valid and a fortiori (16) follows by no. 7, which in turn implies dim P = 1 by no. 8.

Let $\{r_n\}$ be a decreasing sequence in (0,1) converging to zero and ε_n be such that $(r_{n+1}+r_n)/2 < r_n - \varepsilon_n < r_n + \varepsilon_n < (r_n+r_{n-1})/2$ for $n=1,2,\cdots$ with $r_0=1$ and that

$$\int_{A_n} P(z) \log rac{1}{|z|} dx dy < 2^{-n}$$
 , $A_n = \{r_n - arepsilon_n < |z| < r_n + arepsilon_n \}$.

This can be achieved by taking $\varepsilon_n > 0$ sufficiently small. Replacing E in (1) by $E - \bigcup_{n=1}^{\infty} A_n$ we can thus assume

$$E \cap \beta_{r_n} = \phi \qquad (n = 1, 2, \cdots)$$
.

We denote by e_n the P-unit on Ω_{r_n} . Let $\{S_{n,m}\}$ be an increasing sequence $(m=1,2,\cdots)$ of subregions $S_{n,m}$ of $\Omega_{r_n}-E$ such that $\partial S_{n,m}$ consists of a finite number of disjoint Jordan curves with β_{r_n} a component of $\partial S_{n,m}$ and $\bigcup_{m=1}^{\infty} S_{n,m} = \Omega_{r_n} - E$. We denote by $u_{n,m}$ $(h_{m,n}, \text{ resp.})$ the solution of $\Delta u = Pu$ (the harmonic function, resp.) on $S_{n,m}$ with boundary values 1 on β_{r_n} and zero on $\partial S_{n,m} - \beta_{r_n}$. Let $H_{n,m}(z,\zeta)$ be the harmonic Green's function of $S_{n,m}$. Then $H_n(z,\zeta) = \lim_{m\to\infty} H_{n,m}(z,\zeta)$ is the harmonic Green's function of $\Omega_{r_n} - E$. By (2)

$$h_{n,m}(z) = u_{n,m}(z) + \frac{1}{2\pi} \int_{S_{n,m}} H_{n,m}(z,\zeta) P(\zeta) u_{n,m}(\zeta) d\xi d\eta.$$

Since $\{h_{n,m}\}$ ($\{u_{n,m}\}$, resp.) is increasing $(m=1,2,\cdots)$, $h_m=\lim_{m\to\infty}h_{n,m}$ ($u_n=\lim_{m\to\infty}u_{n,m}$, resp.) is a bounded harmonic function (a bounded solution of $\Delta u=Pu$, resp.) on $\Omega_{r_n}-E$ with boundary values 1 on β_{r_n} . Moreover, since $H_{n,m}$ is increasing, the Lebesgue-Fatou theorem yields

$$h_n(z) = u_n(z) + \frac{1}{2\pi} \int_{g_{r_n}-E} H_n(z,\zeta) P(\zeta) u_n(\zeta) d\xi d\eta.$$

Let $H(z,\zeta) = \log (|1 - \overline{\zeta}z|/|z - \zeta|)$ be the harmonic Green's function on Ω and hence on |z| < 1. Observe that $u_n \le e_n \le 1$ and $H_n(z,\zeta) \le H(z,\zeta)$. Therefore

(17)
$$h_n(z) \le e_n(z) + \frac{1}{2\pi} \int_{a_{rn}-E} H(z,\zeta) P(\zeta) d\xi d\eta$$

for $z \in \Omega_{r_n}$ where we set $h_n = 0$ on E. On integrating both sides of (17) on the circle $|z| = r \in (0, r_n)$ and using the Fubini theorem and the circle mean formula of Green's function:

$$\frac{1}{2\pi} \int_0^{2\pi} H(re^{i\theta}, \zeta) d\theta = \min\left(\log \frac{1}{r}, \log \frac{1}{|\zeta|}\right) \leq \log \frac{1}{|\zeta|},$$

we deduce (cf. no. 3)

(18)
$$h_n^*(r) \le e_n^*(r) + \frac{1}{2\pi} \int_{\rho_{\tau_n^- E}} P(\zeta) \log \frac{1}{|\zeta|} d\xi d\eta .$$

10. By comparing the boundary values we see that $h_{n+1,m} \geq h_{n,k}$ on $S_{n+1,m} \cap S_{n,k}$ if m is sufficiently large for any fixed k. Therefore $h_{n+1} \geq h_n$ on $\Omega_{r_{n+1}}$ and a fortiori $h_{n+1}^* \geq h_n^*$ on $(0,r_{n+1}]$ for $n=1,2,\cdots$. It is also clear that $e_{n+1}^* \geq e_n^*$ on $(0,r_{n+1}]$ for $n=1,2,\cdots$. Since we have set $h_n=0$ on E,h_n is subharmonic on Ω_{r_n} , and clearly e_n is subharmonic on Ω_{r_n} . Therefore

$$a_n=\lim_{r o 0}h_n^*(r)\geq 0$$
 , $b_n=\lim_{r o 0}e_n^*(r)\geq 0$

exist (cf. no. 3) and $a_n \le a_{n+1} \le 1$ and $b_n \le b_{n+1} \le 1$ for $n = 1, 2, \dots$, and thus

$$a=\lim_{n\to\infty}a_n\in[0,1]$$
, $b=\lim_{n\to\infty}b_n\in[0,1]$

exist. By (18) we have

$$a_n \leq b_n + \frac{1}{2\pi} \int_{a_{\tau_n} - E} P(\zeta) \log \frac{1}{|\zeta|} d\xi d\eta.$$

In view of (1) we have

$$\lim_{n\to\infty}\frac{1}{2\pi}\int_{\mathcal{Q}_{\tau_n-E}}P(\zeta)\log\frac{1}{|\zeta|}d\xi d\eta=0$$

and finally we conclude that $a \leq b$, i.e.

(19)
$$\lim_{n\to\infty} \left(\lim_{r\to 0} h_n^*(r) \right) \le \lim_{n\to\infty} \left(\lim_{r\to 0} e_n^*(r) \right).$$

11. Since $h_n > 0$ on $\Omega_{r_n} - E$ and z = 0 is an irregular boundary point of $\Omega - E$ and hence of $\Omega_{r_n} - E$, the Bouligand criteriond assures that

$$\lim_{z\in\Omega_{r_n}-E,z\to 0} h_n(z) > 0.$$

On the other hand h_n is subharmonic on Ω_{τ_n} by the fact that we have defined $h_n=0$ on E, and therefore (cf. no. 3)

$$a_n = \lim_{r \to 0} h_n^*(r) = \lim_{z \to 0} \sup h_n(z) = \lim_{z \in \mathcal{Q}_{r_n} - E, z \to 0} h_n(z) > 0$$

for every $n = 1, 2, \cdots$. Since $a_n \leq a_{n+1}$, we conclude that $a = \lim_{n \to \infty} a_n > 0$ and by (19) $\lim_{n \to \infty} (\lim_{r \to 0} e_n^*(r)) > 0$. Thus there exists an n such that

$$\lim_{r\to 0} e_n^*(r) > 0.$$

Let $c=\inf_{\beta_{r_n}}1/e>0$. Then $e_n\leq ce$ on β_{r_n} implies that $e_n\leq ce$ on Ω_{r_n} and thus $e_n^*\leq ce^*$. Therefore

$$c\ell(e) = \ell(ce) = \lim_{r o 0} (ce)^*(r) = \lim_{r o 0} ce^*(r) \geq \lim_{r o 0} e_n^*(r) > 0$$
 ,

i.e. we have shown that $\ell(e) > 0$, i.e. (14) is valid.

The proof of the theorem is herewith complete.

12. At the end we state several important open problems related to elliptic dimensions. Let P and Q be densities on $0 < |z| \le 1$ and $c \ge 1$ a real number. We ask:

PROBLEM 1. Is the relation dim $cP = \dim P$ valid;

PROBLEM 2. Does the inequality $P \leq Q$ imply dim $P \leq \dim Q$?

In the affirmative case we can deduce the important order comparison theorem: If $c^{-1}P \leq Q \leq cP$ then dim $P = \dim Q$, which is in question at present. These problems should also be asked for densities on Riemann surfaces (cf. Royden [17], Nakai [12], Lathtinen [7], etc.).

If we restrict ourselves to rotation free densities P on $0 < |z| \le 1$, i.e. densities satisfying P(z) = P(|z|) on Ω , then we know that dim P is either 1 or the cardinal number $\mathfrak c$ of continuum and we have a complete criterion for dim P=1 (cf. Nakai [13]). It is also instructive for the study of elliptic dimensions to observe the following example: For densities $P_{\lambda}(z) = |z|^{-\lambda}$, dim $P_{\lambda} = 1$ if $\lambda \in [-\infty, 2]$ and dim $P_{\lambda} = \mathfrak c$ if $\lambda \in (2, \infty)$ where $P_{-\infty} \equiv 0$ (see [13]). Related to these we ask for general densities P on $0 < |z| \le 1$ the following

PROBLEM 3. How widely the range of $P \rightarrow \dim P$ can cover cardinals;

PROBLEM 4. What is the comprehensive complete condition for dim P = 1?

These can also be discussed in the frame of Riemann surface setting, e.g. for densities on ends in the sense of Heins [4] (cf. Ozawa [15, 16], Myrberg [10], Kuramochi [6], Constantinescu-Cornea [2], Hayashi [3], etc.).

REFERENCES

- [1] M. Brelot: Étude de l'équation de la chaleur $\Delta u = c(M)u(M)$, c(M), au voisinage d'un point singulier du coefficient, Ann. Ec. N. Sup., 48 (1931), 153-246.
- [2] C. Constantinescu-A. Cornea: Über einige Problem von M. Heins, Rev. math. pures appl., 4 (1959), 277-281.
- [3] K. Hayashi: Les solutions positives de l'équation $\Delta u = Pu$ sur une surface de Riemann, Kōdai Math. Sem. Rep., 13 (1961), 20-24.
- [4] M. Heins: Riemann surfaces of infinite genus, Ann. Math., 55 (1952), 296-317.
- [5] S. Itô: Martin boundary for linear elliptic differential operators of second order in a manifold, J. Math. Soc. Japan, 16 (1964), 307-334.
- [6] Z. Kuramochi: An example of a null-boundary Riemann surface, Osaka Math. J., 6 (1954), 83-91.
- [7] A. Lahtinen: On the equation $\Delta u = Pu$ and the classification of acceptable densities on Riemann surfaces, Ann. Acad. Sci. Fenn., 533 (1973), 1-26.
- [8] R. Martin: Minimal positive harmonic functions, Trans. Amer. Math. Soc. 49 (1941).
- [9] C. Miranda: Partial Differential Equations of Elliptic Type, Springer, 1970.
- [10] L. Myrberg: Über die Existenz der Greenschen Funktion der Gleichung $\Delta u = c(P)u$ auf Riemannschen Flächen, Ann. Acad. Sci. Fenn., 170 (1954).
- [11] M. Nakai: The space of nonnegative solutions of the equation $\Delta u = Pu$ on a Riemann surface, Kōdai Math. Sem. Rep., 12 (1960), 151-178.
- [12] M. Nakai: Order comparisons on canonical isomorphisms, Nagoya Math. J., 50 (1973), 67-87.
- [13] M. Nakai: Martin boundary over an isolated singularity of rotation free density, J. Math. Soc. Japan, 26 (1974), 483-507.
- [14] M. Ozawa: Classification of Riemann surfaces, Kōdai Math. Sem. Rep., 4 (1952), 63-76.
- [15] M. Ozawa: Some classes of positive solutions of $\Delta u = Pu$ on Riemann surfaces, I, Kōdai Math. Sem. Rep., 6 (1954), 121-126.
- [16] M. Ozawa: Some classes of positive solutions of $\Delta u = Pu$ on Riemann surfaces, II. Kōdai Math. Sem. Rep., 7 (1955), 15-20.
- [17] H. Royden: The equation $\Delta u = Pu$, and the classification of open Riemann surfaces, Ann. Acad. Sci. Fenn., 271 (1959).
- [18] M. Tsuji: Potential Theory in Mordern Function Theory, Maruzen, 1959.
- [19] K. Yosida: Functional Analysis, Springer, 1965.