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A TEST FOR PICARD PRINCIPLE

MITSURU NAKAI

A nonnegative locally Holder continuous function P(z) on 0 < \z\ < 1

will be referred to as a density on 0 < \z\ < 1. The elliptic dimension

of a density P(z) at 2—0, d i m P in notation, is defined to be the dimen-

sion of the half module of nonnegative solutions of the equation Δu{z)

— P{z)u{z) on the punctured unit disk i 2 : 0 < | £ | < l with boundary

values zero on \z\ = 1. After Bouligand we say that the Picard principle

is valid for a density P at z — 0 if dim P = 1. The purpose of this

paper is to establish the following practical test:

THEOREM. The Picard principle is valid for a density P{z) on

0 < |#| < 1 at z — 0 if there exists a closed subset E of Ω such that

Ω — E is connected and z = 0 is an irregular boundary point of the

region Ω — E for the harmonic Dirichlet problem and

( 1 ) ί P(z) log —dxdy < oo .
JΩ-E \Z\

As a direct consequence of the theorem we see that if P e LP(Ω — E)

(1 < V < °°) for an admissible exceptional set E as stated in the theo-

rem, then the Picard principle is valid for P. Needless to say, here

and also in the theorem the exceptional set E may be empty. We must

also remark that (1) is not necessary for the validity of Picard principle

as is seen by a simple example P(z) = \z\~2 (cf. no. 12). The proof of

the theorem will be given in nos. 9-8. In the last no. 12 we state four

unsettled important problems related to elliptic dimensions.

1. Let P(z) be a density on 0 < \z\ < 1, i.e. P(z) > 0 and P(z) is

locally Holder continuous: |Pfe) — P(z2)\ < Ar \zx — z2\
λr for every zx and

z2 in 0 < r < | 2 | < l where Ar e (0, oo) and λr e (0,1] are constants which

may depend on r e (0,1). Such a density P can be considered to be a

density on Ω: 0 < \z\ < 1 which is the restriction to Ω of a density on
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Ω: 0 < \z\ < oo. Let P(z) be the symmetric extension of a density P(z)
on 0 < \z\ < 1 to Ω: P(z) = P(s) on β and P(z) = PO /z) for 1 < |z| < oo.
Then P(z) is a density on β and Poτ = P, where τ is the involution of
Ω about |«] = 1, i.e. τ(z) = 1/z.

The basic tool of our proof is the unique solvability of the Dirichlet
problem. Let R be a region in Ω bounded by a finite number of disjoint
analytic Jordan curves and Q be a density on Ω. For any φ e C(dR)
there exists a unique function Qf e C(R) such that Qf = p on d# and
Qf is a solution of Δu = Q^ on #. If Q Ξ 0, then we use the standard
notation Hf instead of Qf. The unique existence of Hf can be seen
e.g. by the Perron-Brelot method as can be found in any text book
(cf. e.g. Tsuji [18]). By the same method we can see the unique existence
of Qf but the following integral equation method is preferable for our
purposes in the sense that it clarifies the relation between Qf and Hf.
Let HΛ(2,ζ) be the harmonic Green's function on R (cf. e.g. [18]) and
consider the integral operator

(Tf)(z) = —A- f HR(z, ζ)Q(ζ)f(ζ)dξdv

It is elementary to check that / 6 Ca(D) implies Tf e Ca+1(D) (a = 0,1)
and ΔTf — Q-f on D (a = 1) for an open set D in R and for an / on
R for which Tf can be defined (cf. e. g. Miranda [9]). It is also easy
to see that / e C(R) implies Tf e C(R) with Tf = 0 on dR, and that T
is a compact operator from C(R) into itself. By the maximum principle
for subharmonic functions we see that 1 is not the proper value of T
and therefore by the Riesz-Schauder theory, I + T: C(R) -»C(R) is
bijective (cf. e.g. Yosida [19]). Hence Qf is obtained as (/+ T)~Ήf:

(2) Qf(z) ^ Hf(z) - J - f HB(z, ζ)Q(ζ)Qf(ζ)dξdη .

By the fact that φ-+ Hf is a positive linear operator from C(dR) into
C(R) with norm 1 and by the maximum principle of subharmonic func-
tions, we see that φ -* Qf is a positive linear operator from C(dR) into
C(R) with norm 1.

Fix a ζoeJ? and let Rn be the region obtained from R by deleting
the closed disk about Co with radius 1/n for large integer n and Tn be
the corresponding integral operator: C(Rn) —• C(Rn). Then un = (In
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+ TnY
ιHR( ,ζ0) forms a decreasing sequence dominated byΉ Λ ( ,ζ0), and

if we denote by GΛ( ,ζ0) the limit function, then

3 ) GR{z, ζ0) - H Λ («, ζ0) - -A- f

The function GR{z, ζ) is referred to as the Green's function of Δu = Qu

on β. By (3) we see that GR(-, ζ) e C 1 ^ - {ζ}) and dGR(z,Q/dt

— 3HR(z,ζ)/dt + 0(1) as 2-+ζ where t = x and ?/. By this and by the

Green formula we have the symmetry GR{z,ζ) = GR(ζ,z). We denote by

Cω(3R) the class of real analytic functions on 3R. If φ e Cω(3R)y then

Hf is easily seen to belong to C\R), and by (2) we see that QfeC\R).

By the Green formula

( 4 ) Q*(s)= *

where d/dι> denotes the inner normal derivative and ds is the line element.

This is primarily derived for φ e Cω(3R) but the denseness of Cω(dR) in

C(dR) assures the validity of (4) for every ψeCidR). As a consequence

of (4) we have the Harnack inequality and the Harnack principle for

nonnegative solutions of Δu — Qu,

2. For a density P{z) on 0 < \z\ < 1 we shall study the half module

0> of nonnegative solutions u of the equation Δu(z) = P{z)u{z) on the

punctured disk Ω: 0 < \z\ < 1 with boundary values zero on β:\z\ = l.

For the study of 9 we need to consider the half module J* of nonnegative

bounded solutions of Δu = Pu on Ω with continuous boundary values on

β. Let Ωt be 0 < \z\ < t and βt be \z\ = t for ί e (0,1]. Thus ^ = Ω

and ft = β. We also consider auxiliary classes &t and J^ of nonnegative

and nonnegative bounded solutions of Δu = P ^ on Ωt with boundary

values zero and continuous boundary values on β, respectively. In

particular 0ι

ι = 0* and ^ x = Si. The boundary point « = 0 is of parabolic

character (cf. Brelot [1], Ozawa [14], Royden [17]) in the following sense:

( 5 ) 0t n # , = {0}.

Let M e ^ { ί l J^. Since Δu — Pu > 0,u is subharmonic on β^ For any

ε > 0 se(z) = —ε log |3 | — u{z) is superharmonic on Ωt with lim inf^_aβί se(^)

> 0. The minimum principle for superharmonic functions yields sε(z)

> 0 for every ε > 0 and therefore u = 0 on Ωt. For any w e J ί let ut)S



108 MITSURU NAKAI

be the solution of Δu = Pu on Ωt — Ώs (0 < s < t < 1) with boundary
values u on βt and zero on βs. As a consequence of (5) we have

( 6) u(z) = lim uttS{z)
s-o

on Ωt. In fact, let v = lims_0 wM e ^ . Then 0 < v < u on Ωt with v = u
on /3*. Thus w - D e ^ ί l f ί , i.e. (6) is valid. Therefore ue@t is de-
termined uniquely by its boundary values φ on βt. We shall denote this
u by P^K Then φ-^P^ is a positive linear operator from C(βt) into
J ί θ ^ t with norm 1.

Fix a t and an s with 0 < 5 < t < 1. Consider the operator S
= Sβ#ί from ^ £ into ^ s given by Su = u — P°*. Then S is a bijective
half linear operator between 0>t and ^ s (Heins [4], Ozawa (15,16]). If
Su = 0, then w = Pfs and w is bounded, i.e. u e 0>% Π 3St and w = 0. Thus
S is injective. Let v e £PS and %r = Pξt"Ωr where v = v on /3r and ^ — 0
on βt (0 < r < s) and ^ r = ur — v > 0. Since {ur} is increasing as r —> 0,
if u = limr_>0 ^r is convergent, then tt e ^ and limr^0 wr = P%s and Stt

[du(reiθ)Idr]r=zttdθ and

o

DA(φ)=\ (\Fφ(z)\2 + P(z)φ(z)2)dxdy where F^ = ( ^ , ^ ) . Then by the
J A.

Green formula

frUr - ftur = DΩt_Πr(ur) , / r v - /βv = DΩt_Or(v) = DQt_ΰr(v)

where we set v = 0 on Ωt — Ωs. Again by the Green formula we see
the Dirichlet principle: DΩt_Ώr(ur) < DΩt_Sr(v). Hence

0 < -ftUr < -f,V - fr(!Ur ~ V) .

Since ur — v > 0 and uτ — v = 0 on /5r, we have / r (^ r — t;) > 0. There-
fore

0 < lim sup (—ftur) < —fsv < oo
r-* 0

and limr_>0 wr = oo does not hold and thus u — limr_0 ur is convergent.
This means that dim P depends only on the behavior of P at z = 0.

Another consequence of (5) and actually of (6) is

(7) ί \Fu(z)\2 dxdy < oo
J Ωs

for every u%S8t and se(0, t). This will play the essential role in the
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next no. 3. For 0 < rf < r < s, the Dirichlet principle which is a simple
consequence of the Green formula yields DΩg(us>r) = DΩ8_Dr,(us>r,) < DΩ8_Ωr(uStr)

= DΩg(uSf7) where we have set us>r = 0 on Ώr and u8yr, = 0 on Ώr,. By

(2) and (6) we have

lim —uStr,(z) = —u(z)
r'-0 d(L ' 3d

where a = x and y, and by the Fatou lemma

DΩs(u) < lim inf DΩs(us>r,) < DΩs(uStr) < oo
r*-+ 0

for any fixed re(0, s) and in particular we have (7).

3. The mean operation u -> ̂ * is useful for the study of subharmonic
functions. Let u be defined on Ωt such that

w*(r) = — Γ u(reiθ)dθ
2π Jo

can be defined for r e (0, £). This is the case e.g. when u is subharmonic
on Ωt. If u is bounded subharmonic on Ωt> then ^ can be extended to
\z\ < t so as to be subharmonic by giving the value lim sup2_0 u(z) at
z = 0, and hence we have (cf. e.g. Tsuji [18])

(8) £(u) = lim — I * u(reiθ)dθ = lim sup u(z) .
2 J

If w € «̂ ί, then u is bounded subharmonic on Ωt and therefore the above
relation (8) is applicable to every ue&t.

We now maintain that for any u e SSt there exists an exceptional
closed subset E = Eu of (0, ί) with finite logarithmic measure

( 9) f d log r < co
J#

such that

(10) lim u{z) =

For the proof consider Fourier coefficients cn(r) and sn(r) (w = 1,2, •)
of u(reiθ) for any r e (0, f) as a function of θ:
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Jo π J at

110 MITSURU NAKAI

1 C2π

I cn(r) = — u(reίθ) cos nθdθ
π Jo

sn(r) = — Π* u(reίθ) sin nθdθ
π Jo

for n = 1,2, . On setting

( oo \ 1,

Σ n\cn(r)2 + sn(rY))
71 = 1 /

we assert that

__ [z) I2 dxdy < oo .
J θ ' 7Γ J f l ί "

Observe that

oo

u(reiθ) = ^*(r) + Σ (^nW cos n^ + sn(r) sin w0)

for (r, β) e (0, t ) χ Γ with Γ = (— oo, oo)/mod 2π and thus
oo

uθ(reίθ) = Σ ( ~ ^ n W sinwβ + wŝ O") cosn^) .

Therefore, in view of \Fu(reίθ)\2 = ^r(reί<?)2 + r"2^(re*0S we have

r-2φ(r)2 = — Γ r-2Mθ(reiθ)2dθ < — Γ \Fu(reίθ)\2 dθ .
7Γ J 0 7Γ J 0

A fortiori

P ^(r)2d log r < — Γ P \Fu(reiθ)\2rdrdθ ,
Jθ 7Γ Jo Jo

i.e. (11) is valid. Next set

rt/(n+l)

an = <p(r)2d log r
J ί/(n+2)

for ^ = 1,2, •••. By (11) we have Σ ~ = i ^ < ° ° We can find a de-

creasing sequence {εn} converging to zero such that ΣrT=iεί2αw < °° Let

En = {re [t/(n + 2), t/(n + 1)] φ(r) > εn)

and

?Λ n (o, t)
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which is a closed subset of (0, t). Observe that

ί d log r = Σ e~2 f ε\d log r < f>- 2 ί φ(r)2d log r = Σ Λ ,

i.e. we have (9). By the Schwarz inequality

+ « . ( r ) Y
n n I

Therefore we conclude that \u(reiθ) — u*(r)\ < 6~1/2πφ(r). For an arbitrary

ε > 0 there exists by (8) an r 2 e (0,t) such that \u*(r) ~ £(u)\ < ε/2 for

every r e (0, rx). Let ^ be such that 6~1/2πεn < ε/2 and set r0 = min (ru t/(n+l)).

Then

e*0 - £(u)\ < 6~1/2πφ(r) + \u*(r) - £{u)\ < ε

for every re(0, r0) — £7, i.e. we have (10).

4. The P-unίt et on βj is the function in &t with et\βt = 1. Using

the P-unit β = ex on Ω = ^ consider the equation

(12) Jt Gs) + 2V log e(«) Fv(«) = 0

on β. Let v be a bounded nonnegative solution of (12) on Ωs. Then

the following maximum-minimum principle is valid for t e (0, s):

(13) sup v(z) = max ι;(«) , inf ι (z) = min v(2) .
zGΩt z€βt zeΩt z€βt

By an easy computation one sees that ev e £§s. Let c = max^ v and

cr = min ĵ v. Then since ev, ce, c'e e &t and c'e < ev < ce on βt9 we see,

by (6) or by the remark after (6) in no. 2, that c'e < ev < ce on Ωt and

thus cf < v < c on βί,i.e. (13) is valid.

5. Using results in nos. 3 and 4 we now maintain that under the

assumption

(14) l{e) > 0

the following limit

(15) lim u(z)/e(z) = £(u)/£(e)
z-+0

exists for every u e «̂ .
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For the proof, let Eu and Ee be exceptional sets in no. 3 for u and
e on Ω, respectively. Then E = Eu U Ee is also a closed subset of (0,1)
and (9) implies that

d log r < oo .

From this it follows that there exists a strictly decreasing sequence {rn}
coverging to zero in (0,1) — E. Let ε be an arbitrary number in (0, S(e)).
By (10) there exists an N such that

\u(z) - £(u)\ < ε , \e(z) - £(e)\ < ε

for every zeβrn with n>N. Let ue = u/e. Then again by an easy
computation ^e is a solution of (12). Since u < ce on β with c = max^ u,
(6) or the remark after (6) in no. 2 implies that ue < c on 42, i.e. wβ is
bounded on Ω. Thus the maximum-minimum principle in no. 4 is ap-
plicable to ue. Since

ε £{e) - ε

on βrn, we have the same inequality on ΩTn. Therefore

liminf J**L < limsup
()

<
e(z) £{e) — ε

is valid for every e e (0, £(e)) and (15) follows.

6. Let u be a continuous function on Ω U β such that w is a
solution of Δu = Pu on Ω. Then the condition

έ0 = [ JLu(reίθ)\ =
L 6r Jr=i

0

for every θe T = (— oo, oo)/mod27r implies that u = 0 on Ω.

Let P be the symmetric extension to Ω of P and fix a ί e (0,1). Let

R be the annulus ί < |z| < 1/ί. Consider the solution ux of Δu = P% on

jR with boundary values ^(2) on \z\ — t and —u(l/z) on |s | = 1/ί. By

the symmetry of P about \z\ = l,wx(τ(«)) is also a solution of J ^ = Pπ

where r(2;) = 1/z. Since ^(r(^)) + ^x(^) = —u(l/(l/z)) + w(«) = 0 on \z\ = ί

and similarly on |2| = 1/ί, we have ux{z) + uγ(τ(z)) = 0 on i? and in

particular ^ = 0 on |^| = 1. Thus uλ(z) = u(z) on t < \z\ < 1. This

means that w has a C2-extension to an open set containing Ω U β. In
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particular /(r) = r~2uβθ{τeίθ) is continuous on [t, 1] for any fixed θ e T

and the same is true of g(r) = P(reίθ). Consider the Cauchy problem

for the linear ordinary equation

φ"(r) + r-y(r) + gir)φ{τ) = /(r)

whose coefficients are continuous on [t, 1] with the initial condition

φ(X) = φ'(X) = 0

on [ί, 1]. Then u(reiθ), as a function of r, is a solution of this problem

besides the trivial solution φir) = 0. By the uniqueness of the solution

of the Cauchy problem we have u(reίθ) = 0 on [t, 1] for any fixed θ e T,

and since t is arbitrary in (0,1), we conclude that u(z) = 0 on Ω.

7. Let GΩ_Ωt(z,ζ) be the Green's function of Δu — Pu on Ω — Ώt

and HΩ_Qt(z,ζ) the harmonic Green's function. We simply denote by

H(z,ζ) the harmonic Green's function of Ω and hence of \z\ < 1, i.e.

by (3) we have

0 < GQ_Ώt(z,ζ) < HΩ_Dt(z,ζ) < H(z,ζ) .

Since GΩ_Πt(z,ζ) < GΩ_Ώg{z,Q for 0 < s < t < 1, the Harnack principle

assures the existence of

which will be referred to as the Green's function of Δu = Pu on Ω.

Under the assumption that the limit (15) exists for every u e 31 we

next prove the existence of

(16) K(Q = lim G(z, ζ) / e(z) e 0>
2->0

for every fixed ζeΩ (cf. Heins [4], Hayashi [3]).

Suppose ζeΩ-Ώt ( ίe(0, l)) and let c(ζ) = max^ G( ,ζ) and c\ζ)

= mini5ί e. Since G( ,ζ) and (c(O/c'(O)β are in J^ and the former is

dominated by the latter on βt, {G(z, )/e(z) z e Ωt) is a uniformly bounded

family of positive solutions of Δu = Pu on 42 — βί for every t e (0,1).

Hence by the Harnack principle {G(z, -)/e(z); z -» 0} is a normal family

on each compact set in Ω. Contrary to the assertion assume the limit
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(16) does not exist. Then there exist two sequences {zj>n} (j = 1,2) in

Ω coverging to zero such that

exist on Ω (j = 1,2) and Kx(z) =έ K2(z) on Ω. Clearly KjβP (j = 1,2).

For any ue@ let ut = wlfί as in (6) and Gt(z,ζ) = G0-Bt(z,ζ). By (4)

2τr Jo L dr J» =i

for 06fl — βί. On letting £ —• 0 we have

u{z) = —-L f2ίΓ w(ew)fl-G(2, re")l <W
2ττ Jo L3r Jr=i

for every z e Ω and a fortiori

e(zjtn) 2π Jo

for y = 1,2. By (15), on letting n-^ oo, we have

27r Jo L dr

for j = 1,2. On setting L(z) = Kx(z) — K2(z), we conclude that

Γ u{ei9)\—Uχei9)\ dθ = O
Jθ L df Jr=l

for every ue& and hence for every ueC(β). Thus

L(eίθ) = \—L(reiθ)] = 0
L dr Jr=i

on T and therefore, by no. 6, L(z) = 0, i.e. UL^^) = K2(z), a contradiction.

8. Under the assumption (16) we finally conclude that any function

u(z) in 9 is a constant multiple of K(z), i.e. dim P — 1 and thus the

Picard principle is valid (cf. Martin [8], Nakai [11], S. Itδ [5], etc.).

For any u in ^ , let ύt>s be the solution of Δu = Pu on Ωt — Ωs

(0 < s < t < 1) with boundary values ^ on βt and zero on βs.- Let

G8(z,ζ) = GΩ-oa(z,ζ). Fix a zeΩ — Ώt. The Green formula applied to

^ and G(z, •) for the region Ω — Ώt yields
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J βt 0Vζ βt 0Vζ

and also to Gs(z, •) and ύtfS for the region Ωt — Ωs with making s—> 0

yields

G(z,Q£ύt(Od8ζ+\ u(ζ)^
βt OVζ J βt OVζ

where ύt = \ims_oύttSe &t with ύt = u on βt. Subtraction of the latter

from the former in the above two identities gives

u(z) = — Γ G(z, tei9)\—(ύt(reiΦ) - u(reiθ))] tdθ .

Since u(reίθ) — ύt(reίθ) > 0 on Ωt and zero on βt,

dμt(θ) = J-e(teίθ)\—(ut(reίθ) - u(reiθ))] tdθ > 0
2π L dr Jr=ί-o

on U. Let

By (16), K(z,ζ), as a function of ζ, is continuous on (|ζ| < 1) — {z} and

K(z,Q>) = K(2;), and we have

= Γ K(z, teiθ)dμt(θ)
Jo

for zeΩ — Ώt. Fix a toe(Q, 1) and a ^ o e β — Ϊ3ίo. Since Z(^o,ζ), as a

function of ζ, is a bounded solution of (12) on Ωto, (13) implies that

Set Cί = dμt(θ). Then 0 < Cj < u(zQ)/a for ί e (0, ί0), and thus we can
Jo

find a decreasing sequence {£π} c (0, ί0) coverging to zero such that

c = lim^^^ ctn exists. Hence by

viz) - Γ (K(z, teiθ) - K(z))dμtβ) + ctnK(z) ,
Jo

we deduce

\u(z) - cK(z)\ < ctn sup \K(z,Q - K(z,0)\ + \ctn - c| K(2)
ICKίn

for ze Ω — Ωtn. On letting w—* oo, we conclude that u(z) = ciί(2;) on β.
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9. We are ready to proceed to the proof of our theorem. All we

have to prove is that the condition (1) implies (14), i.e. £(e) > 0. Then,

by no. 5, (15) is valid and a fortiori (16) follows by no. 7, which in turn

implies dim P = 1 by no. 8.

Let {τn} be a decreasing sequence in (0,1) converging to zero and

εn be such that (rn + 1 + rn)/2 < rn - εn < rn + εn < (rn + τn_^j2 for

n = 1,2, with r0 = 1 and that

I P(z) log -L(tedi/ < 2'» , An = {rn - εn < |z| < r n + εn} .

This can be achieved by taking εn > 0 sufficiently small. Replacing E

in (1) by E — U~=i An we can thus assume

E Π βrn = φ (n = l , 2 , . . . ) .

We denote by en the P-unit on Ωrn. Let {Sn#m} be an increasing sequence

(m = 1,2, •) of subregions SUfm of Ωrn — E such that dSw,w consists of

a finite number of disjoint Jordan curves with βrn a component of 3Sw,m

and Um=i Sn,m == ̂ rn - E We denote by un,m (ΛTO.«, resp.) the solution

of J% = Pw (the harmonic function, resp.) on Snt7n with boundary values

1 on βrn and zero on dSn>m — βrn. Let Hn,m(z, ζ) be the harmonic Green's

function of Sn>m. Then Hn(z, ζ) = lim™^ Hn,m(z, ζ) is the harmonic Green's

function of ΩTn - E. By (2)

hn.miz) = M»,m(«) + 7Γ" ί ff».«
2^: Jθrn,m

Since {ftn,m} ({^n,m}, resp.) is increasing (m = 1,2, •), fcm = HmTO_TO fen,m

iun = lim,^^^ un^m, resp.) is a bounded harmonic function (a bounded

solution of Δu = P^, resp.) on β r n — E with boundary values 1 on βrn.

Moreover, since Hn,m is increasing, the Lebesgue-Fatou theorem yields

hn(z) = 1 (̂2) + - 1 - f Hn(z,ζ)P(ζ)un(ζ)dξdy .

Let H(z,ζ) = log(|l — ζ«|/|« — CD be the harmonic Green's function on

Ω and hence on \z\ < 1. Observe that un < en < 1 and Hn(z,ζ) < H(z,ζ).

Therefore

(17) fcn(s) < en(«) + 4- f H(z,ζ)P(ζ)dξdv
2π JΩrn-E
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for z e Ωrn where we set hn = 0 on E. On integrating both sides of (17)

on the circle \z\ — r e (0 , rJ and using the Fubini theorem and the circle

mean formula of Green's function:

A Γ H(re«, ζ)dθ = min (log A, log A ) < log A ,
2π Jo \ r |ζ|/ |ζ|

we deduce (cf. no. 3)

(18) Kir) < e*{r) + A f P(ζ) log A # dη .

10. By comparing the boundary values we see that hn+lt7Λ > hnΛ on

Sn+i.m Π Sn>k if m is sufficiently large for any fixed fc. Therefore hn+1

>, hn on Ωrn+1 and a fortiori fc*+1 > h* on (0, rn + 1] for n = 1,2, . It

is also clear that β*+1 > e* on (0,rw+1] for w = 1,2, . Since we have

set hn = 0 on E, hn is subharmonic on £?rn, and clearly en is subharmonic

on Ωrn. Therefore

an = lim Λ*(r) > 0 , bn = lim β*(r) > 0

exist (cf. no. 3) and αn < an+ι < 1 and 6W < bn+1 < 1 for n = 1,2, ,

and thus

a = lim an e [0,1] , & = lim &π e [0,1]
n-»oo w—oo

exist. By (18) we have

an < bn + A- f P(ζ) log -A-dfd^ .
2π JΩrn~E | ζ |

In view of (1) we have

lim A f P(ζ) log Adfcfy = 0

and finally we conclude that a < 6, i.e.

(19) lim (lim ftjw) < lim (lim β*(r)) .

11. Since fen > 0 on Ωrn — ί7 and « = 0 is an irregular boundary

point of Ω — E and hence of ΩTn — E, the Bouligand criteriond assures

that
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lim sup hn(z) > 0 .

On the other hand hn is subharmonic on Ωrn by the fact that we have

defined hn = 0 on E, and therefore (cf. no. 3)

an = lim h*(r) = lim sup hn(z) = lim sup hn(z) > 0
r—0 z—0 zGΩrn-E,z-*0

for every w = 1,2, . Since αn < an+19 we conclude that <z = lim^*, an

> 0 and by (19) lim*..*, (limr_0 e*(r)) > 0. Thus there exists an n such

that

lim e*(r) > 0 .

Let c = inf^ 1/β > 0. Then eTO < cβ on βrn implies that en < ce on Ωrn

and thus e* < ce*. Therefore

cί{e) = £(ce) = lim (ce)*(r) = lim cβ*(r) > lim e*(r) > 0 ,
r—0 r—0 r—0

i.e. we have shown that ^(e) > 0, i.e. (14) is valid.

The proof of the theorem is herewith complete.

12. At the end we state several important open problems related

to elliptic dimensions. Let P and Q be densities on 0 < \z\ < 1 and

c > 1 a real number. We ask:

PROBLEM 1. Is the relation dim cP = d i m P valid;

PROBLEM 2. Does the inequality P <Q imply d i m P < dim Q?

In the affirmative case we can deduce the important order comparison

theorem: If c~Ψ < Q < cP then d imP = dim Q, which is in question at

present. These problems should also be asked for densities on Riemann

surfaces (cf. Royden [17], Nakai [12], Lathtinen [7], etc.).

If we restrict ourselves to rotation free densities P on 0 < \z\ < 1,

i.e. densities satisfying P{z) = P(\z\) on Ω, then we know that d i m P is

either 1 or the cardinal number c of continuum and we have a complete

criterion for d i m P = 1 (cf. Nakai [13]). It is also instructive for the

study of elliptic dimensions to observe the following example: For

densities Pλ(z) = \z\~\ dim Pλ = 1 if λ e [—oo, 2] and dim Pλ = c if λ e (2, oo)

where P . ^ = 0 (see [13]). Related to these we ask for general densities

P on 0 < \z\ < 1 the following

PROBLEM 3. How widely the range of P —> dim P can cover cardinals
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PROBLEM 4. What is the comprehensive complete condition for dim P
= 11

These can also be discussed in the frame of Riemann surface setting,
e.g. for densities on ends in the sense of Heins [4] (cf. Ozawa [15,16],
Myrberg [10], Kuramochi [6], Constantinescu-Cornea [2], Hayashi [3], etc.).
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