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A TEST FOR PICARD PRINCIPLE
MITSURU NAKAI

A nonnegative locally Hoélder continuous function P(z) on 0 <|z| <1
will be referred to as a density on 0 <|z| < 1. The elliptic dimension
of a density P(z) at z=0, dim P in notation, is defined to be the dimen-
sion of the half module of nonnegative solutions of the equation 4u(z)
= P(z)u(z) on the punctured unit disk £2:0<|z|]<1 with boundary
values zero on [z| = 1. After Bouligand we say that the Picard principle
is valid for a density P at 2 =0 if dim P = 1. The purpose of this
paper is to establish the following practical test:

THEOREM. The Picard principle is valid for a density P(z) on
0<|2/<1 at 2 =0 if there exists a closed subset E of £ such that
2 — E is connected and z =0 is an irregular boundary point of the
region 2 — E for the harmonic Dirichlet problem and

(1) J‘ P(2) log dedy < oo,
a-E 2]

As a direct consequence of the theorem we see that if Pe L?(Q — E)
(1 <p < o) for an admissible exceptional set £ as stated in the theo-
rem, then the Picard principle is valid for P. Needless to say, here
and also in the theorem the exceptional set £ may be empty. We must
also remark that (1) is not necessary for the validity of Picard principle
as is seen by a simple example P(z) = |2|™* (cf. no. 12). The proof of
the theorem will be given in nos. 9-8. In the last no. 12 we state four
unsettled important problems related to elliptic dimensions.

1. Let P(2) be a density on 0<|z|] <1, i.e. P(2) >0 and P(z) is
locally Holder continuous: |[P(z,) — P(z,)| < A, |2, — z,/* for every 2z, and
%, in 0<r <2/ <1 where A, ¢ (0,c) and 2, € (0,1] are constants which
may depend on 7€ (0,1). Such a density P can be considered to be a
density on £:0 <|z| <1 which is the restriction to £ of a density on
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0:0<|z| < co. Let P(2) be the symmetric extension of a density P(2)
on 0<[z]<1to @:P =Pk on 2 and P(z) = P(1/7) for 1 < |2| < co.
Then P(z) is a density on @ and Poc = P, where ¢ is the involution of
9 about |z] =1, i.e. o(?) = 1/z.

The basic tool of our proof is the unique solvability of the Dirichlet
problem. Let R be a region in Q bounded by a finite number of disjoint
analytic Jordan curves and @ be a density on 9. For any pe C(OR)
there exists a unique function QF ¢ C(R) such that Qf = ¢ on oR and
QF is a solution of du = Qu on R. If Q =0, then we use the standard
notation HZ instead of QF. The unique existence of HY can be seen
e.g. by the Perron-Brelot method as can be found in any text book
(cf. e.g. Tsuji [18]). By the same method we can see the unique existence
of QF but the following integral equation method is preferable for our
purposes in the sense that it clarifies the relation between QF and H{.
Let Hyz(z,2) be the harmonic Green’s function on E (cf. e.g. [18]) and
consider the integral operator

(TF)(2) = —51; f HA0Q0SQdsdy €= +in)

It is elementary to check that fe C*(D) implies Tf e C***D) (@« =0,1)
and A4Tf =Q-f on D (o« =1) for an open set D in B and for an f on
R for which Tf can be defined (cf. e. g. Miranda [9]). It is also easy
to see that fe C(R) implies Tf ¢ C(R) with Tf =0 on oR, and that T
is a compact operator from C(R) into itself. By the maximum principle
for subharmonic functions we see that 1 is not the proper value of T
and therefore by the Riesz-Schauder theory, I + T:C(R)— C(R) is
bijective (cf. e.g. Yosida [19]). Hence QF is obtained as (I + T)'HE:

(2) Q) = HEG) — - | Hale, 0QQQEQ sy

By the fact that ¢ — H? is a positive linear operator from C(R) into
C(R) with norm 1 and by the maximum principle of subharmonic func-
tions, we see that ¢ — QF is a positive linear operator from C(3R) into
C(R) with norm 1.

Fix a ¢, R and let R, be the region obtained from R by deleting
the closed disk about {, with radius 1/» for large integer n and T, be
the corresponding integral operator: C(R,) — C(R,). Then wu, = (I,



PICARD PRINCIPLE 107

+ T 'Hyx(-,¢) forms a decreasing sequence dominated by Hg(-,&,), and
if we denote by Gz(-,&,) the limit function, then

(3) Ga(,C) = Ha(2, 8o — El,; L Ha(2 0QQG(C, L dedy .

The function Gy(z,{) is referred to as the Green’s function of du = Qu
on R. By (3) we see that Gz(-,0)eC'(R —{¢}) and 0Gx(z,0)/at
= 0Hz(2,0) /3t + O(1) as z —{ where t = 2 and y. By this and by the
Green formula we have the symmetry Gz(z,0) = Gz(&,2). We denote by
C°(GR) the class of real analytic functions on 9R. If ¢e C“(GR), then
HY is easily seen to belong to C'(R), and by (2) we see that QF ¢ C'(R).
By the Green formula

(4) U@ = [ 002 Gz, 05,

2w Jor oy,
where 9/9v denotes the inner normal derivative and ds is the line element.
This is primarily derived for ¢ e C*(dR) but the denseness of C°(BR) in
C(GR) assures the validity of (4) for every ¢ C(6R). As a consequence
of (4) we have the Harnack inequality and the Harnack principle for
nonnegative solutions of du = Qu.

2. For a density P(z) on 0 < |z] <1 we shall study the half module
2 of nonnegative solutions u of the equation du(z) = P(z)u(z) on the
punctured disk £:0 <|z] <1 with boundary values zero on f:|z| = 1.
For the study of Z we need to consider the half module Z of nonnegative
bounded solutions of du = Pu on £ with continuous boundary values on
B Let 2, be 0<|2{<¢ and B, be |z| =1t for te(0,1]. Thus £, =2
and B, = 5. We also consider auxiliary classes &, and %, of nonnegative
and nonnegative bounded solutions of Adu = Pu on £, with boundary
values zero and continuous boundary values on p, respectively. In
particular #, = Z and %, = #. The boundary point z = 0 is of parabolic
character (cf. Brelot [1], Ozawa [14], Royden [17]) in the following sense:

(5) 2, N &, ={0}.

Let ue 2, N #,. Since du = Pu > 0,u is subharmonic on 2,. For any
e >0 s,(2) = —elog|z| — u(z) is superharmonic on £, with lim inf, ,,, s.(2)
> (0. The minimum principle for superharmonic functions yields s,(z)
> 0 for every ¢ > 0 and therefore u =0 on £2,. For any ue %, let u,,,
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be the solution of 4u = Pu on £, — 2, (0 < s <t <1 with boundary
values u on f;, and zero on f;. As a consequence of (5) we have

(6) w(z) = lim u, ((2)

on 2;,. In fact, let » = lim, ,u; ;e #,. ThenO0<v<uon 2, withv=u
on B,. Thus u —ve?, N %, ie. (6) is valid. Therefore ue %, is de-
termined uniquely by its boundary values ¢ on B,. We shall denote this
u by P2:. Then ¢ — P2t is a positive linear operator from C(g;) into
B, © %, with norm 1.

Fix a ¢ and an s with 0 <s< ¢ < 1. Consider the operator S
= 8§,,; from £, into &, given by Su = u — P2:. Then S is a bijective
half linear operator between £, and £, (Heins [4], Ozawa (15,16]). If
Su = 0, then u = P?+ and u is bounded, i.e. uc¢ #, N %, and u = 0. Thus
S is injective. Let ve &, and w, = PJ*“ where 7 =v on 8, and 7 =0
on B, 0<r<s) and w, =u, — v > 0. Since {,} is increasing as r — 0,
if u =lim, ,u, is convergent, then uec &, and lim,_ ,w, = P2: and Su

2n
=9, i.e. S is surjective. Let f,u be the flux I [0u(re?)/or],..td6 and
0

D,(p) = L (P + P(2)p(2))dxdy where Vo = (p;,¢,). Then by the
Green formula
frur - ftur = Dat—ﬁr(ur) ) frv - fsv = Da,-—ﬁ,(/v) = Dg,-b,(v)

where we set v =0 on 2, — 2,. Again by the Green formula we see
the Dirichlet principle: D,, 5, (u,) < Dy,_5(v). Hence

0< —feu, < —fov — frlu, —v) .

Since u, —v >0 and %, — v = 0 on B,, we have f,(u, — v) > 0. There-
fore

0 < lim sup (—fuu,) < —fov <

=0

and lim,_, %, = co does not hold and thus u = lim,_,u, is convergent.
This means that dim P depends only on the behavior of P at 2z = 0.
Another consequence of (5) and actually of (6) is

(1) L Pu(2) P dedy < oo

for every ue #, and s (0,t). This will play the essential role in the
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next no. 3. For 0 < < r <s, the Dirichlet principle which is a simple
consequence of the Green formula yields D, (u,,,) = Dg,_5,(4s,,.) < Dy, _5,(4s,,)
= D, (u,,,) where we have set u,, =0 on 2, and u,, =0 on 2,. By
(2) and (6) we have

r’—0

.0 0
lim —Ug, s = —
; oa @) oa uz)

where ¢ = 2 and y, and by the Fatou lemma

Dy (w) < liminf Dy (us,,) < Dy, (ts,) < 00

/=0

for any fixed € (0,s) and in particular we have (7).

3. The mean operation u — u* is useful for the study of subharmonic
functions. Let u be defined on 2, such that

W) = L f’ w(re®)dg
2z Jo

can be defined for e (0,t). This is the case e.g. when % is subharmonic
on 2,. If uw is bounded subharmonic on 2,, then % can be extended to
2| <t so as to be subharmonic by giving the value lim sup,.,u(z) at
2z =0, and hence we have (cf. e.g. Tsuji [18])

(8) 4(u) = lim 1 r” w(re*®)dd = lim sup u(z) .
-0 21 Jo 20
If ue %,, then u is bounded subharmonic on £, and therefore the above
relation (8) is applicable to every u e %,.
We now maintain that for any ue %, there exists an exceptional
closed subset £ = E, of (0,¢) with finite logarithmic measure

(9) I dlogr <
E
such that
(10) Iim uz) = 4(w) .
|z| @ E,z2—0

For the proof consider Fourier coefficients ¢,(r) and s,(r) (n = 1,2, --+)
of w(re*®) for any r<(0,%t) as a function of 4:
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1 27 X
cn(r) = —I u(ret’) cos nddd
T 0
1 (* .
8, (1) = —-I u(re*’) sin nddo
w 0

for n=1,2,.... On setting

oo

1/2
o(r) = (z: n(ea(r) + sn(ry))

we assert that

1) I ‘o(ndlogr < L f \Pu@ P dedy < oo .
0 T J 9

Observe that
w(re’’) = u*(r) + g (cn (1) cos 1l + s,(r) sin nh)
for (r,0) € (0,t) X T with T = (— o0, c0)/mod 2z and thus
u(re’’) = Zj‘i (—ne,(r) sin nf 4 ns,(r) cos nf) .
Therefore, in view of [Fu(re?®)f = u,(re?’)* + r~*u,(re’)?, we have

r%p(1r) = 1

T

f" ruy(re)ds < L f " Pure) P de .
0 T 0
A fortiori
t 1 2z [t
I o(Midlog r < —f j |Pu(re’®) | rdrdd ,
0 7 Jo Jo
i.e. (11) is valid. Next set

t/(n+1)
= J‘ o(r)’d log r

t/(n+2)

for n=12,.-.--. By (11) we have > > ,a, < cc. We can find a de-
creasing sequence {¢,} converging to zero such that > = ¢;%, < co. Let

E,={relt/n + 2),t/(n + DI; ¢(r) > e}

and

E=FE, = (Q E) N,
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which is a closed subset of (0,¢). Observe that

.[ dlogr = f} 5;2'[ gdlogr < ie;‘“’f o(r)}dlogr = Zw; &%y, ,
E n=1 E. n=1 Ep n=1

n

i.e. we have (9). By the Schwarz inequality

(u(re®y — w*(r))? = (i (ncn(r) cos nd + ns, (1) sin nd )2
n n

< (z n) - (z: nealr)’ + sn(r)Z)) :

Therefore we conclude that |u(re’’) — w*(r)| < 6~"2zp(r). For an arbitrary
e > 0 there exists by (8) an 7,€(0,t) such that |u*(r) — 4(w)| < /2 for
every r € (0,7,). Let n be such that 6-"*re, <e¢/2and set y=min (r,t/(n+1)).
Then

|[u(re'®) — e(w)| < 6 Vrp(r) + |[u*(r) — )| < e
for every re (0,7) — E, i.e. we have (10).

4. The P-unit e, on £, is the function in %, with e,|8;, = 1. Using
the P-unit ¢ = ¢, on 2 = 0, consider the equation

12) Av(z) + 2F log e(2)-Vo(z) = 0

on 2. Let v be a bounded nonnegative solution of (12) on £,. Then
the following maximum-minimum principle is valid for ¢e (0,s):

(13) sup v(z) = max v(z) , inf v(z) = min v(2) .
2EQ; zEP z€ Q2 zZE€E P

By an easy computation one sees that eve #,. Let ¢ = max,, v and
¢ = min,,v. Then since ev,ce,c’'ec #, and c’e < ev < ce on B, we see,
by (6) or by the remark after (6) in no. 2, that c¢’e < ev < ce on 2, and
thus ¢/ < v < ¢ on 2,i.e. (13) is valid.

5. Using results in nos. 3 and 4 we now maintain that under the
assumption

14) 4e) >0
the following limit

(15) lim u(z)/e(z) = 4(u)/ 4(e)

exists for every ue 4.
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For the proof, let E, and E, be exceptional sets in no. 3 for « and
e on £, respectively. Then EF = FE, U E, is also a closed subset of (0,1)
and (9) implies that

I dlogr < oo .
E

From this it follows that there exists a strictly decreasing sequence {r,}
coverging to zero in (0,1) — E. Let ¢ be an arbitrary number in (0, ¢(e)).
By (10) there exists an N such that

lu@) — bw)) <e, le(r) — 4(e)| < e

for every zep,, with n > N. Let u, =wu/e. Then again by an easy
computation u, is a solution of (12). Since u < ce on g with ¢ = max; «,
(6) or the remark after (6) in no. 2 implies that %, < ¢ on 2, i.e. u, is
bounded on 2. Thus the maximum-minimum principle in no. 4 is ap-
plicable to u,. Since

ou) — e < uy2) < O(u) + ¢
4@e) + ¢ l(e) — ¢

on B,,, we have the same inequality on 2,,. Therefore

Yw) — e < lim inf _u(@) < lim sup u@) 4 + e

4(e) + ¢ ) e(z) 240 e(z) ~ {d(e) —e

is valid for every e (0, 4(e)) and (15) follows.

6. Let u be a continuous function on Q2 U g such that « is a
solution of du = Pu on 2. Then the condition

u(e'’) = [%u(vei”)]ml =0

for every e T = (— o0, c0)/mod 2z implies that u = 0 on 2.

Let P be the symmetric extension to £ of P and fix a te(0,1). Let
R be the annulus ¢ < |z| < 1/t. Consider the solution u, of du = Pu on
R with boundary values u(z) on |2|=1¢ and —wu(1/2) on [2|=1/{. By
the symmetry of P about |z| = 1,u,(c(z)) is also a solution of Adu = Pu
where 7(z) = 1/Z. Since u,(z(2)) + w,(?) = —u(1/(1/2)) + w(z) =0 on |z2| =1
and similarly on 2| =1/t, we have u, () + u(z(z)) =0 on R and in
particular %, =0 on |2|=1. Thus w(®) =u® on t<|z|/<1. This
means that « has a (C’-extension to an open set containing Q U . In
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particular f(r) = r~*u,,(re®) is continuous on [{,1] for any fixed #e T
and the same is true of ¢g(r) = P(re®). Consider the Cauchy problem
for the linear ordinary equation

') + (1) + 9g(e(r) = f(1)
whose coefficients are continuous on [¢,1] with the initial condition
o) = ¢/(1) = 0

on [¢,1]. Then wu(re’), as a function of », is a solution of this problem
besides the trivial solution ¢() = 0. By the uniqueness of the solution
of the Cauchy problem we have u(re?’) = 0 on [¢,1] for any fixed e T,
and since ¢ is arbitrary in (0,1), we conclude that #(z) = 0 on 2.

7. Let G,_3,(2,8) be the Green’s function of du = Pu on 2 — 9,
and H, ;,(2,{) the harmonic Green’s function. We simply denote by
H(z,{) the harmonic Green’s function of 2 and hence of |z| <1, i.e.

H(z,8) = log'—lz——;;c—z—l .

by (3) we have
0< Gn—ﬁ,(z, C) < Ha—ﬁg(zy C) S H(Z, C) .

Since G, 5,2,0 < Gy 5,2,0) for 0 <s <t <1, the Harnack principle
assures the existence of

G(z,0) = 1351 Go-5,2,0)

which will be referred to as the Green’s function of du = Pu on Q.
Under the assumption that the limit (15) exists for every ue # we
next prove the existence of

1e) K@) =1lim G(z,0)/e(z) ¢ #

for every fixed (e 2 (cf. Heins [4], Hayashi [3]).

Suppose £e — 2, (te(0,1)) and let ¢(0) = max,, G(-,0) and ¢'()
= min,, e. Since G(-,0) and (c(Q)/c'({)e are in %, and the former is
dominated by the latter on 3, {G(z, -)/e(2); ze 2.} is a uniformly bounded
family of positive solutions of Ju = Pu on 2 — 9, for every te(0,1).
Hence by the Harnack principle {G(z, -)/e(2); z — 0} is a normal family
on each compact set in £. Contrary to the assertion assume the limit
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(16) does not exist. Then there exist two sequences {z;,} (/ =1,2) in
2 coverging to zero such that

Kj(C) == 1132 G(zj,ny C)/e(zj,n)

exist on 2 (j =1,2) and K,(2) # K,(2) on 2. Clearly K;eZ (j =1,2).
For any we # let u, = u,, as in (6) and G,(2,0) = G,_5,(2,8). By (4)

u(2) = ~if" ut(e“)[iG,(z, re“)] d6
27 Jo or

r=1

for ze 2 — 2,. On letting t - 0 we have

wr) = N u(e’) [i G(z, 7”6“’)] dé
2z Jo ar r=1
for every ze £ and a fortiori
u(zj,’n) — _____}_ o u(eiﬁ) [i( G(Zj,na Teiy) )] da
e(z;,1) 2r Jo or e(24,2) r=1

for 7 =1,2. By (15), on letting n — o, we have
R 1 B 1 a 10
o)) = —L J u(e)| 2K (re )] do
272' 0 or r=1
for 7 =1,2. On setting L(z) = K,(2) — K,(2), we conclude that
2 X a X
j u(e”‘)[—L(re“’)] g =0
0 or r=1
for every ue % and hence for every ue C(g). Thus

L(e") = [%L(re”)]r ~0

=1
on T and therefore, by no. 6, L(z) = 0, i.e. K,(z) = K,(2), a contradiction.

8. Under the assumption (16) we finally conclude that any function
wz) in Z is a constant multiple of K(z), i.e. dimP =1 and thus the
Picard principle is valid (cf. Martin [8], Nakai [11], S. It6 [5], etec.).

For any u in &£, let 4,, be the solution of du = Pu on 2, — O,
(0 <s<t<1) with boundary values u# on B, and zero on B, Let
Gy(2,0) = G4_5,(2,0). Fix a ze2 — 2,. The Green formula applied to
u and G(z, -) for the region 2 — 2, yields
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0

G(z,0ds,
dy,

2ru(z) = —jﬁ G(z,o%u(c)dsc +L u(®)
t 14 t

and also to G,(z,-) and 4,, for the region 2, — 2, with making s — 0
yields

0
0y,

0= -L Gz, &)

4(O)ds, + f @ ai Gz, Ods,
¢ 4

where #, = lim,_, %, ;€ #, with 4, =« on f,. Subtraction of the latter
from the former in the above two identities gives

_ 1 (% i0 0 (s 0y __ i0
u(z) = 5 L G(z, te )[W(ut(re ) — u(re ))] tde .

r=t—0

Since u(re*’) — 4,(re*) > 0 on £, and zero on S,

dp,(6) = Elx—e(te“) [—a%(ut(re”) _ u(rew))] 100

r=t

on U. Let
K(z,0) = G(z,0)/e) .

By (16), K(z,%), as a function of ¢, is continuous on (|| <1) — {z} and
K(z,0) = K(z), and we have

u(z) = j o K(z, te")dy,(6)

for ze 2 — 2,. Fix a t,€(0,1) and a 2,2 — 2,. Since K(z,(), as a
function of ¢, is a bounded solution of (12) on £2,, (13) implies that

a = inf,,,o K(z,0) > 0.

Set ¢, = r” dp,(0). Then 0 < ¢, < u(z)/a for te(0,%), and thus we can
0

find a decreasing sequence {t,} C (0,%) coverging to zero such that
¢ = lim,_. ¢, exists. Hence by

n

u@) = | " (K o) — K@)dpu,0) + ¢ K@)
we deduce
|u(z) — cK(z)| < Cry SUD |K(2,0) — K(2,0)| + |¢,, — ¢|-K(2)

for ze 2 — 2,,. On letting n — oo, we conclude that u(z) = cK(z) on 2.



116 MITSURU NAKAI

9. We are ready to proceed to the proof of our theorem. All we
have to prove is that the condition (1) implies (14), i.e. 4(e) > 0. Then,
by no. 5, (15) is valid and a fortiori (16) follows by no. 7, which in turn
implies dim P = 1 by no. 8.

Let {r,} be a decreasing sequence in (0,1) converging to zero and
¢n be such that (r,,, +7)/2<7r, —¢, <7, +¢& <(r, + 7,.1)/2 for
n=1,2,..-.- with 7, =1 and that

L P(2) log Ti—l—docdy 2N, Ay = {1 —en < |2| < T + ea) .

This can be achieved by taking e, > 0 sufficiently small. Replacing E
in 1) by £ — U1 A4, we can thus assume

ENg,=¢ m=12--).

We denote by e, the P-unit on 2,,. Let {S, .} be an increasing sequence
(m=1,2,..-) of subregions S, , of 2, — E such that S, , consists of
a finite number of disjoint Jordan curves with 8, a component of S, .
and Uz . Spm = 2,, — E. We denote by u,,n (An,. resp.) the solution
of Au = Pu (the harmonic function, resp.) on S, , with boundary values
1 on B,, and zero on 3S,,., — B,,. Let H, ,(z,) be the harmonic Green’s
function of S, ,,. Then H,(z,{) = lim,,... H, (2, ) is the harmonic Green’s
function of 2., — E. By (2)

P () = U () + g— j Ho (2, POty m(©)dedy .
T Snym

Since {hn,n} (Un,m}, resp.) is increasing (m =1,2,--:), hyp = lim,_. hnn
(4, = lim, ., Uy m,resp.) is a bounded harmonic function (a bounded
solution of 4u = Pu, resp.) on 2, — E with boundary values 1 on B,,.
Moreover, since H, , is increasing, the Lebesgue-Fatou theorem yields

ha®) = a(2) + - Ho (2, OPQun()ddy .

2 Jor,-E

Let H(z,0) = log (1 — £z]/|z — &]) be the harmonic Green’s function on
0 and hence on |z{ < 1. Observe that u, < e, <1 and H,(2,0) < H(®%,?).
Therefore

amn ha® < ea® + 1 H(z, OP(Q)dédy

27!' Qr,-F
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for ze Q,n where we set h, = 0 on E. On integrating both sides of (17)
on the circle |z| = r € (0,7,) and using the Fubini theorem and the circle
mean formula of Green’s function:

1 2% 10 _ : i- 1
-2~7;J‘0 H(re*, £)df = min (log— log ICI) < log — ICI
we deduce (cf. no. 3)
* * 1 1
as) w0 < e + 5o [, PO log dedy.

10. By comparing the boundary values we see that ,.,,m > hy,; 0N
Sni,m N Sy if m is sufficiently large for any fixed k. Therefore h,,,
> h, on 2,.., and a fortiori A}, > k¥ on (0,7,,,] for n=1,2,-... It
is also clear that e*, > e¢* on (0,7,,,] for n =1,2,.... Since we have
set h, =0 on E,h, is subharmonic on 2, , and clearly e, is subharmonic
on £, . Therefore

o, = lim h¥(r) >0, b, =limeX(r) >0

=0 r=0

exist (ef. no.8) and a,<0a,,, <1 and b, < b,,, <1 for n=1,2,.
and thus

o = lima,c[0,1], b =1limbd,e[0,1]

exist. By (18) we have
tn < by + -_J' P© log—lé—ldgdp .

In view of (1) we have

lim -1 I P(©) log L dgdp = 0
= E It

and finally we conclude that a < b, i.e.

19) lim <1im h;‘:('r)) < lim (lim e;,“(r)) :

n—oo r—0 n~oo \ 70

11. Since h, >0 on 2, —E and z=0 is an irregular boundary
point of 2 — E and hence of 2., — E, the Bouligand criteriond assures
that
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lim sup h,(z) > 0.

2€ 97, ~E,2-0
On the other hand &, is subharmonic on 2, by the fact that we have
defined h, = 0 on E, and the_,refore (cf. no. 3)
a, = lim h¥(r) = lim sup h,(2) = limsup h,(z) >0

=0 z—0 z€ !),n—E,z—»o

for every n =1,2,.... Since a, < @,.,, we conclude that a¢ = lim,_.. a,
>0 and by (19) lim,_. (lim,_, e*(»)) > 0. Thus there exists an » such
that

lime*(») > 0.

=0

Let ¢ =inf, 1/e¢> 0. Then e, < ce on B,, implies that e, < ce on 2,,
and thus e¥ < ce*. Therefore

cé(e) = 4(ce) = lim (ce)*(r) = lim ce*(r) > lim e¥*(r) > 0,
-0 -0 -0

i.e. we have shown that 4(e) > 0, i.e. (14) is valid.
The proof of the theorem is herewith complete.

12. At the end we state several important open problems related
to elliptic dimensions. Let P and Q be densities on 0 <|z| <1 and
¢>1 a real number. We ask:

PrROBLEM 1. Is the relation dim ¢P = dim P valid;
PROBLEM 2. Does the inequality P < @ imply dim P < dim Q?

In the affirmative case we can deduce the important order comparison
theorem: If ¢ 'P < @ < ¢P then dim P = dim @, which is in question at
present. These problems should also be asked for densities on Riemann
surfaces (cf. Royden [17], Nakai [12], Lathtinen [7], etc.).

If we restrict ourselves to rotation free densities P on 0 <|z] <1,
i.e. densities satisfying P(z) = P(z|) on £, then we know that dim P is
either 1 or the cardinal number ¢ of continuum and we have a complete
criterion for dim P =1 (cf. Nakai [18]). It is also instructive for the
study of elliptic dimensions to observe the following example: For
densities P,(z) = |2|7%,dim P, =1if e [—c0,2] and dim P, = ¢ if 1€ (2, c0)
where P_. = 0 (see [13]). Related to these we ask for general densities
P on 0 <|z| <1 the following

PrROBLEM 3. How widely the range of P — dim P can cover cardinals;
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PROBLEM 4. What is the comprehensive complete condition for dim P

=17

e.g.

These can also be discussed in the frame of Riemann surface setting,

for densities on ends in the sense of Heins [4] (c¢f. Ozawa [15,16],

Myrberg [10], Kuramochi [6], Constantinescu-Cornea [2], Hayashi [3], etc.).

[1]
[2]
[3]

[81]

[9]
[10]

[11]
[12]
[13]
[14]
[15]
[16]
[17]

[18]
[19]

REFERENCES

M. Brelot: Etude de ’équation de la chaleur du=c(M)u (M), ¢(M), au voisinage
d’un point singulier du coefficient, Ann. Ec. N. Sup., 48 (1931), 153-246.

C. Constantinescu-A. Cornea: Uber einige Problem von M. Heins, Rev. math.
pures appl., 4 (1959), 277-281.

K. Hayashi: Les solutions positives de 1’équation du=Pu sur une surface de
Riemann, Kodai Math., Sem. Rep., 13 (1961), 20-24.

M. Heins: Riemann surfaces of infinite genus, Ann. Math., 55 (1952), 296-317.
S. Ité6: Martin boundary for linear elliptic differential operators of second order
in a manifold, J. Math. Soc. Japan, 16 (1964), 307-334.

Z. Kuramochi: An example of a null-boundary Riemann surface, Osaka Math.
J., 6 (1954), 83-91. .

A. Lahtinen: On the equation Ju=Pu and the classification of acceptable densities
on Riemann surfaces, Ann. Acad. Sci. Fenn., 533 (1973), 1-26.

R. Martin: Minimal positive harmonic functions, Trans. Amer. Math. Soc. 49
(1941).

C. Miranda: Partial Differential Equations of Elliptic Type, Springer, 1970.

L. Myrberg: Uber die Existenz der Greenschen Funktion der Gleichung 4du=c(P)u
auf Riemannschen Flichen, Ann. Acad. Sci. Fenn., 170 (1954).

M. Nakai: The space of nonnegative solutions of the equation du=Pu on a Rie-
mann surface, Kodai Math. Sem. Rep., 12 (1960), 151-178.

M. Nakai: Order comparisons on canonical isomorphisms, Nagoya Math. J., 50
(1973), 67-817.

M. Nakai: Martin boundary over an isolated singularity of rotation free density,
J. Math. Soc. Japan, 26 (1974), 483-5017.

M. Ozawa: Classification of Riemann surfaces, Kodai Math. Sem. Rep., 4 (1952),
63-76.

M. Ozawa: Some classes of positive solutions of d4u=Pu on Riemann surfaces,
I, Kodai Math. Sem. Rep., 6 (1954), 121-126.

M. Ozawa: Some classes of positive solutions of Ju=Pu on Riemann surfaces,
II. Kodai Math. Sem. Rep., 7 (1955), 15-20.

H. Royden: The equation 4u=Pu, and the classification of open Riemann surfaces,
Ann. Acad. Sci. Fenn., 271 (1959).

M. Tsuji: Potential Theory in Mordern Function Theory, Maruzen, 1959.

K. Yosida: Functional Analysis, Springer, 1965.

Nagoya University








