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ON A CLASS OF DEGENERATE ELLIPTIC EQUATIONS

YOSHIAKI HASHIMOTO AND TADATO MATSUZAWA

We shall prove in Chapter I the hypoellipticityυ for a class of

degenerate elliptic operators of higher order. Chapter II will be devoted

to the consideration of the regularity at the boundary for the solutions

of general boundary problems for the equations considered in Chapter I

being restricted to the second order.

Chapter I. Hypoellipticity for a class of degenerate elliptic operators.

§ 1. Introduction*

In [5], Grusin has proved the hypoellipticity for a class of degenerate

elliptic equations. Our aim in this chapter is to give a simple proof

with some additional assumptions on the operators considered in [5].

First we state the main result obtained in [5]. Let RN be N-dimen-

sional Euclidean space regarded as a direct product of two Euclidean

spaces Rk and Rn (k + n = N). We consider a pair (p,σ) of N rational

numbers (pu , pN), (σ19 , σN) such that pj ^ 1 and σj ^ 0 (1 <^ j ίg N)

and that

(a) pj = (ϊj = 1 k + 1^, j <*k + n = N

and for each j,l^j^k, one of the following conditions is satisfied:

( b ) pj>σj>09

(c) ^ = 0 .

Suppose (p,σ) is given. The following notations are convenient for the

later discussions:

X = (Xl9 , XN) G Rtf y

Received April 1, 1974.
1} A differential operator P is said to be hypoelliptic, if any distribution u is in-

finitely diίferentiable in every open set where Pu is infinitely diίferentiable.
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X = (χ'f y ) , %' = ( χ l 9 . ., χ k ) 9 Vj = χ k + j l ^ j ^ n ,

Xf = ( x " , X ' " ) , X" = (χ19 , χ k , ) f X"f = fe,+1, . . . , » * )

where kf is in agreement with the number of j satisfying (b).

Let m be a positive integer and set

(1.1) M = {(r, α) \a\ ̂  m, <>, α> ^ <σ, r> ^ <p, α> - m} ,

(1.2) SK0 = {(r,a) |α | ̂  m, <σ, r> = <p,ίe> ~ m} ,

where (^,α) is a pair of N-tupled multi-indices of non-negative integers

and γj = 0 for if σj = 0 (1 g; / ^ fc). We use the following notations:

|α| = aλ + + aN ,

etc .

Now we consider a partial differential operator

(1.3) L(x,D)= Σ

where ααr(x) e C 0 0 ^^), (a,γ)e<ΰl and

I dX1

Associated with (1.3) we consider the partial differential operator with

polynomial coefficients:

(1.4) L0(x",y;D)=
(

Condition 1. LQ{x",y\D) is elliptic for \x"\ + \y\ = 1.

Condition 2. The differential equation

(1.5) Lo(α", y f, D > ( V ) = (r Σm aar(O)χrξ«'Dξ,v(y) = 0

has no non-trivial solution in Sf{Ity for any fixed ζ e Rk, ξ Φ 0, and a/'.

Set

j0o = min pj , σ° = max a* .

Having established these notations the main result of Grusin can be

stated as follows:

THEOREM 1.1 ([5, Theorem 1.1]). Assume p0 > σ°. Under the con-
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ditions 1 and 2, the operator L(x,D) is hypoelliptic in a neighborhood

of the origin.

With the additional assumptions on L(x,D) stated below, we shall

give an alternative proof of this theorem. Throughout this paper we

always assume that the order of L(x,D) is 2m (m >̂ 1). Moreover we

substitute the conditions 1 and 2 by the following conditions Γ and 2'

respectively :

Condition Γ. LQ(x",y\D) is strongly elliptic for \x"\ + \y\ = 1 i.e.

there exists a positive constant δ such that

2m(1.6) ΈLeL&χf',y; ξ,V) ^ δ(\ξ|2 + \V\
2)

for all (a",2/) (|a"| + \y\ = 1), ? e # * and jyelF1. Here L§ denotes the

homogeneous part of Lo of order 2m.

Condition 2'. The differential equation

(1.5)' U*',y;ξ,v

has no non-trivial solution in L2(Ry) for all x" and £ (|f | = 1).

THEOREM l.Γ. Assume that p0 > σ°. Under the conditions Γ and 2',

the operator L(x, D) is hypoelliptic in a neighborhood of the origin of RN.

Remark. Grusin showed in [3] that Condition 2 is equivalent to

Condition 27 under Condition 1.

In order to show the hypoellipticity of the operator L(x,D) it is

essential to obtain the inequality of the type (2.13) as will be explained

in §2. In §3, we shall get this inequality with the aid of the method

suggested by that used in [13].

§2. The proof of Theorem l.Γ.

In this section, according to [5, §2], we shall describe in several

steps how the proof of Theorem l.Γ (or Theorem 1.1) is deduced to prove

the inequality (2.13).

(A) Let Hi and H2 be two Hilbertian spaces and we denote by

the set of all continuous linear mappings from Hγ into H2.

is a Banach space with the usual norm (denoted by || ||). Let

p(x,ξ) be .£?(#!, iϊ2)-valued infinitely differentiate function defined in

Ω x Rk

ξ, where Ω is an open set in Rk

x. We suppose that for every com-
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pact set K c Ω and for all multi-indices a, β, the following inequality

holds:

(2.1) ||p$(*»e)ll ^ C.,/1 + |f|)*»

where p and δ are non-negative numbers and

) = p ( * f )

We denote by S™δ = S™δ(Ω X Rk

ξ;H19H2) the set of all p(a?,f) satisfying

the above conditions. We denote by @(Ω -ffj) the set of ί^-valued in-

finitely differentiate functions with compact support in an open set

Ω c If*. Then we define a pseudo-differential operator:

(2.2) pfe D)u = (&)"* f
J

where #(f) is the Fourier transform of ue@(Ω; HJ. For this pseudo-

differential operator almost all theorems proved in [8] in the sealer case

are true.

Now consider a function μ(ξ) infinitely differentiate except at f = 0

such that grad^ μ(ξ) —> 0 as ξ —> oo and that the following inequality holds:

(2.3) (Λ(l + |f D« ^ Mf) ^ C ( l + lί|)β2 , f e iffc ,

where 0 < S l ^ ε2 ^ 1 and CΊ, C2 > 0.

THEOREM 2.1 (cf. [5, Theorem 1.1]; [6], [8]). Let p(x,ξ) be a symbol

in S™δ with 0 ^ δ < εx g ε2 < |O. Suppose that there exist positive constants

d,A and a real number a such that for all xeΩ,a,β and f , | f | > A, the

following inequalities are valid:

(2.4) |pδK^f)^Iir, ^ Cβtβμ(ξ)-"+w \ξ\~dla+βl \p(x,ξ)v\H2 veHlf

(2.5) If |α\v\Hl £ C\p(x,ξ)v\Hz VBHX.

Then the pseudo-differential operator p(x,D) is hypoelliptic in Ω.

In what follows we shall use the symbols C,A,μ,δ, ••• to denote

constants, and suffix or prime will also be used if necessary.

(B) Let Ω' be an open neighborhood of the origin in If*, and,let Bμ

= {y e Itj \y\ < μ). For every xf e Ωf and f e Iff, we have

, f, Dy) e <?{ΪP™iBμ), L\Bμ)) .
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Hence if we put

(2.6) p(x',ξ) = L(x',y;ξ,Dy) ,

then p(a', ξ) e Sft(β' x Rk

ξ H*m(Bμ), L\Bμ)).

If the hypoellipticity of the pseudo-differential operator p(x',Dx,) in

Ωf is proved, then we can derive the hypoellipticity of L(x,D) in ΩχBμ

as follows:

LEMMA 2.1. Assume that Condition Γ is satisfied and p{x',Dx,) is

hypoelliptic in Ωr. Then the differential operator L(x, D) = L(x', y, Dx,, Dy)

is hypoelliptic in a neighborhood of the origin of R%, χ i ζ = RN.

Proof. By Condition Γ L is elliptic in Ωf X Bμ9y Φ 0 (letting the

sets Ωf and Bμ shrink if necessary), therefore L is hypoelliptic in Ωr x Bμ>

y Φ 0. For any vector (0, , 0, ηl9 , ηn) = (0, η) Φ 0, we can easily see

the characteristic polynomial of Lo at y = 0 does not vanish by Condition V:

Σ α«,o(oy Φ o .
|α|=2m

Thus L is partially hypoelliptic with respect to the plane y = 0, whence

we have the conclusion of Lemma 2.1. (cf. [7, Chap. 4].)

(C) We introduce several notations. First we set

(2.7) θ = <σ, γ> + 2m- <j>, a} .

Then θ = 0 if and only if (a,γ) e 3K0. (In the definition of 2R: (1.1) and

SJίo: (1.2), the number m must be substituted by 2m.) We set

a7 = (x19 ••-,&*), 1/ = fe+1, ,a?tf) = (Vi, ,yn)

(2.8)

and

t

Hi

?0 = m i n pj

v", y ξ)

. P° =

= ι « r i i f : i + ••• H

max β, , σ0 = min

| x \^\ ξk \

, σ° — max σ* .

Here \x\a and Ix7^ include only the terms corresponding to σj Φ 0.

LEMMA 2.2 ([5, Lemma 3.1]). Let a = (e/,β) = fe, -9ak9β19 ,j8n)

assume that
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(2.9) \a\ + — ^ 2m .
Po

Then we have the following inequality:

(2.10) W l l f lί ^ C(\ξ\, + h(x",y; f))'*-',ι .

LEMMA 2.3 ([5, Lemma 3.2]). Assume that

(2.11) \a\ + — ^ 2m .

(2 12)

/or arbitrary μ > 0 ίftere e#is£s α constant C> 0

i r H β l ) ' β ^ c d f t + Ma", v; ί ) ) 2 M H / ί I , If I ̂  l ,ir

(D) In § 3 we shall prove the following lemma.

LEMMA 2.4 (cf. [5, Lemma 3.5]). Assume that the conditions in

Theorem l .Γ are satisfied. Then there exist positive constants A,C and

μ and a neighborhood Ωf of the origin in Rfc such that

Σ I Q i , +
(2.13) ! ^ 2

for all x'eΩ', v(y)eH2m(Bμ) and ξ9\ξ\p^A.

Now by virtue of the inequality (2.13) we can see that the operator

POB',£O = L(x',y; ξ,Dy): (2.6) satisfies the conditions of Theorem 2.1. In

fact, we shall estimate pjjftia/jfMi/), where v(y) e £pm(Bμ) and auβx are

multi-indices in Nk. Since p(x',ξ) is expressed as a sum of terms

aaγ(x)ξa>Dβ

y, pg j is a sum of terms

(2.14)

Considering <<7, ^) — < ,̂ a) + 2m ^ 0, the number Θ corresponding to the

term (2.14) is not smaller than (p',a^) — <y,βi>, where // = (^, ,ρk)

and (j7 = ,σk). Then by Lemma 2.2 and Lemma 2.3 ZΛnorm of (2.14)

is estimated by

C\ξ\;θ'- »w>\\(\ξ\p + hr*-MDίv(y)\\mβμ> If I, ^ A .

Hence we have by (2.13)
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From this we can easily see that p(x',ξ) satisfies the condition of
Theorem 2.1 by taking

σ° < ε < p0 ,

d = min (p0 — ε, ε — σQ)

and

μ(ξ) = Ed + &2)17'1 + + (l + ?i)v'*]β.

Thus to complete the proof of Theorem l.Γ, it remains to prove
Lemma 2.4.

§3. Proof of Lemma 2.4: Main estimate.

Lemma 2.4 will be proved as a consequence of the following lemma.

LEMMA 3.1. Let L0(x",y,D) be given as in Theorem l.Γ. Then
there exists a positive constant C such that

Σ IIQfl,
(3.1) lβ^2

for all v(y) e H2m(Rn) Π S\Rn) and ξeR*.

Proof. In (3.1) substitute ξ by λp'ξ9x by λ~σx and Dy by λDy respec-
tively (λ > 0). Then we see that quasi-homogeneous order of both sides
and is 2m. Hence it is sufficient to show the inequality (3.1) for \ξ\p =
1. Let t(r) be an infinitely differentiable function in r ^ 0 such that

W r ^ 2 .

Define

(3.2) hWty ξ) = <\tf\9. + tdy^Y1'1^] + + <\tf\9. +

Then hλ has the same order as h in \y\ for large |j/| and is constant
when x", ξ are fixed and y runs through the sphere in Ifj. Furthere-
more for j ^ 1,
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3%
dr} is bounded ,

dr)

Substituting h by ht in (3.1) we obtain the inequality equivalent to (3.1).

Put

g(χ", r ξ) = Γ (1 + W , r ξ))dr ,
Jo

which has the same order as rhx as r—>oo.
Now we shall use the coordinate transformation introduced in [5],

[16]:

(3.4)

Then we have

\y\
•g(χ",\y\;ξ)

g(χ",\y\;Θ

l/ιp

and the Jacobian of the transformation is

(3.6)
d(.y»---,yn) W-1

We now pass from the variables y to the new variables z in the equation

(3.7) L

It will have the form:

(3.8)

where

(3.9)
vι = (1 + hλ)

m~nnv ,

/ί = (1 + hd-m-nnf

In the following we shall show the equation (3.8) is uniformly elliptic
in Ri and all the coefficients belong to &(.Kf). From Condition Γ it
follows that for the principal part of Lo (denoted by LJ):

(3.10) Re ", y;ξ,η)^ δ(\v[
2m + h(x", y
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Considering

M(z,D^vx = (1 + h^~m~n/2LJil + h1)~m+n/2v1 -

we have for the principal part of M (denoted by M°):

(3.11) Re M\z, ζ) ^ δ(± Σ d + W ^ ^ ^ I T
\i=i y=i 3 ^ I /

Furthermore by (3.5) and (3.6) we have

^ ( 1 + h,)-1 ^ C , zeRS,

'-1 ^ (1 + ftt)-"
, ••-,!/„)

for some positive constants C and C. Hence we have

(3.12) ReM\z,ζ) ^ δ'|ζ|2ro ζe!Tζ

for some constant δ' > 0. Hence M(z, Z)0) is uniformly strongly elliptic in R^.
We remark that M(z,Dz) depends on (x",ξ) which is viewed as a
parameter.

By the above consideration all the coefficients of 2m-th order in
M(z,Dz) are bounded in R%. The first derivatives of them are given in
the form:

a + « Ml...Wl...̂  π
i

(3.13)
(1 + K) π

where the summations are taken for iu • ,i2m,j1, ,j2m which run
through 1, ,n. By using the following inequalities derived by (3.5)
and (3.6):

(1 + K) dh,
dzk

^ ca + K)

^ ca + hd

dr

and by using (3.3) we can finally see that (3.13) is bounded in ΛJ. The
boundedness of the higher derivatives are shown as above. Similarly,
we can show recurcively that all the coefficients of 2m — j-th order (j =
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1,2, .. .,2m) belong to #(«;) using (2.10),(3.3),(3.4),(3.5),(3.6) and (3.12).
Hence the Garding inequality for M(z, Dz) can be derived namely there
exist two constants Cx > 0 and C2 ^ 0 such that

Re (Af(s, Z?,M(«),
H^RS) ΓΊ <f'(l© (cf. [14], p. 240) .

Here the constants Cx and C2 are independent of (x",ξ), |£|, = 1.
We can substitute vx in (3.14) by (1 + h^v^z):

Re (M(z, Dz)(l + h^v^z), (1 + Λ
(o.lo)

^ Ct II (1 + fe,)"^) IGUu,., - C, II (1 +

Using Leibniz' formula and integration by parts, the left-hand side of
(3.15) is estimated from above by

C{|| (1 + hΰ»M(.z, DM || • II (1 + hΰ'v, ||
(o.lb)

+ nα + ^ ^ l u iiα + Λ,)-^!^-1} .

By (3.15), (3.16) and by interpolating the inequality of the form

(3.17) ||(1 + λ,)*^ ||ιr-i ^ e ||(1 + W^illa + C(β) ||(1 + h^V1\\t, ,

we have

(3.18) ||(1 + W^Hfl.

for some constant C > 0.
Now starting from (3.18) and (3.14), we can show, by induction in

|/91, that the following inequality is valid:

Σ 11(1 + Λi
(3.19) ""Sm

Going over to the variables y we have

Σ lid + ^-'"DMitflU*.,
Ii3|^2m

(3.20) ^ C^{||L0(^, /̂ ?, D > ||,2 + || (1 + h^v \\L%}

veH2m(Rn)C)ε'(Rn),\ς\β = 1 .

The second term of the right hand side of (3.20) can be dropped out by
Condition 2', which completes the proof of Lemma 3.1.

Proof of Lemma 2.4. The differential operator L(x', y Dy) is ex-



DEGENERATE ELLIPTIC EQUATIONS 191

pressed as a sum of the terms aar(x)xrξa'Dβ

y, (γfa)eW9 a~(a',β). For
v e A2m(Bμ) we have

Lv = Lov + (L — L0)v
( 3 2 1 ) = Lov + Σ (α.r(a) - αα r(0))a?T'^ + Σ aaγ{x)xψ'

0 0 θ>0Σ
0 = 0

For any ε > 0, if we take μ > 0 and if the diameter of Ωf c 2?J is
sufficiently small, we have

^ e Σ II(If I, + W,y; ξ))2m-mD^(y)\\LHBμ) , v e

For the last sum in the* right hand side of (3.21) we have by Lemma
2.2 and Lemma 2.3,

Bμ) , τ > 0

If we take a sufficiently large number A, then we have

ϊSe Σ II del, + h{x",v,ξ)Ym-mDlvi.v)\\mBμ) , If I, ^

Thus by using Lemma 3.1, we are given desired inequality:

\\£v\\LHBμ) ^ \\L9v\\LHBμ) - | | ( £ -

^ (C - 2β) Σ II(If I + Ma!",*,

Since ε can be taken arbitrarily the inequality (2.13) is obtained.

§ 4. Examples.

The following examples have been given in [5].

1. L = -^— + y1-^— + Λ— Re λ Φ 0 or Re λ = 0 and \λ\ < 1 .
dy2 dχ2 dx

2. L = JL + (x^ + yηJL

These operators satisfy the conditions in Therem 1.1 and also 1.1/, hence
they are hypoelliptic in (x, #)-plane.
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Chapter II. Boundary value problems.

§ 5. Introduction*

As an application of the method developed in Chapter I, we shall

consider the regularity of solutions of boundary value problems for the

degenerate elliptic equations being restricted to the second order.

Consider the case where n = 1 and m = 2. Set

RN

+ = Rk XR\ = {(x',y)\x'eRk,y>0} .

The letters p,σ, 3ft and 3K0 will be used as in §1. Thus we shall con-

sider a partial differential operator

(5.1) L(x,D) = Σ aar(x)%7Da , aa r(x) e
l«l£2

with one of the following boundary operators:

(5.2)x Bx{x',Dx) = l,

(5.2)2 B2(x'9Dx) = Dy + b(x'yDx,) + c(x) .

Here b(x',Dx,) is a pseudo-differential operator defined in Rk with its

symbol given by 2 br,(x')xf7/Bf(ξ), and c(x') is a complex valued smooth

function defined in Rk. We shall, therefore, investigate the regularity

of the solutions of the boundary value problem:

(5.3) L(x, Dx)u(x) = f(x) in 2?? ,

(5.4),- BjWiDJuWfO) = 0 on jβ, (j = 1 or 2) .

We freeze as in § 1 the coefficients of the principal part of L and B2 and

introduce the following notations:

(r,«)63R0

( / )

Σ
Now we impose the following conditions.

Condition II. 1. L0(x",y;D)= Σ α« MxrDa

is strongly elliptic for \x"\ + y = 1 with # ;> 0.

Condition II. 2̂  (j = 1 or 2). The homogeneous boundary value
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problem on the half line R\:

(5.5) ί.(^ϊ;D>(l/) = 0,

(5.6), BJtO(x",y;ξ,DyMO) = O

has no non-trivial solution in H2(R\) for all %" and ξ (\ξ\p = 1).

Condition II. 3. The symbol bo(x",ξ) = Σ &r'(°)^'r'#r'(?) is quasi-

homogeneous of order one, that is,

Condition II. 4. &(#',£) is real valued in Λ*,.

THEOREM 5.1. Assume that p0 > σ0 tmeZ ίfeαί boundary value problem

(5.3), (5.4), 0' = 1 or 2) satisfies either

case 1. ίfte conditions II. 1 <md II. 2X

or

case 2. the conditions II. 1, II. 22, II. 3 cwid II. 4 corresponding to

j = 1 or 2.

If f e C'iR* Π C7) (where U is a neighborhood of the origin in RN) and

if ueH2

l0C(RT) with (5.3), (5.4), in RN

+{\U (j = 1 or 2), ίfoew ίfeere eaiste

a neighborhood V of the origin such that ueC°°(Rξ Π V).

The proof of Theorem 5.1 can be reduced to that of the inequality

(6.1) which will be proved in § 6. The inequality (6.1) corresponds to

(2.13) proved in Chapter I. By applying (6.1) and Theorem 2.1, we can

immediately prove the regularity of u at the boundary as in the case

treated in Chapter I. In case the symbol b(x',ξ) of the boundary

opeyator B2 is complex valued we need another method to obtain the

estimate of the type (6.1). This method, which will be discussed in §7,

can be applied for higher order operators. To illustrate our discussions

we shall give in §8 examples of boundary systems satisfying the con-

ditions in Theorem 5.1. Those conditions might be thought to be as

close enough to a necessary condition.

§6. Boundary estimates.

As explained previously the proof of Theorem 5.1 can be reduced

to the following lemma.
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LEMMA 6.1 (cf. Lemma 2.4). Assume that the conditions in Theorem

5.1 are satisfied, (i.e. po>σ°, either the case 1: Conditions II. 1 and

II. 2j for the boundary system {L,JBJ, or the case 2: Conditions II. 1,

II. 22, II. 3 and II. 4 for {L,B2}). Then there exists positive constants

A, C and μ and a neighborhood Ωf of the origin in Rk such that the follow-

ing inequality holds:

, β -, Σ IIQfl, + h(x",y; ξ)y-^υv(y)\\lHIμ)

^ C \\L(x',y; ξ,Dv)v(y)\\2

LHIμ)

for all veίPilp), Iμ = [O,μ), satisfiyίng

(6.2) βjtf f, Dy)v(y) \ym0 = 0 ( i = l o r 2 ) ,

and for all xf e Ωf and ζ, \$\p^ A . Here

h(x", y ζ) = I x | r 1 1 ξ 1 \ + + | x \Γτ I f * I (see (2.8)) .

The proof will be obtained in several steps. Denote by @j[£0] (j =

1 or 2) the set of all v — v(y) e H\R\) such that supp v is compact in

[0, oo) and that

(6.3) J5Λ0(z",f Dv)v(y)\Vmt0 = 0 (j = l o r 2, respectively) .

Lemma 6.1 will be proved as a consequence of the following two lemmas

6.2 and 6.3.

LEMMA 6.2. Assume that the conditions in Theorem 5.1 are satisfied.

Then there exist a constant C and a neighborhood Ωf of the origin in Rk

such that

( 6 4 ) Σlldfl, + Uχ",v; ξ))2-βDίv(y)\\iHB1+)

^ C\\LQ(x",y; ξ,Dy)v(y)\\lHR1+)

for all v e @j[L0], xf e Ω1 and ξ e Rk.

Proof. As in the proof of Lemma 3.1, the substitution: ξ-+λpξ,

x —• λ~σx and Dy —> λDv (λ > 0) reduces the proof of (6.4) to the case

\ξ\p = l . We shall use the coordinate transformation as in §3 and use

the same notations hίfg, . In particular,

z = g(x",y;ξ) y^O, \ξ\ = 1: see (3.4) .
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We bring the equation

ll%",y ξ,DJv(y) = fiv) V^O: s e e (3.7)

into the form

M(z,DM = M(x",ξ z,DM(z) = /,(«) z ^ 0, |£|, = 1: see (3.8)

where v1(z) = (1 + h^~1/2v and /&) = (1 + hd^-^v as in (3.9). Consider-

ing a pair (x",ξ) (|f|, = 1) as a parameter, we observe that

M(z,D,) = ax(z,x")D\ + az(z,x",ξ)Dz + a3(z,x",ξ)

Rea^z,x" ,ξ)^δ>0: see (3.10) ,

j = 1,2,3.

The boundary condition (5.6)^ 0' = 1 or 2) will change into

(6.5)1 NMO) = ^(0) = 0 ,

^^,(0) = (Dz - (1 + fcXa;", 0 ξϊy^x", ξVvW) = 0
( 6 5 ) 2 (If I, = 1)

Since the boundary systems {aj)2

z + 1,1} and {aj)l + 1,DZ}, considered in

R\z, are stably variational (stablement variationnel) in the sense of

Shimakura (cf. [15]), the Garding inequality holds for {M(z9Dz)9Nj}

(j = l or 2):

^ CΊ | | ^ ( « ) HI CII ^ ( β ) ||L v e

Here the positive constants Co, CΊ and C2 can be chosen independently of

(#", f) when (xh', ξ) runs through a compact set. We shall prove the in-

equality (6.4) starting with (6.6). Let v e ^ [ £ j 0" = 1 or 2), then we

have Vχ(z) e H2(R\), supp ^ is compact in [0, oo) and

(1 + hM \βml = 0 if v e 9t[Q: see (6.5)x ,

N2(l + fe^Uo = (1 + W ^ O f P ^ f l ^ U = 0

if v e ^ 2 [ £ j : see (6.5)2 .

Thus we can substitute vx in (6.6) by (1 + hjv^z) to prove

Re GJf (s, 2)2)(1 + Kdvte), (1 + A>i(

^ c, yd + ̂ M^lllπ^) ~ c21|α + w^
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Continuing the similar argument as in the proof of the inequality (3.18),
we obtain

(6.8) ^ C{||(1 + hdM(z,DM(*)\\i«BV + lid

Since αiJOjίVi = / i — (a2Dzv1 + azv^, Re aλ *> £ > 0, the L2-norm of (1 + h
can be estimated by the right hand side of (6.8). Thus we have

( 6.9) Σ I I ( l (V)

^ c'tiiα + w M ^ ^ . M ω i L , ^ , + iiα + ΛiMωiix.^)}
v e Φ,[£o] 0' = 1 or 2) ,

where the constant C" can be taken independently of (#", ξ) when it runs
through a compact set. Now going over to the variable y, as in the
proof of (3.18), and using Condition II. 2, we have the inequality (6.4).

LEMMA 6.3. Assume that p0 > σ° and that the boundary system
[U(x'\ ξ Dy), J5o(α", ξ Dy)} satisfies the Conditions II. 1, II. 22, II. 3 and II. 4.
Consider the perturbed boundary system {L0(x", ξ Dy), B0(x", ξ Dy) + c{x')}
with parameter (x\ ξ) and with c(x') given in (5.2)2. Then for any μ > 0
and for any neighborhood Ωf of the origin in Rk, there exist positive
constants A and C such that

ίaΛ~ Σ lid? \P + w> y

for all veH\Iμ), Iμ = [0,^), satisfying

(6.11) [β2,oW,ξ,Dv) + c(x')M0) = [Dv + bo&',ξ) + c(x')]v(0) = 0

and for all xr e Ωf and ξ,\ξ\p ^ A.

Proof. Take v e£P(Iμ) satisfying the boundary condition (6.11). Put

u(y) = v(y) exp [ic

Then we have u(y) e H\Iμ) and
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By Lemma 6.2, we have

(6.12) Σ ||(|f I, + hγ-Wyu\\LHIμ) ^ σ \\Ux",y\ξ,Dv)u\\LHIμ) , |f |, ^ A'
,3=0,3=0

for some positive constants C" and A' independent of such u. From

(6.12) we easily obtain the following inequality:

(6.13) ^ C i \\L0(x",y;ξ,Dy)v\\LHIμ) + C2 ||(|f |, + h)v\\^ C \\L(x"y;ξDy)v\\LHIμ) + C2 ||(|f |, + h)v\\LHIμ)

If I, ^ A!

for some constants d and C2 which depend only on Ω'(c(x')). Since

h-+co as |fI,—>oo, there exist positive constants C and A such that

ΣII (If I, + / 0 2 - ^ I U , > ^ C IILo l̂L,, If I, ^ A ,

which proves the inequality (6.10). Q.E.D.

Proof of Lemma 6.1. A) First we consider the boundary system

{L,B1} = {L,1} under Conditions II. 1 and II. 2X. By Lemma 6.2, we

have the following inequality for any μ > 0:

(6.14) Σ lid + hy->D>v \\LHIμ) ^ CII ίQW, y f, Dy)v{y) \fLHIμ)

ve H\Iμ)y v(ff) = 0, Iμ = [0, ̂  .

For v e i ϊ 2 ^ ) , with v(0) = 0, we have

L(x', y f, Dy)v = Lo'y + (L — Lo)^

( 6 # 1 5 ) = io^ + Σ (fiaM) - aaΐ(0))xT'Dβ

yv

Σ aa
θ>0

Thus in a similar manner to the proof of Lemma 2.4 we have the in-

equality (6.1) for the boundary system {L, 1}.

B) We consider boundry system {L9B2} under Conditions II. 1, II.

22, II. 3 and II. 4. Let / ί b e a positive number determined later and let

v e Ml,) , B(x', ξ, 2 ) > | y . o = 0 .

If we put

n(y) = t;(») exp [i(b(x',ξ) - b0W
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Then we have u(y) e H\Iμ) and

[jgβ(3", f, Dy) + c{x')]u(y) Uo = 0 .

We can apply Lemma 6.3 to u to obtain

(6.16) Σ II(If I, + hγ-ωfa\\LHIμ) £ C \\Lou\\LHIμ) x' e Ω', \ξ\, ̂  A
β=0

for some constants C and A. Since Lo = L — (L — Lo), we have

(6.17) I I £ * ( / , , £ \\Lu\\LHIμ) + ||(L - L 0 ^ I I L 2 ( V .

The first term in the right hand side of (6.17) is estimated by

const (|| e - « w t v \\LHIμ) + \\ d{x>, ξ)2v \\LHIμ) + \\ d(x', ξ)Dyv \\LHIμ))

(o, 1.O)

By Condition II. 4, d(x', ξ) = 6(^, ξ) — δoίa?77, f) is real valued. For any
ε > 0, if we choose the diameter of Ω' sufficiently small and apply the
inequality (2.10), we have

\\d(x',ξ)Dyv\\LHIμ)

(6.19) 2

^ e Σ ll(lf I, + W,y;$Y-βDiv\\mZμ).

To the second term in the right hand side of (6.17), we can apply the
the similar manner to the proof of Lemma 2.4. Consequently we can choose
μ and Ωf sufficiently small and A sufficiently large so that

Σ I(6.20) i | ( £ ~ £°Ww,) ^ e Σ IIdf I, +

Similarly we have

(6.21) Σ IKIίl + hγ-^yu\\LHIμ) ^ (1 - e)
β0

l y\\Hμ) £
β-0

Summing up the results (6.16) ~ (6.21) we have the inequality of the
form

a - 2β) Σ lidfi, + hγ-ωζv\\LHIμ) ^c\\ίv\\LHIlt),

where ε > 0 can be taken arbitrarily small if we choose μ, A > 0 and Ωf

adequately. This completes the proof of Lemma 6.1.
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§ 7. Alternative method*

Let L(x,D) = Σι«ι*i aaΐ(x)xrDa and let B2(x',Dx) = Dy + b(x',Dy,) +
(?(#'). We assume the conditions II. 1, II. 219 II. 22 and II. 3. In this
section the symbol b(x',ξ) can be complex-valued, since Conditions II. 2X

and II. 22 are assumed simultaneously. We shall say that the boundary
system {L(x,D)fB2(x'D)} is hypoelliptic at the boundary if the conclusion
of Theorem 5.1 holds.

LEMMA 7.1. Under the conditions II. 1, II. 2ί9 II. 22 and II. 3, we
have the same conclusion as in Lemma 6.1, that is, we have the in-
equality of the type (6.1).

As a consequences of Lemma 7.1 we have the following.

THEOREM 7.2. Assume that p0 > σ°. Under the same conditions as
in Lemma 7.1 the boundary system {L(x,D), B2(x',D)} is hypoelliptic at the
boundary.

We shall first give the outline of the proof of Lemma 7.1 in several
steps.

A) By the inequality (6.6) and the condition II; 22 we have the
following inequality for some positive constants C and A:

π ΛΛ Re(L0(x">y, ξ,Dy)v(y),v(y)) ^ CΣ\\(\ξ\p + hy-^v\\2

LH0iOO) ,

B) From the inequality (7.1) we derive the following inequality for
some positive constants C,A and μ:

(7.2) Re (£(*', y ξ, DvMy), v(y))mo<μ) ^ C £ ||(\ξ\p +
β0β=0 | i . ( 0 , r t

for |f 1̂  ^ A, 1̂ 1 ^ // and for v e ^2,/ιt̂ ] which means that v e ί?2(0, μ) with
suppt; c [0,μ) and satisfies

(7.3) [Dy + b(x',ξ) + c(^)]^(0) = 0 .

The inequality (7.2) might be viewed as an "coercive inequality" for
the boundary system {L(x,D), B2(x',D)}.

C) If ve&2,u[L], then we obviously have (|£|, + h(x", 0; ξ))v(y)e&2iμ[£}.
Substiting v in (7.2) with (\ξ\p + h(x", 0 ξ))v(y), we have



200 YOSHIAKI HASHIMOTO AND TADATO MATSUZAWA

(7-4) Σ IIQfl, + Hx",y; e^-'dfl, + h(x",0 ξ)Wyv(y)lU,,, ^ C \\tv\\LHOtμ)

for \ξ\f^A and ve®2,μ[L].

D) We have the following trace formula:

(7.5) (|£|, + h{x", 0 ξ)fβ \Φ)\ £C

for v e HKO, oo) with compact support.
E) By the steps C) and D) the following inequality for some posi-

tive constants C,A and μ is obtained:

del, + ΛG*",O; £)) 3 / 2 K0) | ^ C\\ίv\\LHOiμ) ,

le^A, ve®2JL].

F) For any t e ^ ^ ώ there exists a function weH2(0,μ) such that
such that w(0) = v(0), supple c [0,//) and

(7.7) Σ
^ Cdίl fe(^, 0

where the constant C is independent of ve@2if£L].
G) By (7.6) and (7.7) we have for another constant C

f 7 8 ) Σ llflei, + W,v; ξ))2-βD*vw\\L^μ) ^ C\\Lv\\LHOyμ) ,

\ξ\p^A, ve9itβ[L\.

H) For ve@2jfl[L], we take w defined in the step F). Then u =
v — w satisfies the Dirichlet condition: u(0) = 0. By Condition II. 2X

and by the conclusion of Lemma 6.1 for the boundary system {L, 1},
we have the following inequality for some positive constants C, A and μ:

α 9 ) INk, Ξ= Σlldei,

If I, ^ A .

From this we have

N l , , , - IIwlk, ^ C(\\Lv\\LHOyμ) + \\Lw\\LHOiμ))

and

By (7.8) we have
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(7.io) ΣJ llflfl, + w> v f))2-'W0)lU,,> ^ c» \\Lv\\LH0>μ),
\ξ\p^A, ve®2,μ[L].

This proves Lemma 7.1.

Next we shall prove the inequalities left unproved in the above steps.

Proof of (7.2). Set ®9tμ[L0] = {v\ve S2[L0], suppv c [0,μ)} and write

LQ(x",ξ,Dy) = Oo(0)Z?J + alto(^fξ)Dv + M ^ " , ? ) ,

L(x,ξ,Dy) = θβ(α?)Z)J + aι(x9ξ)Dv + a2(x,ζ) .

For v e ^ f #,[£0] (/* > 0 being determined later), we have

= Re ((£ - L0)v, v) + Re (Lov, v)

= Έle{((ao(x',y) - aQW)v'{y),

+ (d(d/dy)ao(x',y) + a^x^y ξ) - ah0(x",y; ξ))Dyv,v)

+ ((a2(x'> y ξ)- a2(x", y ξ))v(y), v(y))}

(ahQ(x",y;ξ)Dyv,v) + (a2^x",y\ ξ)v,v)}

- Re i&0(3", f ) ^ ^ , 0) - α0(0))|^(0)|2

where we denote the inner product in L2(0,μ) by ( , •) and the norm in

L2(0,μ) by || ||. We denote the last expression by L[v,v]. Taking μ>0

sufficiently small and using the inequalities (7.1), (7.5), (2.10) and (2.12),

we have for some positive constants C and A

(7.11) L[v, vi^CΣ IIQei, + hW'y ξ)y-βDtyv(y)\\Uo,μ)
β = 0

for all ve@2,μlL0] and \tf\-£μ. This inequality can be extended to all

veHι(0,μ) with supp'V c [0,μ]. On the other hand, (7.11) is valid for

all ue@2ifi[L] since ^[LJcflHO,//) and suppw c [0,//). Now for

ue@2ift[L], we have

L[u,u] = Re(L^,^) - Re iicφϊ, 0)(60(a?//, £) - 6(^,f) - φ / ) ) |^(0)|2 .

Again taking /ί > 0 sufficiently small and by (7.5) we have the inequality

(7.2).

Proof of F). It is sufficient to prove the case where |£|, = 1.

Take a function ψ e Cϊ[0,μ) such that ψ(y) = 1 0 ^ y ^ ///2. We make

use of a transformation y —>t given by
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t = J* (1 + }φr, s ζ))ds

For v e #2[0, oo) set

Then we have w(0) = #(0) and

έll

Σ II(1 + W,V\ ξ))z/2Dξψ(t)\\2

0

^ σ \v(0)\2 (1 + W ^ , 0

£ C"<X + W ^ O ; ξ)Y |

From these the inequality (7.7) can be derived.

§ 8. Examples.

EXAMPLE 1. Consider the boundary value problem:

L v = (Dl + ( x 2 k + y<)Dl)u(x,y) y>0, - o o < a ; < o o ,

( M = l

(8.2) B2u\y=Q = φ , + b(x)xkDx + c(x)u\y=0 = 0 ,

where &(#) and c(ίc) are complex-valued smooth functions. If |Im b(x)\ < 1,
then the boundary system {L, B2} satisfies the conditions in Theorem 7.2.
If, in particular, b(x) is a real valued function, then {L,B2} satisfies the
conditions in Theorem 5.1. Hence {L,B2} is hypoelliptic at the boundary.

Proof. We can choose p = (£/2 + 1,1) and σ = (£/2k,ΐ). Then p0

= ^/2 + 1 > σ° = £/2k. Conditions II. 1, II. 2X and II. 3 are obviouly
verified. As for Condition II. 22, the equalities (5.5),(5.6)2 now have the
forms:

(x2'
L avύ

(8.3)

i dy

It follows that

ib(x)xkξ\v(0)\2 + Y\v\y)fdy + Γ (x2k + y')ξ2v(y)2dy = 0 .
Lo Jo
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In case |Im b(x)\ < 1, we have

|Im b(x)xkξ\\v(0)\2 ^ Γ \v'(y)f dy + x2kξ2 Γ \v(y)f dy .
JO J2

Hence we have v(y) = 0.

EXAMPLE 2. Consider the boundary value problem:

L^ = (DJ + y'DlMx, y) = f(x, y) y>0

(4 = 0 , 1 , 2 , . . - ) ,

(8.5) B2u\v^ = [D, + bix) \Dxr
M^ + c(x)]u\y^ == 0 ,

where δ(#) is a real valued smooth function and c(x) is a complex

valued smooth function. We can easily verify that {L,B2} satisfies the

conditions in Theorem 5.1.

Remark 1. In the Example 2, we have p = (£/2 + 1,1) and σ =

(0,1). For the operators of the type σ — (0, ,0,1, ,1), general

boundary value problems have been investigated in [16].

Remark 2. Let p = (pί9 . , pk9 pk+ι) be (p19 , pk91) and σ = (<71? ,

0k>Ok+d be (0, ,0,1). For such a pair (p9σ) we consider the Dirichlet

boundary value problem

(8.5) L(x9D)u(x) = /(a?) in a^ = y > 0

(8.6)

Suppose that under the Condition II. 1 the Condition II. 2X were not

satisfied. Then we see, by using the same method as in [3; Theorem 1.1]

that the problem (8.5), (8.6) is not hypoelliptic in the upper half plane

including the boundary. This shows that the Condition II. 2X or II. 22

is necessary to obtain the hypoellipticity.
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