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ON THE SEMISIMPLICITY OF THE ALGEBRA ASSOCIATED

TO A POLARIZED ALGEBRAIC VARIETY

YOSHIFUMI KATO

§ 1. Introduction.

Let 7 be a compact nonsingular algebraic variety of dimension n
with a Hodge structure ω and let iϊM(Ύ, C) be the subgroup of 2i-th
cohomology group H2i(V,C) represented by harmonic (ΐ,i)-forms on V
with respect to ω.

We denote

Φ'KV, Q) = H'-KV, C) Π H2i(V, Q) ,

Then £>(F, Q) forms a commutative associative algebra over Q. We de-
note by L and A the linear operators acting on the cohomology group
H*(V, C) as follows

Lφ = ω φ ,
Λφ = i(ω) φ , (̂  e H*(V, O)

where X̂ίϋ) means the inner product of ω with ^.
Recently H. Morikawa introduced a symmetric binary composition o

in $1Λ(V,Q) defined by the equation

φoψ = i{Λφ-ψ + Λψ φ - ^ ψ)} . (φ>ψe^KVfQ))

He remarked that if V is a polarized abelian variety, the β-(not neces-
sarily associative) algebra φlfl(V, fi) is canonically isomorphic to the
Jordan algebra of symmetric elements in EndQ (V) with respect to the
involution induced by the polarization (Cf. [4]).

In this paper, using formulae in Kahler geometry, we shall prove
the following theorems that show the semisimplicity of the algebra
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THEOREM 1. Let V be a compact nonsingular algebraic variety of

dimension n with a Hodge structure ω. Let o be a binary composition

in $U1(V, Q) defined by

(1.1) φoψ = i{Λφ-ψ + Λψ φ - Λ(φ ψ)},

and let ( , ) be a symmetric bilinear form given by

(1.2) (φ, ψ) = Λ(φ o ψ) . (φ,ψe &>KV, Q))

Then the algebra Op^CP, Q), o) is commutative and has ω as its unity

element. And the symmetric bilinear form ( , ) satisfies

(1.3) (φoψ9τ) = (φ,ψoτ) ,

(1.4) (0, φ) > 0 /or 0 =* 0 . (0, ψ, τ e &>\V, Q))

REMARK 1. A symmetric bilinear form for an arbitrary (not nec-

essarily associative) algebra satisfying (1.3) is called a trace form.

DEFINITION 1. Let 21 be an algebra. An ideal S3 of 2ί is simple,

by definition, if there is no ideal of SI contained in S3 and different

from (0) and S3. An algebra Sί is simple if the ideal Sί is simple.

DEFINITION 2. For an algebra SI we call it semisimple if it is de-

composed into a direct sum of simple ideals.

THEOREM 2. The algebra (I&'KV, Q), o) is semisimple so that φ l j l(V,

Q) is uniquely expressible as a direct sum

(1.5) ^ 1 ' 1 (y ,Q) = ^ 1 + • • • + & ,

of simple ideals φ<β

Corresponding to this decomposition, the Hodge structure ω is decomposed

(1.6) ω = ωx + + ωk ,

with

ωt o oύj = 0 /or i ^ / ,

Theorem 2 follows from the next general theorem (Cf, [3]).

THEOREM 3. Let (Si, o) be an algebra of finite dimension satisfying

(1) there is a nondegenerate trace form ( , ) defined on Si.
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(2) S32 ̂  0 for every ideal S3 ̂  0 of ST.

Then % is uniquely decomposed into a direct sum

« = « ! + • • • + « , ,

of simple ideals SI*.

But in our case the trace form is positive definite so the proof of

Theorem 2 is easy as we shall see in §3.

§2. Some formulae in Kahler geometry.

First of all, let us recall the fundamental formulae and theorems in

Kahler geometry which will be used for the proofs of Theorem 1 and

Theorem 2 (Cf, [1]).

We need following formulae between the operators L and A

(2.1) [L9Λ] = H = Σ(i

where Pt is the projection map on the i-th factor.

[L,H]=-2L, [A,H] = 2A,

(2 2> ΛI7 - Z/Λ = Σ (» - ϋL'-Ψt.

Denoting by JΪ'ίV.Oo the i-th primitive cohomology group

{φeH\V,C)\Λφ = 0}, we have a criterion of primitivity

(2.3) W(y, C\ = {φe H*(V, C) | ωn~Mφ = 0} ,

and Lefschetz decomposition theorem;

mV,O = HKV,C\ + ••• + L'fl«-*(V,C).

(2'4) r - f~] for ° ̂  * - n '
HKV,C) = L*-"fl»»-«(F, C), + + L<-"+'fl* |-«-I'(F,C),

r ^ Γ 2 ^ ^ * ! for n < i < 2n .

Putting

Q(φ,ψ) = (_i)*«+»/» Γ ωn-i.φ.ψ f0r φyψ i n HKV,CX
JV
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Q is symmetric bilinear form for i even and is an alternating bilinear

form for i odd. For either case Q is nondegenerate. Moreover we have

(2.5) Q(ff{-' ', #?-*-•) = 0 for r * s ,

(2.6) (V^ϊy(-l)ί+rQ(Hi-^r

9H^-r) > 0 positive definite.

LEMMA 1. Using the notations above, we have

(2.7) LΛφ=:Λφ-ω,

(2.8) ALφ = (n-2)φ + Aφ-ω ,

(2.9) Λω = n = dim V . (φe φKV, Q))

Proof. From the formulae (2.1) and (2.2) between the operators

L, A and H, it follows that

LΛφ =
ALφ =

Acs) =

PROPOSITION 1.

(2.10)

(2.11) 0oα>

Aφ-Ll =

(-H + i
ΛL1 = (-

0c

= α>o0 =

A

—i

>i

Φ

[φ ω ,
[)φ z={n- 2)φ + Λφ

H + LA)1 = -HI =

{φ, ψ 6 &'KV, Q

Proof. From Lemma 1 and the definition (1.1) of the composition o,

we have the commutativity (2.10) and

φoω = j{Aω-φ + Aφ ω — A(φ ώ)}

+ Aφ-ω — ALφ}

The equation (2.11) implies that the Hodge structure ω is the unity ele-

ment of the algebra ( £ M ( F , Q), o).

We denote by B2(,) and 2?3(, ,) respectively a bilinear form and a

trilinear form given by

B2(φ,ψ)ωn = φ'ψ ωn~2 ,

B3(0, ψ, τ)ωw - 0 ψ τ ωw~3 , (0, f, τ e φ 1-^^, Q))

Integrating both sides of the above first equation over V, we have
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f B2(φ,ψ)ωn = ί φ-ψ-ωn-2 ,
Jv Jv

and

(2.12) Bt(φfψ I(ω) J F

where

I(ω) = f ω* > 0 .
J F

Similarly we have

(2.13) B3(^Ψ,r) = - ί - ί φ-ψ.τ-ωn-* .
l(ω) Jv

B2(,) and B3(, ,) are symmetric forms and by virture of (2.3), (2.5) and

(2.6), we have

(2.14) B2(ω,ω) = l ,

(2.15) B2(φ9ώ) = B2(ω,φ) == 0 for primitive φ in φ'W, Q) ,

(2.16) B2(φ9φ) < 0 for nonzero primitive φ in φ ^ d ^ β ) ,

These formulae will give the positive deίiniteness of the bilinear form ( , )

defined in Theorem 1.

LEMMA 2. Let φ>ψ,τ be in I&'KV,Q). Then we have

(2.17) ΛLnl = nLn~ιl = rf"1 ,

(2.18) ^ = nB2(φ9ω) ,

(2.19) £2(Λ(0 ψ), ω) = 2(w - 1)B2(^, ψ) ,

(2.20) B2(Λ(φ ψ), τ) = nβ 2 (^, ψ)J?2(r, ω) + (w - 2)B3(^, ψ, τ) ,

(2.21) ^ 2 (^ ψ) = 2n(n - ΐ)B2(φ,ψ) .

Proof. By the formulae (2.2), we have

Since
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A(φ-ωn-1) = A(B2(φyω)ωn) = B2(φ,ω)ALnl = nB2(φ,ω)ω71-1 ,

and

Λί^ ω71"1) = ALn~ιφ = Ln~ιAφ + 2] (n — 2 — 2r)Ln~2φ = i ί^L*" 1 !
r=0

= Aφ ω71-1 ,

comparing the coefficients of ω71"1 in nB2(φ,ω)ωn~1 and Λφ*ωn~λ, we have

(2.18).

Comparing the coefficients of ωw of the following equations;

2 (^ - 4 - 2r)Ln~2φψ
r=0

and

Ln~2φψ - Σ (^ - 4 -
r = 0

= w#2(0, ψ)©1 1"^ + (n — 2)

= {nB2(φ,ψ)B2(τ,ω) + (n - 2)B,(φ9ψ,τ)}ωn ,

we have (2.19) and (2.20).

By (2.18) and (2.19), we have

Λ2(0.ψ) = nB2(A(φ'ψ),ω) = 2n(w - I)β2(^,ψ)

and the proof of Lemma 2 is completed.

§ 3. The proofs of Theorem 1 and Theorem 2.

By Proposition 1, the former part of Theorem 1 that the algebra
$lyl(V,Q) is commutative and ω is the unity element is proved. Hence
we prove that the symmetric bilinear form (,) is a trace form (1.3)
and is positive definite (1.4).

If at least one of φ, ψ and τ is ω, since ω is the unity element, (1.3)
holds. So considering the Lefschetz decomposition, we may assume that
they are all primitive.
Then

(φoψ)oτ = x{-Λ2(φ.ψ) τ + A(A(φ-ψ) τ)} ,
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and from (1.2), (2.15), (2.20) and (2.21), we have

On the other hand we have

(φ,ψoT) =

87

- l)(n - 2)B3(φ, f, τ) .

- 2)B3(φ, ψ, τ ) .

This shows (1.3).
Now we prove (1.4). From (1.1), (1.2), (2.18) and (2.21), it follows

(φ,ψ) = Λ(φoψ) = ±{Λφ Λψ + Λψ Λφ - A\φ*ψ)}

= Λφ Λψ - iΛXφ ψ)

= n2B2(φ,ω)B2(ψ,ω) - n(n - ϊ)B2(φ,ψ) .

We choose a base {e0, ., er} of SQ^KV, Q) such that

et: primitive for 1 <i < r ,

and express the bilinear forms n2B2(φ, ω)B2(ψ9 ω), n(n
(φ,ψ) by matrices with respect to this base.
Then by virture of (2.14), (2.15) and (2.16), we have

riι

\n2B2(ei9ώ)B2(ej9ω)\ =

0

and

ίn(n - 1)

n(n - ΐ)B2(eu es) =
(*)

where the matrix (*) is negative definite.
So the matrix

n
(ei9 ej) =

0

- ( * )

, ψ), and
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is positive definite. The proof of Theorem 1 is completed.
We prove Theorem 2. Let & be a simple ideal of &'KV,φ.

Putting
φ- = {φe$ι'\V,Q)\(φ,ψ) = 0 for every ψ in &}, φf is also an ideal

of Iξf'KV, Q), since the bilinear form (,) is a trace form. Moreover
taking an element φ in φiΩφj1, we have

and

0 = 0,

because the bilinear form (,) is positive definite. Hence the algebra
&lyl(V,Q) is decomposed into

S 1 ' 1^, <» = & + &•.

Repeating this method, we obtain the decomposition (1.5) such that

# 1(V,fi) = S i + •••+&.

Let φ be any simple ideal of φM(V,fi). Then for each ideal &, it fol-
lows

© Π & = 0 ,

or

# n & * o.

In case φ Π & ^ 0, it follows

φ ί l ^ = § = &,

because φ and φ4 are both simple ideals. From this the uniqueness of
the decomposition (1.5) follows. The proof of Theorem 2 is completed.

Finally we present two problems. Let D be an ample divisor whose
chern class is ω. Then corresponding to the decomposition (1.6) of ω,
D can be written as follows

D = A + + Dϊc ,

where

D< = Σ ϊ*iAi (9<j e β) ,

φiS is a cycle of codimension one)
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and

Multiplying D by a suitable integer, we may assume that qiS is an integer
for all i, j .

PROBLEM 1. When we write D as above, is each divisor D€ effec-
tive?
If Problem 1 is affirmative, we can consider the following problem.

PROBLEM 2. We denote

Vi = Proj ( ® LimϋS) for 1 < i < k ,
\w=0 /

(Cf, [5]).
Then, are there any mappings from V to Vx X x 7 J
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