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ON THE SEMISIMPLICITY OF THE ALGEBRA ASSOCIATED
TO A POLARIZED ALGEBRAIC VARIETY

YOSHIFUMI KATO

§1. Infroduction.

Let V be a compact nonsingular algebraic variety of dimension =
with a Hodge structure o and let H»%(V,C) be the subgroup of 2i-th
cohomology group H*(V,C) represented by harmonic (z,%)-forms on V
with respect to w.

We denote

$4(V,Q) = H*YV,C) N H*V,Q),

n

oV,0) =D oV, Q) .

=0
Then §(V, Q) forms a commutative associative algebra over 9. We de-
note by L and 4 the linear operators acting on the cohomology group
H*(V,C) as follows
L = w-¢,
Ap = w)-¢ , (e H*(V,C))
where i(w) means the inner product of o with ¢.
Recently H. Morikawa introduced a symmetric binary composition o
in §4Y(V, Q) defined by the equation
o = HAg-Ar + AY-$ — A(g-)} . (¢, v € O"(V, Q)
He remarked that if V is a polarized abelian variety, the Q-(not neces-
sarily associative) algebra $“'(V,Q) is canonically isomorphic to the
Jordan algebra of symmetric elements in Endg (V) with respect to the
involution induced by the polarization (Cf. [4]).
In this paper, using formulae in Kidhler geometry, we shall prove
the following theorems that show the semisimplicity of the algebra
&V, Q), o).
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THEOREM 1. Let V be a compact nonsingular algebraic variety of
dimension n with a Hodge structure . Let o be a binary composition
n 94V, Q) defined by

(¢)) o = HAd-v + Ap-¢ — Alg-V)},
and let (,) be a symmetric bilinear form given by
1.2) ($y9) = A(go) . (¢, v € 9"V, Q)

Then the algebra (H-'(V,Q),o) is commutative and has o as its unity
element. And the symmetric bilinear form (,) satisfies

(1.3) (fov,0) = ($, Vo),
1.4) ($:9) >0 for ¢x0. ($,v,z€9"(V,Q)

REMARK 1. A symmetric bilinear form for an arbitrary (not nec-
essarily associative) algebra satisfying (1.3) is called a trace form.

DEFINITION 1. Let % be an algebra. An ideal 8 of % is simple,
by definition, if there is no ideal of A contained in B and different
from (0) and B. An algebra % is simple if the ideal 2 is simple.

DEFINITION 2. For an algebra % we call it semisimple if it is de-
composed into a direct sum of simple ideals.

THEOREM 2. The algebra (H-'(V, Q), o) is semisimple so that H-'(V,
Q) 1is uniquely expressible as a direct sum

(1.5) OV, D=9+ - + D>

of simple ideals ;.
Corresponding to this decomposition, the Hodge structure o is decomposed

1.6) o=w+ - + o,
with

wiowj=0 fo’ri#].,

W;oW; = W; »
Theorem 2 follows from the next general theorem (Cf, [3]).

THEOREM 3. Let (U,0) be an algebra of finite dimension satisfying
(1) there is a nondegenerate trace form (,) defined on U .
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(2) B*x 0 for every ideal B x 0 of Y.
Then A is uniquely decomposed into a direct sum

A=A+ o+,

of simple ideals U,.

But in our case the trace form is positive definite so the proof of

Theorem 2 is easy as we shall see in §3.

§2. Some formulae in Kihler geometry.

First of all, let us recall the fundamental formulae and theorems in
Kéahler geometry which will be used for the proofs of Theorem 1 and

Theorem 2 (Cf, [1]).
We need following formulae between the operators L and A4;

@.1) (L, Al=H=5G—nP,,

where P, is the projection map on the i-th factor.

[L,Hl = —2L, [4,Hl =24,
2.2) AL — L'd = 3 (n—9)L'P,_,; .

)
0<ji<r-1

Denoting by HYV,C), the i-th primitive cohomology
{6 € H(V,C)| 4p = 0}, we have a criterion of primitivity;

2.3) HYV,C), = {$ € H(V,C)| 0" **'¢ = 0},
and Lefschetz decomposition theorem;

H«V,C) = H(V,C), + --+ + L'H*"*(V,C),
2.4) r< [%] for0<i<n,

HY{V,C) = Li-*H"V,C), + --- + Li-ntrHm-i=(V (),

TS[an—-i] for n <i<2n.
Putting

Q(p, ¥) = (—Lyiasvz L @ tgep  for ¢,y in HY(V,C),,

group
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Q is symmetric bilinear form for 7 even and is an alternating bilinear
form for 7 odd. For either case @ is nondegenerate. Moreover we have

(2.5) QH ™, Hy*™*) =0 for r x s,
(2.6) W=D(=D"QH ", Hy*"") > 0 positive definite.

LEMMA 1. Using the notations above, we have

2.7 LA¢ = /1¢-a) ,
2.8) AL$ = (n — 2)¢ + -0,
(2.9) do=n=dimV. (pecOV,Q)

Proof. From the formulae (2.1) and (2.2) between the operators
L, 4 and H, it follows that
LA$ = A$p-L1 = A¢-w ,
AL$ = (—H + LM)p = (n — 2)¢ + Ap-w ,
Ado = ALl = (—H + LAl = —Hl =mn.

PROPOSITION 1.

(2.10) Pop =1pog,
(2.11) Pow =wod =¢. (%, v e (V, Q)

Proof. From Lemma 1 and the definition (1.1) of the composition o,
we have the commutativity (2.10) and

doow = HAw-¢ + Ap-0 — A(¢-w)}
= H{ng + 4¢-0 — ALg}
=g.
The equation (2.11) implies that the Hodge structure o is the unity ele-
ment of the algebra ($“'(V, Q), o).

We denote by B,(,) and B,(,,) respectively a bilinear form and a
trilinear form given by

By($, ¥)o" = ¢--0"?,
Bs(¢, vy o = ¢'\I"T -0 ? ) (¢’ v, T € ©I'I(V; Q))

Integrating both sides of the above first equation over V, we have
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and
_ 1 Ape@?
2.12) B4 = 15, 0,
where
I(w) =van > 0 .

Similarly we have

1

| (213) Bs(¢’ v, T) = m

J ¢"l!l"2"(()n—3 .

Vv

B,(,) and B,(,,) are symmetric forms and by virture of (2.3), (2.5) and
(2.6), we have

(2.14) B)(w,0) =1,

(2.15) B,(¢, w) = By(w,¢) = 0 for primitive ¢ in &4V, Q) ,

(2.16) B,($,¢) <0 for nonzero primitive ¢ in $-(V,Q) ,

These formulae will give the positive definiteness of the bilinear form (,)
defined in Theorem 1.

LEMMA 2. Let ¢,v,7 be in 9"(V,Q). Then we have

(2.17) AL = nL*'1 = no™™,

(2.18) Ap = nBy(¢, ) ,

2.19) By(A(¢- ), 0) = 2(n — 1)By($, V) ,

(2.20) By(A(g- V), 7) = nBy($, ¥)By(z, 0) + (n — 2)By($, ¥, 7) ,
(2.21) A(-p) = 2n(n — DB,($, V) .

Proof. By the formulae (2.2), we have
ALY = LAl + 52 (0 — 29011 = nL='1 = nat-!
r=0

Since
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AP 0™ ) = A(By(¢, w)a™) = By(¢, 0)AL"1 = nB,(¢, w)o™ ",

and

Ao = AL"'g = Ln=4g + S (n — 2 — 2L % = AgL*11
r=0
= A¢-0™",

comparing the coefficients of o"™! in nB,(4, o™ and A¢-0""', we have
(2.18).
Comparing the coefficients of »® of the following equations;

BG4, 0)o® = Aot = LA 4)
= ALy — 5 (0 — 4 — 2Ly
= 2(n — DB, Wo" ,
and
By A($-¥), Do = A(-)-10m? = Lr2A($ ) -
= {AL"—Z;W - Zi(n —4— 2r)Ln-3¢1;f} c
= nBy(g, Yo" 't + (n — 2)o" ¢yt
= {nBy($, ¥)B,(r,») + (n — 2)By(¢, ¥, 1)}0" ,

we have (2.19) and (2.20).
By (2.18) and (2.19), we have

A(p-) = nB(A($-¥), w) = 2n(n — 1)B,(4, )

and the proof of Lemma 2 is completed.

§ 3. The proofs of Theorem 1 and Theorem 2.

By Proposition 1, the former part of Theorem 1 that the algebra
94UV, Q) is commutative and w is the unity element is proved. Hence
we prove that the symmetric bilinear form (,) is a trace form (1.3)
and is positive definite (1.4).

If at least one of ¢, v and ¢ is w, since w is the unity element, (1.3)
holds. So considering the Lefschetz decomposition, we may assume that
they are all primitive.

Then

(¢ox[/\)or = %{—Az(gﬁ'lk)f + /1(/1(¢"I/')‘7)} ’
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and from (1.2),(2.15),(2.20) and (2.21), we have

(o, ) = A(Goy) o) = 1AM ) 7)
= in(n — D(n — 2)By(4, ¥, 1) .

On the other hand we have

(P, voz) = Mpo(or) = 144P- AW+ 7))
= {nn — D(n — 2)By(d, ¥, 7) .

This shows (1.3).
Now we prove (1.4). From (1.1),(1.2),(2.18) and (2.21), it follows

($,¥) = A(povy) = F{Ap- Ay + A~ Ap — A}
= A A — 3225
= M2B,(¢, ®)By(¥, ) — n(n — 1)By(¢, V) .

We choose a base {e,, ---,e,} of §(V,Q) such that

& =0,

e;: primitive for 1 <i<r,

and express the bilinear forms n’B,(¢, w)B,(V,®), n(n — 1)B,(¢, ), and
(¢,v¥) by matrices with regpect to this base.
Then by virture of (2.14),(2.15) and (2.16), we have

n| 0

(nsz(eu (D)Bz(ej, (0)) = (—; 0 ) ’
wn—1)] 0

(n(n — DBy(e,, ej)) = ( 0 (*) ) ’

where the matrix (*) is negative definite.

So the matrix
n 0
((ei,ep) _ (7 — ) ,

and
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is positive definite. The proof of Theorem 1 is completed.

We prove Theorem 2. Let ©, be a simple ideal of $“(V,Q).
Putting

O ={pe D"V, |(,y) = 0 for every ¢ in &}, $i is also an ideal
of 9%(V,Q), since the bilinear form (,) is a trace form. Moreover
taking an element ¢ in §,NHL, we have

(¢,¢)=0’
and
$=0,

because the bilinear form (,) is positive definite. Hence the algebra
H-(V, Q) is decomposed into

oMV, =9+ Ot .
Repeating this method, we obtain the decomposition (1.5) such that
MV, D=+ - + & -

Let © be any simple ideal of $-(V,Q). Then for each ideal §,;, it fol-
lows

$NY: =0,
or
PNH. 0.
In case N 9, = 0, it follows
ONH =H=9,

because $ and £, are both simple ideals. From this the uniqueness of
the decomposition (1.5) follows. The proof of Theorem 2 is completed.

Finally we present two problems. Let D be an ample divisor whose
chern class is w. Then corresponding to the decomposition (1.6) of w,
D can be written as follows

D=D,+ -+ Dy,
where
D, = ; q:3D; ;€9 ,

(D,; is a cycle of codimension one)
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and
cD,) = o, .

Multiplying D by a suitable integer, we may assume that g,; is an integer
for all 4, 5.

PrOBLEM 1. When we write D as above, is each divisor D, effec-
tive?
If Problem 1 is affirmative, we can consider the following problem.

PROBLEM 2. We denote

V, = Proj (é L(mDi)) for l<i<k,
m=0

(Ct, [5D.
Then, are there any mappings from V to V, X ... X V,?
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