T. Tsuji Nagoya Math. J. Vol. 55 (1974), 33-80

SIEGEL DOMAINS OVER SELF-DUAL CONES AND THEIR AUTOMORPHISMS

TADASHI TSUJI

Introduction

The Lie algebra g_{h} of all infinitesimal automorphisms of a Siegel domain in terms of polynomial vector fields was investigated by Kaup, Matsushima and Ochiai [6]. It was proved in [6] that g_{h} is a graded Lie algebra; $g_{h} = g_{-1} + g_{-1/2} + g_{0} + g_{1/2} + g_{1}$ and the Lie subalgebra g_{a} of all infinitesimal affine automorphisms is given by the graded subalgebra; $g_{a} = g_{-1} + g_{-1/2} + g_{0}$. Nakajima [9] proved without the assumption of homogeneity that the non-affine parts $g_{1/2}$ and g_{1} can be determined from the affine part g_{a} .

The main purpose of the present paper is to determine explicitly the Lie algebras g_h for Siegel domains over self-dual cones. In §2 we will prove that if the adjoint representation ρ of g_0 on g_{-1} is irreducible, then g_h is simple or $g_h = g_a$ (Theorem 2.1). Moreover using Nakajima's result we will give sufficient conditions of the vanishing of $g_{1/2}$ (Proposition 2.3 and Corollary 2.7) and a method of calculating $g_{1/2}$ and g_1 (Propositions 2.6 and 2.8). Using the results in §2, we determine in §3 (Theorems 3.3–3.6) infinitesimal automorphisms of most of the homogeneous Siegel domains over self-dual cones (other than circular cones) which were constructed by Pjateckii-Sapiro [10].

The circular cone C(n) of dimension n $(n \ge 3)$ is defined to be the set $\{{}^{i}(x_1, x_2, \dots, x_n) \in \mathbb{R}^n; x_1 > 0, x_1x_2 - x_3^2 - \dots - x_n^2 > 0\}$. Pjateckii-Sapiro [10] found all the homogeneous Siegel domains over circular cones which are constructed by using the representation theory of Clifford algebras. But it was shown by Kaneyuki and Tsuji [5] that there exists a homogeneous Siegel domain over a circular cone which does not appear in Pjateckii-Sapiro's construction. In view of this fact the purpose in §4 is to give a method of constructing all homogeneous Siegel domains over

Received January 21, 1974.

circular cones (Theorem 4.4) by making use of the considerations analogous to [5].

Pjateckii-Sapiro [10] pointed out without proof that the exceptional bounded symmetric domain in C^{16} is realized as a Siegel domain over the cone C (8). In §5 we consider a certain homogeneous Siegel domain D over C (8), which is implicitly given in [10], and by means of results in §2 and §4 we prove that D is isomorphic to the above exceptional symmetric domain (Theorem 5.4).

Finally, in § 6 we determine infinitesimal automorphisms of homogeneous Siegel domains over circular cones (Theorem 6.1, Propositions 6.2 and 6.3).

Some of results of the present paper were announced in the note [15].

The author wishes to express his hearty thanks to Prof. S. Kaneyuki for his helpful suggestions and encouragement during the preparation of this paper.

§1. Preliminaries

In this section, after introducing notations which are used throughout this paper, we recall some of results of [6] and [9].

1.1. Let R be a real vector space of dimension n and W be a complex vector space of dimension m. Let D(V, F) denote a Siegel domain of type I or type II in $R^c \times W$ associated with a convex cone V in R and a V-hermitian form F on W, which is defined by Pjateckii-Sapiro [10], where R^c is the complexification of R. Throughout this paper we will employ the following notations;

 \mathfrak{g}_h (resp. \mathfrak{g}_a); the Lie algebra of all infinitesimal holomorphic (resp. affine) automorphisms of D(V, F).

g(V); the Lie algebra of the automorphism group $G(V) = \{g \in GL(R); gV = V\}$ of the cone V.

 $\{e_1, \dots, e_n\}$ (resp. $\{f_1, \dots, f_m\}$); a base of R (resp. W).

 $(z_1, \dots, z_n, w_1, \dots, w_m)$; the complex coordinate system of $\mathbb{R}^c \times W$ associated with the base $\{e_1, \dots, e_n, f_1, \dots, f_m\}$.

The following ranges of indices will be taken in each summation: $1 \le j, k$, $l, \dots \le n, 1 \le \alpha, \beta, \gamma, \dots \le m$.

For a positive integer p, U(p) (resp. O(p)) denotes the unitary (resp. real orthogonal) group of degree p and E_p denotes the unit matrix of degree p. And for two positive integers p and q, we denote by M(p,q;F) the real (resp. complex) vector space of all real (resp. complex) $p \times q$ matrices and by gl(p, F) the real (resp. complex) general linear Lie algebra of degree p, where F = R (resp. C).

1.2. Put $\partial = \sum z_k \partial / \partial z_k + \frac{1}{2} \sum w_a \partial / \partial w_a$ and $\partial' = i \sum w_a \partial / \partial w_a$. Then the following results (1.4)–(1.6) are known in [6].

(1.1) The vector field ∂ belongs to g_h and g_h is a graded Lie algebra; $g_h = g_{-1} + g_{-1/2} + g_0 + g_{1/2} + g_1$, where g_λ is the λ -eigenspace of ad(∂) ($\lambda = \pm 1, \pm \frac{1}{2}, 0$). Furthermore g_a is the graded subalgebra; $g_a = g_{-1} + g_{-1/2} + g_0$.

(1.2)
$$\mathfrak{g}_{-1} = \{\sum a^k \partial / \partial z_k ; a^k \in \mathbf{R}\}$$

- (1.3) $\mathfrak{g}_{-1/2} = \{2i \sum F^k(w,c)\partial/\partial z_k + \sum c^\alpha \partial/\partial w_\alpha; c = \sum c^\alpha f_\alpha \in W\},\$ where $F(w,c) = \sum F^k(w,c)e_k.$
- (1.4) $g_0 = \{ \sum a_{kl} z_l \partial / \partial z_k + \sum b_{\alpha\beta} w_{\beta} \partial / \partial w_{\alpha}; A = (a_{kl}) \in \mathfrak{g}(V), B = (b_{\alpha\beta}) \in \mathfrak{gl}(W), AF(u, u) = F(Bu, u) + F(u, Bu) \text{ for each } u \in W \}.$

Let r be the radical of g_h . Then

(1.5) r is a graded ideal of g_{h} such that $r = r_{-1} + r_{-1/2} + r_{0}$, where $r_{-\lambda} = r \cap g_{-\lambda}$ $(\lambda = 1, \frac{1}{2}, 0)$.

(1.6)
$$\dim \mathfrak{g}_{\lambda} = \dim \mathfrak{g}_{-\lambda} - \dim \mathfrak{r}_{-\lambda} \ (\lambda = 1, \frac{1}{2})$$

Considering (1.1) we denote by ρ (resp. σ) the adjoint representation of the subalgebra g_0 on g_{-1} (resp. $g_{-1/2}$). Let us define real linear isomorphisms φ_{-1} and $\varphi_{-1/2}$ as follows;

$$egin{aligned} &arphi_{-1} \ : a = \sum a^k e_k \in R \mapsto arphi_{-1}(a) = \sum a^k \partial / \partial z_k \in \mathfrak{g}_{-1} \ , \ &arphi_{-1/2} \colon c = \sum c^lpha f_lpha \in W \mapsto arphi_{-1/2}(c) = 2i \sum F^k(w,c) \partial / \partial z_k + \sum c^lpha \partial / \partial w_lpha \in \mathfrak{g}_{-1/2} \ . \end{aligned}$$

Then by easy computations we can see that the following (1.7) and (1.8) are valid; for $a \in R$, $c, c' \in W$ and $X = \sum a_{kl} z_l \partial/\partial z_k + \sum b_{\alpha\beta} w_{\beta} \partial/\partial w_{\alpha} \in \mathfrak{g}_0$,

(1.7) $\rho(X)(\varphi_{-1}(a)) = -\varphi_{-1}(Aa)$ and $\sigma(X)(\varphi_{-1/2}(c)) = -\varphi_{-1/2}(Bc)$, where $A = (a_{kl})$ and $B = (b_{\alpha\beta})$. In particular $\sigma(\partial')(\varphi_{-1/2}(c)) = -\varphi_{-1/2}(ic)$.

(1.8)
$$[\varphi_{-1/2}(c),\varphi_{-1/2}(c')] = 4\varphi_{-1}(\operatorname{Im} F(c',c)) \; .$$

By the facts stated above we can identify $\rho(g_0)$ with a subalgebra of g(V).

The following results (1.9) and (1.10) are due to Nakajima (Proposition 2.6 in [9]).

- (1.9) The subspace $g_{1/2}$ of g_h consists of all polynomial vector fields $X = \sum p_{1,1}^k \partial/\partial z_k + \sum (p_{1,0}^a + p_{0,2}^a)\partial/\partial w_a$ satisfying the condition $[g_{-1/2}, X] \subset g_0$, where $p_{\lambda,\mu}^k$ and $p_{\lambda,\mu}^a$ are polynomials of homogeneous degree λ in z_1, \dots, z_n and homogeneous degree μ in w_1, \dots, w_m .
- (1.10) The subspace g_1 of g_h consists of all polynomial vector fields $X = \sum p_{2,0}^k \partial/\partial z_k + \sum p_{1,1}^a \partial/\partial w_a$ satisfying the following conditions; $[g_{-1/2}, X] \subset g_{1/2}, [g_{-1}, X] \subset g_0$ and Im Tr $\sigma([Y, X]) = 0$ for each $Y \in g_{-1}$.

§ 2. Lie algebras of infinitesimal automorphisms

2.1. Kaneyuki and Sudo [4] proved that if D(V, F) is an irreducible symmetric domain (or equivalently g_h is simple), then the representation ρ is irreducible. Conversely without the assumption of homogeneity of D(V, F) we have

• THEOREM 2.1. If the representation ρ is irreducible, then g_h is simple or $g_h = g_a$.

Proof. By our assumption we have $r_{-1} = (0)$ or $r_{-1} = g_{-1}$, since r_{-1} is a subspace of g_{-1} invariant under $\rho(g_0)$. First we suppose $r_{-1} = (0)$. Then it follows from (1.5), (1.7) and (1.8) that $r_{-1/2} = r_0 = (0)$ and r = (0) (this fact was proved more generally in [9]). So g_h is semi-simple. Suppose that g_h is not simple. Then the Siegel domain D(V, F) is reducible and the cone V is decomposed into irreducible factors (cf. [9], Corollaries 4.8 and 4.9), which means that ρ is not irreducible. This contradicts to our assumption. Thus g_h is simple.

Now we consider the case $r_{-1} = g_{-1}$. It follows from (1.6) that $g_1 = (0)$. We will show that $g_{1/2} = (0)$. By (1.9) every $X \in g_{1/2}$ is represented as $X = \sum p_{1,1}^k \partial/\partial z_k + \sum (p_{1,0}^a + p_{0,2}^a) \partial/\partial w_a$. Put $Z = [X, [\partial', X]]$. Then from the direct verification it follows that Z is represented as

$$Z=2i\sum p_{1,0}^{lpha}rac{\partial p_{1,1}^k}{\partial w_{lpha}}\partial/\partial z_k+2i\sum \left(p_{1,0}^{eta}rac{\partial p_{0,2}^{lpha}}{\partial w_{eta}}-p_{1,1}^krac{\partial p_{1,0}^{lpha}}{\partial z_k}
ight)\partial/\partial w_{lpha}\,.$$

By (1.1) and the fact $\partial' \in g_0$, the vector field Z belongs to $g_1 = (0)$. Hence we have

(2.1)
$$\sum p_{1,0}^{\alpha} \frac{\partial p_{1,1}^{k}}{\partial w_{\alpha}} = 0 \qquad (1 \le k \le n) .$$

SIEGEL DOMAINS

 $\begin{array}{l} \text{Since } [\mathfrak{g}_{-1,}X] \subset \mathfrak{g}_{-1/2}, \text{ there exist } c_l &= \sum c_l^{\alpha} f_{\alpha} \in W \ (1 \leq l \leq n) \text{ such that} \\ [\partial/\partial z_l,X] &= 2i \sum F^k(w,c_l)\partial/\partial z_k + \sum c_l^{\alpha}\partial/\partial w_{\alpha} \ (1 \leq l \leq n). & \text{On the other} \\ \text{hand, } [\partial/\partial z_l,X] &= \sum \frac{\partial p_{1,1}^k}{\partial z_l} \partial/\partial z_k + \sum \frac{\partial p_{1,0}^{\alpha}}{\partial z_l} \partial/\partial w_{\alpha} \ (1 \leq l \leq n), \text{ which implies} \\ \frac{\partial p_{1,1}^k}{\partial z_l} &= 2i F^k(w,c_l) \text{ and } \frac{\partial p_{1,0}^{\alpha}}{\partial z_l} = c_l^{\alpha}. & \text{Hence we have} \\ p_{1,1}^k &= 2i \sum F^k(w,c_l)z_l \text{ and } p_{1,0}^{\alpha} = \sum c_l^{\alpha} z_l \ (1 \leq k \leq n, \ 1 \leq \alpha \leq m) . \end{array}$

In view of (2.1) we obtain $\sum F^k(c_j, c_l)z_jz_l = 0$ $(1 \le k \le n)$. So we get $F^k(c_l, c_l) = 0$ $(1 \le k, l \le n)$. Therefore $c_l = 0$ and $p_{1,1}^k = p_{1,0}^\alpha = 0$ $(1 \le k \le n, 1 \le \alpha \le m)$. Thus X is written as $X = \sum p_{0,2}^\alpha \partial \partial w_\alpha$. It is easily seen that $[\partial', X] = iX$. So both X and iX are contained in g_h . This means X = 0 by the well-known theorem of H. Cartan. Consequently we have $g_{1/2} = (0)$ and by (1.1) we conclude that $g_h = g_a$. q.e.d.

The above theorem will be used to determine the Lie algebras g_h of certain Siegel domains in the following sections.

A Siegel domain D(V, F) in $\mathbb{R}^c \times W$ is said to be non-degenerate if the linear closure of the set $\{F(u, u); u \in W\}$ in \mathbb{R} coincides with \mathbb{R} (cf. [4]). Otherwise D(V, F) is called degenerate.

Without the assumptions of irreducibility of ρ and homogeneity of D(V, F), we have

PROPOSITION 2.2. If D(V, F) is non-degenerate and $g_{1/2} = (0)$, then $g_h = g_a$.

Proof. From (1.7) and (1.8) it follows that D(V, F) is non-degenerate if and only if $[g_{-1/2}, g_{-1/2}] = g_{-1}$. For $X \in g_1$, we have $[X, g_{-1/2}] \subset g_{1/2} = (0)$ and so $[X, g_{-1}] = [X, [g_{-1/2}, g_{-1/2}]] = (0)$. On the other hand, the condition $[X, g_{-1}] = (0)$ implies X = 0 (see [9], Lemma 3.1). By (1.1) we have g_h $= g_a$. q.e.d.

2.2. We now discuss sufficient conditions of the vanishing of $g_{1/2}$ of a Siegel domain D(V, F) of type II in $\mathbb{R}^c \times W$. Let $X = \sum p_{1,1}^{\kappa} \partial/\partial z_{\kappa} + \sum (p_{1,0}^{\alpha} + p_{0,2}^{\alpha})\partial/\partial w_{\alpha}$ be a polynomial vector field on $\mathbb{R}^c \times W$. Then it is known in [9] that X is contained in $g_{1/2}$ if and only if there exist $c_l = \sum c_i^{\alpha} f_{\alpha} \in W$ $(1 \leq l \leq n)$ and $b_{\beta\gamma}^{\alpha} \in C$ $(b_{\beta\gamma}^{\alpha} = b_{\gamma\beta}^{\alpha}, 1 \leq \alpha, \beta, \gamma \leq m)$ satisfying the following (2.2), (2.3) and (2.4) (see (3.2) and (3.5) in [9]);

(2.2) X is represented as

 $X = 2i \sum F^{k}(w, c_{l}) z_{l} \partial / \partial z_{k} + \sum c_{l}^{lpha} z_{l} \partial / \partial w_{lpha} + \sum b_{eta r}^{lpha} w_{eta} w_{r} \partial / \partial w_{lpha} \; .$

(2.3)
$$\sum_{\alpha} b^{\alpha}_{\beta\gamma} F^{k}_{\alpha\delta} = i \sum_{\alpha,l} (F^{l}_{\beta\delta} \bar{c}^{\alpha}_{l} F^{k}_{\gamma\alpha} + F^{l}_{\gamma\delta} \bar{c}^{\alpha}_{l} F^{k}_{\beta\alpha})$$
for $1 \le k \le n, \ 1 \le \beta, \gamma, \delta \le m$, where $F^{k}_{\alpha\beta} = F^{k}(f_{\alpha}, f_{\beta})$.

(2.4) For each $d \in W$, the matrix $A(d) = (A(d)_{kl})$ belongs to g(V), where $A(d)_{kl} = \text{Im } F^k(c_l, d)$.

PROPOSITION 2.3. If a vector field $X \in g_{1/2}$ satisfies the condition $\rho([g_{-1/2}, X]) = (0)$, then X = 0.

Proof. By (2.2) there exist $c_l \in W$ $(1 \le l \le n)$ and $b^{\alpha}_{\beta\gamma} \in C$ $(1 \le \alpha, \beta, \gamma \le m)$ such that X is represented as $X = 2i \sum F^k(w, c_l)z_l\partial/\partial z_k + \sum c^{\alpha}_l z_l\partial/\partial w_{\alpha} + \sum b^{\alpha}_{\beta\gamma}w_{\beta}w_{\beta}\partial/\partial w_{\alpha}$. For each $d \in W$, we can verify that the matrix $\rho([\varphi_{-1/2}(d), X])$ coincides with (4 Im $F^k(c_l, d)$). From our assumption it follows that $F^k(c_l, d) = 0$ for every $d \in W$ $(1 \le k, l \le n)$. Therefore $c_l = 0$ $(1 \le l \le n)$ and X is written as $X = \sum p^{\alpha}_{0,2}\partial/\partial w_{\alpha}$. By the same consideration as in the proof of Theorem 2.1 we have X = 0. q.e.d.

Now we suppose that W is the direct sum of subspaces W_i (i = 1, 2) satisfying the condition $F(W_1, W_2) = (0)$. Let F_i denote the restriction of the V-hermitian form F to $W_i \times W_i$. Then F_i is a V-hermitian form on W_i . We denote by $g_h^{(i)} = g_{-1}^{(i)} + g_{-1/2}^{(i)} + g_0^{(i)} + g_{1/2}^{(i)} + g_1^{(i)}$ the Lie algebra of all infinitesimal automorphisms of the Siegel domain $D(V, F_i)$ in $R^c \times W_i$. We can assume that $\{f_1, \dots, f_{m_1}\}$ (resp. $\{f_{m_1+1}, \dots, f_m\}$) is a base of W_1 (resp. W_2), where $m_1 = \dim W_1$.

We define a linear map Φ of the Lie algebra of all polynomial vector fields on $R^c \times W$ into that of all polynomial vector fields on $R^c \times W_1$ by

(2.5)
$$\begin{split} \varPhi\left(\sum_{1\leq k\leq n} p_{\lambda,\mu}^{k}\partial/\partial z_{k}\right) &= \sum_{1\leq k\leq n} (p_{\lambda,\mu}^{k}\circ\iota)\partial/\partial z_{k} ,\\ \varPhi\left(\sum_{1\leq \alpha\leq m} p_{\lambda,\mu}^{\alpha}\partial/\partial w_{\alpha}\right) &= \sum_{1\leq \alpha\leq m_{1}} (p_{\lambda,\mu}^{\alpha}\circ\iota)\partial/\partial w_{\alpha} , \end{split}$$

where ι is the injection $(z, w_1) \in R^c \times W_1 \mapsto (z, w_1 + 0) \in R^c \times W$. For

$$X = 2i \sum F^{k}(w, c_{l}) z_{l} \partial/\partial z_{k} + \sum c_{l}^{\alpha} z_{l} \partial/\partial w_{\alpha} + \sum b_{\beta \gamma}^{\alpha} w_{\beta} w_{\gamma} \partial/\partial w_{\alpha} \in \mathfrak{g}_{1/2}$$

(cf. (2.2)), we define two vector fields $X^{(1)}$ and $X^{(2)}$ by

$$X^{\scriptscriptstyle(1)}=2i\sum F^k_{\scriptscriptstyle 1}\!(w_{\scriptscriptstyle 1},c_{\scriptscriptstyle l,1})z_l\partial/\partial z_k+\sum\limits_{\scriptstyle 1\leq lpha\leq m_1}c_l^lpha z_l\partial/\partial w_l$$

SIEGEL DOMAINS

(2.6)

$$\begin{aligned} &+\sum_{1\leq\alpha,\beta,\gamma\leq m_{1}}b_{\beta\gamma}^{\alpha}w_{\beta}w_{\gamma}\partial/\partial w_{\alpha}, \\
&X^{(2)} = 2i\sum F_{2}^{k}(w_{2},c_{l,2})z_{l}\partial/\partial z_{k} + \sum_{m_{1}<\alpha\leq m}c_{l}^{\alpha}z_{l}\partial/\partial w_{\alpha} \\
&+\sum_{m_{1}<\alpha,\beta,\gamma\leq m}b_{\beta\gamma}^{\alpha}w_{\beta}w_{\gamma}\partial/\partial w_{\alpha}, \end{aligned}$$

where $w = w_1 + w_2$, $c_l = c_{l,1} + c_{l,2} \in W = W_1 + W_2$. Then we get

LEMMA 2.4. For each $X \in g_{1/2}, X^{(i)}$ belongs to $g_{1/2}^{(i)}$ (i = 1, 2) and $\Phi(X) = X^{(1)}$.

Proof. We will show that the polynomial vector field $X^{(1)}$ (resp. $X^{(2)}$) on $\mathbb{R}^c \times W_1$ (resp. $\mathbb{R}^c \times W_2$) satisfies the conditions (2.2), (2.3) and (2.4). In fact, by (2.6) $X^{(1)}$ (resp. $X^{(2)}$) satisfies the condition (2.2). By using the equalities $F(W_1, W_2) = (0), F_1^k(f_{\alpha}, f_{\beta}) = F_{\alpha\beta}^k$ $(1 \le \alpha, \beta \le m_1), F_2^k(f_{\alpha}, f_{\beta}) = F_{\alpha\beta}^k$ $(m_1 \le \alpha, \beta \le m)$ and the fact $X \in \mathfrak{g}_{1/2}$, we have

$$\sum_{1 \leq lpha \leq m_1} b^{lpha}_{eta_7} F^k_{a\delta} = \sum_{1 \leq lpha \leq m} b^{lpha}_{eta_7} F^k_{a\delta} = i \sum_{\substack{1 \leq l \leq n \ 1 \leq lpha \leq m}} (F^l_{eta\delta} ar c^n_l F^k_{\ au a} + F^l_{\gamma\delta} ar c^a_l F^k_{\ eta a})
onumber \ = i \sum_{\substack{1 \leq l \leq n \ 1 \leq lpha \leq m_1}} (F^l_{eta\delta} ar c^a_l F^k_{\ au a} + F^l_{\gamma\delta} ar c^a_l F^k_{\ eta a})
onumber \ (1 \leq k \leq n, \ 1 \leq eta, \gamma, \delta \leq m_1),$$

which implies that $X^{(1)}$ satisfies the condition (2.3). For each $d_1 \in W_1$ the matrix (Im $F_1^k(c_{l,1}, d_1)$) belongs to g(V), since the matrix (Im $F^k(c_l, d_1)$) belongs to g(V) and $F^k(c_l, d_1) = F_1^k(c_{l,1}, d_1)$. Thus we showed that $X^{(1)}$ satisfies the condition (2.4). Therefore $X^{(1)}$ is contained in $g_{1/2}^{(1)}$. Analogously we can see that $X^{(2)}$ belongs to $g_{1/2}^{(2)}$. From (2.5), (2.6) and the condition $F(W_1, W_2) = (0)$ it follows immediately that $\Phi(X) = X^{(1)}$.

LEMMA 2.5. For each $X \in g_0, \Phi(X)$ belongs to $g_0^{(1)}$.

Proof. We put $\sigma(X) = \begin{pmatrix} \sigma_1(X) & \sigma_3(X) \\ \sigma_2(X) & \sigma_4(X) \end{pmatrix}$, where $\sigma_1(X)$ is the submatrix

of degree m_i . Then it can be easily seen that $\Phi(X)$ is represented by

$$\Phi(X) = \sum_{1 \leq k, l \leq n} a_{kl} z_l \partial / \partial z_k + \sum_{1 \leq \alpha, \beta \leq m_1} b_{\alpha\beta} w_{\beta} \partial / \partial w_{\alpha},$$

where the matrices (a_{kl}) and $(b_{\alpha\beta})$ coincide with $\rho(X)$ and $\sigma_1(X)$, respectively. From the condition $F(W_1, W_2) = (0)$ and (1.4) it follows that for each $u_1 \in W_1$,

$$\rho(X)F_1(u_1, u_1) = \rho(X)F(u_1, u_1)$$

$$= F(\sigma(X)u_1, u_1) + F(u_1, \sigma(X)u_1)$$

= $F(\sigma_1(X)u_1 + \sigma_2(X)u_1, u_1) + F(u_1, \sigma_1(X)u_1 + \sigma_2(X)u_1)$
= $F_1(\sigma_1(X)u_1, u_1) + F_1(u_1, \sigma_1(X)u_1)$.

So, by (1.4) $\Phi(X)$ belongs to $g_0^{(1)}$.

q.e.d.

We now denote by Φ_{λ} the map Φ restricted to the subspace g_{λ} of g_{h} $(\lambda = \pm 1, \pm \frac{1}{2}, 0)$. Then we have

PROPOSITION 2.6. If $g_{1/2}^{(2)} = (0)$, then the map Φ induces a gradepreserving linear map of g_h into $g_h^{(1)}$ satisfying the following conditions:

(1) The subspace g_{-1} of g_h coincides with $g_{-1}^{(1)}$ and Φ_{-1} is an identity. Furthermore $\Phi_{-1/2}$ is a surjection of $g_{-1/2}$ onto $g_{-1/2}^{(1)}$.

(2) The map $\Phi_{1/2}$ is an injection of $g_{1/2}$ into $g_{1/2}^{(1)}$.

(3) The subspace g_1 of g_h is contained in $g_1^{(1)}$ and Φ_1 is an identity.

(4) The maps Φ_{λ} satisfy the condition; $\Phi_0([X, Y]) = [\Phi_{-\lambda}(X), \Phi_{\lambda}(Y)]$ for $X \in \mathfrak{g}_{-\lambda}, Y \in \mathfrak{g}_{\lambda}$ $(\lambda = 1, \frac{1}{2})$.

Proof. By (1.2) it is obvious that $g_{-1} = g_{-1}^{(1)}$ and $\Phi_{-1}(\partial/\partial z_k) = \partial/\partial z_k$. Now we show $\Phi(g_{-1/2}) = g_{-1/2}^{(1)}$. In fact, from (1.3) and the condition $F(W_1, W_2) = (0)$ it follows that $\Phi(\varphi_{-1/2}(c)) = \varphi_{-1/2}(c_1)$ for $c = c_1 + c_2 \in W = W_1 + W_2$. Thus we have $\Phi(g_{-1/2}) = g_{-1/2}^{(1)}$ and the assertion (1) was proved.

By Lemma 2.4 we have $\Phi(\mathfrak{g}_{1/2}) \subset \mathfrak{g}_{1/2}^{(1)}$. For $X \in \mathfrak{g}_{1/2}$ we suppose that $\Phi_{1/2}(X) = 0$. Then from the assumption $\mathfrak{g}_{1/2}^{(2)} = (0)$ and Lemma 2.4 it follows that $X^{(1)} = X^{(2)} = 0$ and X is represented as $X = \sum p_{0,2}^{\alpha} \partial/\partial w_{\alpha}$. Therefore, (as we stated before,) X = 0. Thus the assertion (2) was proved.

Now we show that $\Phi_1(X) = X$ for each $X \in \mathfrak{g}_1$. In fact, let $X = \sum A_{jl}^k z_j z_l \partial/\partial z_k + \sum B_{l\beta}^a z_l w_{\beta} \partial/\partial w_a \in \mathfrak{g}_1$ $(A_{jl}^k = A_{lj}^k, B_{l\beta}^a \in \mathbb{C}, \text{ cf. (1.10)})$. Then from the condition $[\mathfrak{g}_{-1/2}, X] \subset \mathfrak{g}_{1/2}$ it follows that for each $c \in W$,

(2.7)
$$[\varphi_{-1/2}(c), X] = 2i \sum (2F^{j}(w, c)A_{jl}^{k} - B_{l\beta}^{\alpha}F^{k}(f_{\alpha}, c)w_{\beta})z_{l}\partial/\partial z_{k}$$
$$+ \sum c^{\beta}B_{l\beta}^{\alpha}z_{l}\partial/\partial w_{\alpha} + 2i \sum B_{k\beta}^{\alpha}F^{k}(w, c)w_{\beta}\partial/\partial w_{\alpha}$$

belongs to $g_{1/2}$. On the other hand, by (2.2) there exist $c_l \in W$ $(1 \le l \le n)$ and $b_{\beta_r}^{\alpha} \in C$ $(1 \le \alpha, \beta, \gamma \le m)$ such that

$$[\varphi_{-1/2}(c), X] = 2i \sum F^{k}(w, c_{l}) z_{l} \partial/\partial z_{k} + \sum c_{l}^{\alpha} z_{l} \partial/\partial w_{\alpha} + \sum b_{\beta r}^{\alpha} w_{\beta} w_{r} \partial/\partial w_{\alpha} .$$

By the assumption $g_{1/2}^{(2)} = (0)$ and Lemma 2.4 we have $[\varphi_{-1/2}(c), X]^{(2)} = 0$. Therefore by (2.6) c_l is contained in W_1 (i.e., $c_l^{\alpha} = 0$ if $m_1 \leq \alpha \leq m$). By (2.7) we have

 $B_{l\beta}^{\alpha}=0 \ (1\leq l\leq n, \ m_1\leq \alpha\leq m, \ 1\leq \beta\leq m)$

and

$$F^k(w_1,c_l) = 2\sum_{1\leq j\leq n} F^j(w,c) A^k_{jl} - \sum_{\substack{1\leq lpha\leq m_1\ 1\leq eta\leq m_1}} B^{lpha}_{leta} F^k(f_{lpha},c) w_{eta} \; .$$

By the condition $F(W_1, W_2) = (0)$ we get

$$2\sum_{1\leq j\leq n} F^{j}(w_{2},c_{2})A^{k}_{jl} - \sum_{\substack{1\leq a\leq m_{1}\\m_{1}<\beta\leq m}} B^{a}_{l\beta}F^{k}(f_{a},c_{1})w_{\beta} = 0$$
.

As $c = c_1 + c_2$ is an arbitrary element in $W = W_1 + W_2$, so

$$\sum_{\substack{1 \le \alpha \le m_1 \\ m_1 < \beta \le m}} B^{\alpha}_{l\beta} F^k(f_{\alpha}, c_1) w_{\beta} = 0 \; .$$

By putting $c_1 = \sum_{1 \le \alpha \le m_1} B^{\alpha}_{l\beta} f_{\alpha}$ we have $F^k \left(\sum_{1 \le \alpha \le m_1} B^{\alpha}_{l\beta} f_{\alpha}, \sum_{1 \le \alpha \le m_1} B^{\alpha}_{l\beta} f_{\alpha} \right) = 0$. Therefore

$$B^lpha_{leta}=0 \qquad (1\leq l\leq n, \ 1\leq lpha\leq m_{\scriptscriptstyle 1}\leq eta\leq m)$$
 ,

and X is written as

(2.8)
$$X = \sum_{1 \le j,k,l \le n} A_{jl}^k z_j z_l \partial/\partial z_k + \sum_{\substack{1 \le l \le n \\ 1 \le \alpha, \beta \le m_1}} B_{l\beta}^{\alpha} z_l w_{\beta} \partial/\partial w_{\alpha} .$$

By (2.5) we conclude that $\Phi_1(X) = X$.

We want to show $g_1 \subset g_1^{(1)}$. It is enough to show that each element $X \in g_1$ considered as a polynomial vector field on $R^c \times W_1$ satisfies the conditions in (1.10).

For each $c_1 \in W_1$, by (2.7) and (2.8) we have

$$arPsi_{1/2}([arphi_{-1/2}(c_1),X])=[arphi_{-1/2}(c_1),X]$$
 .

From the facts $[\varphi_{-1/2}(c_1), X] \in \mathfrak{g}_{1/2}$ and $\Phi_{1/2}(\mathfrak{g}_{1/2}) \subset \mathfrak{g}_{1/2}^{(1)}$ it follows that $[\varphi_{-1/2}(c_1), X]$ belongs to $\mathfrak{g}_{1/2}^{(1)}$. We put $Y_k = [\partial/\partial z_k, X]$ $(1 \le k \le n)$. Then by (2.8) $\Phi_0(Y_k) = Y_k$. From the fact $[\mathfrak{g}_{-1}, X] \subset \mathfrak{g}_0$ and Lemma 2.5 it follows that Y_k is contained in $\mathfrak{g}_0^{(1)}$. By (2.8) we can see that

$$\sigma(Y_k) = \begin{pmatrix} \sigma_1(Y_k) & 0 \\ 0 & 0 \end{pmatrix}.$$

Thus, Im Tr $\sigma_1(Y_k) = \text{Im Tr } \sigma(Y_k) = 0$. Therefore by (1.10) we conclude

that X belongs to $g_1^{(1)}$. The assertion (3) was proved.

By (1) and (3) we have $[X, Y] \in \mathfrak{g}_0^{(1)}$ for $X \in \mathfrak{g}_{-1}$, $Y \in \mathfrak{g}_1$. Therefore we get $\Phi_0([X, Y]) = [\Phi_{-1}(X), \Phi_1(Y)]$. Let

$$egin{aligned} X &= 2i\sum_{1\leq k,l\leq n}F^k(w_1,c_l)z_l\partial/\partial z_k \,+\,\sum_{\substack{1\leq l\leq n\ 1\leq lpha\leq m_1}}c_l^lpha z_l\partial/\partial w_a \ &+\,\sum_{1\leq lpha,eta,\gamma\leq m}b^lpha_{eta\gamma}w_eta w_\gamma\partial/\partial w_lpha\in\mathfrak{g}_{1/2} \qquad (c_l\in W_1) \;. \end{aligned}$$

Then for each $d = d_1 + d_2 \in W = W_1 + W_2$ we have

$$[\varPhi_{{}^{-1/2}}(\varphi_{{}^{-1/2}}(d)),\varPhi_{{}^{1/2}}(X)] = [\varphi_{{}^{-1/2}}(d_1),\varPhi_{{}^{1/2}}(X)] \ .$$

We can verify that $\rho([\varphi_{-1/2}(d_1), \Phi_{1/2}(X)] = (4 \operatorname{Im} F^k(c_i, d_1))$ and the (α, β) component of the matrix $\sigma_1([\varphi_{-1/2}(d_1), \Phi_{1/2}(X)])$ is

$$2\sum_{\substack{1\leq k\leq n\ 1\leq r\leq m_1}} (iF_{_{eta r}}^kar{d}^{_{\prime}}c_k^lpha+b_{_{eta r}}^lpha d^{\prime}) \qquad (1\leq lpha,eta\leq m_1)\;.$$

On the other hand, by the conditions $c_1 \in W_1$ and $F(W_1, W_2) = (0)$ we have

$$egin{aligned} & [arphi_{{}^{-1/2}}(d),X] = 4\sum\limits_{1\leq k,l\leq n} \ \mathrm{Im} \ F^k(c_l,d_l) z_l \partial/\partial z_k \ & + 2\sum\limits_{1\leq lpha,eta, au\leq m} \Big(i\sum\limits_{1\leq k\leq n} \ F^k_{\ eta r} ar{d}^r c^lpha_k + b^lpha_{\ eta r} d^r \Big) w_eta \partial/\partial w_lpha \ \end{aligned}$$

We can see that $b_{\beta\gamma}^{\alpha} = 0$ if $1 \leq \alpha, \beta \leq m_1 < \gamma \leq m$. In fact, by (2.3) and the condition $F(W_1, W_2) = (0)$ it follows that $\sum_{1 \leq \alpha \leq m_1} b_{\beta\gamma}^{\alpha} F_{\alpha\delta}^k = 0$ $(1 \leq \delta \leq m_1)$, which implies $F^k \left(\sum_{1 \leq \alpha \leq m_1} b_{\beta\gamma}^{\alpha} f_{\alpha}, f_{\delta} \right) = 0$ $(1 \leq k \leq n, 1 \leq \delta \leq m_1)$. So, $\sum_{1 \leq \alpha \leq m_1} b_{\beta\gamma}^{\alpha} f_{\alpha} = 0$ and $b_{\beta\gamma}^{\alpha} = 0$ $(1 \leq \alpha, \beta \leq m_1 < \gamma \leq m)$. Therefore by (2.5) we have

$$egin{aligned} & \varPhi_0([arphi_{-1/2}(d),X]) = 4\sum\limits_{1\leq k,l\leq n} \operatorname{Im} F^k(c_l,d_l) z_l \partial/\partial z_k \ &+ 2\sum\limits_{1\leq lpha,eta, ext{r}\leq m_1} \Bigl(i\sum\limits_{1\leq k\leq n} F^k_{eta ext{r}} ar{d}^r c^{lpha}_k + b^{lpha}_{eta ext{r}} d^r \Bigr) w_{eta} \partial/\partial w_{lpha} \ , \end{aligned}$$

which implies that $\Phi_0([\varphi_{-1/2}(d), X]) = [\Phi_{-1/2}(\varphi_{-1/2}(d)), \Phi_{1/2}(X)]$. q.e.d.

By (2) in the above proposition we get

COROLLARY 2.7. If $g_{1/2}^{(i)} = (0)$ (i = 1, 2), then $g_{1/2} = (0)$.

2.3. Let D(V, F) be a Siegel domain of type II in $\mathbb{R}^c \times W$. Let D' denote the associated tube domain with D(V, F), i.e.,

(2.9)
$$D' = D(V, F) \cap (R^c \times \{0\}),$$

SIEGEL DOMAINS

which is isomorphic to the Siegel domain D(V) of type I in \mathbb{R}^c . It was proved by Kaup, Matsushima and Ochiai [6] that the subalgebra $g_{-1} + g_0 + g_1$ of g_h is the Lie subalgebra corresponding to the subgroup of all automorphisms of D(V, F) leaving the domain D' invariant. Let $g'_h = g'_{-1} + g'_0 + g'_1$ be the Lie algebra of all infinitesimal automorphisms of D'. Then there exists a grade-preserving Lie algebra homomorphism ξ of $g_{-1} + g_0 + g_1$ into $g'_h = g'_{-1} + g'_0 + g'_1$;

(2.10)
$$\xi: X \in \mathfrak{g}_{-1} + \mathfrak{g}_0 + \mathfrak{g}_1 \mapsto \xi(X) \in \mathfrak{g}_h'$$

where $\xi(X)$ is the vector field which is the restriction of X to D'.

As a corollary to Proposition 2.6 we have the following proposition which will be used in order to determine the subspace g_1 of g_h .

PROPOSITION 2.8. If $g_{1/2} = (0)$, then g_1 is a subspace of g'_1 and the map ξ restricted to g_1 is an identity.

Proof. We put $W_1 = (0)$ and $W_2 = W$. Then the Siegel domains $D(V, F_1)$ and $D(V, F_2)$ coincide with D' and D(V, F), respectively. Therefore $g_{h}^{(1)} = g'_{h}$ and $g_{h}^{(2)} = g_{h}$. It is easy to see that the map Φ restricted to $g_{-1} + g_0 + g_1$ coincides with the map ξ (cf. (2.5)). Thus our assertions follow from (3) of Proposition 2.6. q.e.d.

§ 3. Automorphisms of Siegel domains over self-dual cones

In this section we calculate infinitesimal automorphisms of the homogeneous Siegel domains over self-dual cones (except circular cones) which were constructed by Pjateckii-Sapiro [10].

3.1. We will use the following notations and well-known results for irreducible self-dual cones.

1) The cone $H^+(p, \mathbf{R})$.

Let $R = H(p, \mathbf{R})$ be the real vector space of all real symmetric matrices of degree p. We denote by $H^+(p, \mathbf{R})$ the cone of all positive definite matrices in R. Then dim $R = \frac{1}{2}p(p+1)$. Let E_{ij} denote a square matrix of degree p whose (i, j)-component is one and others are zero. We define a base $\{e_{ij}\}_{1 \le i \le j \le p}$ of R by $e_{ii} = E_{ii}$ $(1 \le i \le p)$ and $e_{ij} = E_{ij}$ $+ E_{ji}$ $(1 \le i < j \le p)$. $(z_{ij})_{1 \le i \le j \le p}$ denotes the coordinate system of R^c associated with the base $\{e_{ij}\}_{1 \le i \le j \le p}$.

It is known in [17] that the Lie algebra $g(H^+(p, \mathbf{R}))$ consists of all linear endomorphisms \tilde{A} of the form;

where A is an element of gl(p, R).

2) The cone $H^+(p, C)$.

Let R = H(p, C) be the real vector space of all hermitian matrices of degree p. We denote by $H^+(p, C)$ the cone of all positive definite matrices in R. Then dim $R = p^2$. We define a base $\{e_{ii}(1 \le i \le p), e_{ij,s}, (1 \le i \le j \le p, s = 1, 2)\}$ of R by $e_{ii} = E_{ii}$ $(1 \le i \le p), e_{ij,1} = E_{ij} + E_{ji}$ and $e_{ij,2} = i(E_{ij} - E_{ji})$ $(1 \le i \le j \le p)$. $(z_{ii} \ (1 \le i \le p), z_{ij,s} \ (1 \le i \le j \le p, s = 1, 2))$ denotes the coordinate system of R^c associated with the base $\{e_{ii}, e_{ij,s}\}$.

It is known in [17] that the Lie algebra $g(H^+(p, C))$ consists of all linear endomorphisms \tilde{A} of the form;

where A is an element of $\mathfrak{gl}(p, C)$.

3) The cone $H^+(p, \mathbf{K})$.

Let $R = H(p, \mathbf{K})$ be the real vector space of all hermitian matrices X of degree 2p satisfying the condition; $XJ = J\overline{X}$, where

$$J = egin{pmatrix} j & 0 \ & \cdot \ & 0 \ & 0 \end{pmatrix} ext{ and } j = egin{pmatrix} 0 & 1 \ -1 & 0 \end{pmatrix}.$$

We denote by $H^+(p, K)$ the cone of all positive definite matrices in R. Let $X = (X_{kl})$ be a hermitian matrix of degree 2p, where X_{kl} is a 2×2 minor matrix of X ($1 \le k, l \le p$). Then X belongs to R if and only if X_{kl} is represented as follows;

$$X_{kk} = \begin{pmatrix} x_{kk} & 0 \\ 0 & x_{kk} \end{pmatrix} (1 \le k \le p) , \qquad X_{kl} = \begin{pmatrix} x_{kl} & y_{kl} \\ -\overline{y}_{kl} & \overline{x}_{kl} \end{pmatrix} (1 \le k < l \le p) ,$$

where $x_{kk} \in \mathbf{R}$ and $x_{kl}, y_{kl} \in \mathbf{C}$. Thus we have dim R = p(2p - 1). We define a base $\{e_{ii} \ (1 \le i \le p), e_{ij,s} \ (1 \le i < j \le p, 1 \le s \le 4)\}$ of R by $e_{ii} = E_{2i-1}_{2i-1} + E_{2i}_{2i} \ (1 \le i \le p), e_{ij,1} = E_{2i-1}_{2j-1} + E_{2i}_{2j}, e_{ij,2} = i(E_{2i-1}_{2j-1} - E_{2i}_{2j}), e_{ij,3} = E_{2i-1}_{2j} - E_{2i}_{2j-1}, e_{ij,4} = i(E_{2i-1}_{2j} + E_{2i}_{2j-1}) \ (1 \le i < j \le p),$ where E_{ij} is the square matrix of degree 2p whose (i, j)-component is one and others are zero. $(z_{ii} \ (1 \le i \le p), z_{ij,s} \ (1 \le i < j \le p, 1 \le s \le 4))$ denotes the coordinate system of R^{σ} associated with the base $\{e_{ii}, e_{ij,s}\}$.

It is known in [17] that the Lie algebra $g(H^+(p, \mathbf{K}))$ consists of all

linear endomorphisms \tilde{A} of the form;

where A is an element of $\mathfrak{gl}(2p, C)$ satisfying the condition $AJ = J\overline{A}$.

3.2. As an application of Theorem 2.1 we have

LEMMA 3.1. For each of the homogeneous Siegel domains D(V, F) given in the following (1), (2) and (3), the Lie algebra g_h coincides with the subalgebra g_a .

(1) $V = H^+(p, \mathbf{R}), W = M(p, q; C) \ (p \ge 2),$ $F(u, v) = \frac{1}{2}(u^t \overline{v} + \overline{v}^t u) \quad \text{for } u, v \in W.$

(2)
$$V = H^+(p, C), W = M(p, q_1; C) + M(p, q_2; C)$$
 (direct sum, $p \ge 2$),

$$F(u,v) = \frac{1}{2}(u^{(1)t}\overline{v}^{(1)} + \overline{v}^{(2)t}u^{(2)})$$

for
$$u = u^{(1)} + u^{(2)}$$
, $v = v^{(1)} + v^{(2)} \in W$.

(3) $V = H^+(p, K), W = M(2p, q; C) (p, q \ge 2),$ $F(u, v) = \frac{1}{2}(u^t \overline{v} + J \overline{v}^t u^t J) \quad for \ u, v \in W.$

Proof. First we show that for each Siegel domain D(V, F) in (1), (2) and (3), the subalgebra $\rho(g_0)$ of g(V) coincides with g(V).

Case (1): For each $\tilde{A} \in \mathfrak{g}(V)$ $(A \in \mathfrak{gl}(p, \mathbb{R}))$ we define a complex linear endomorphism B of W by

$$B: u \in W \mapsto Au \in W$$
,

where Au means a usual matrix multiplication of A and u. Then by (3.1) we have

$$\tilde{A}F(u, u) = F(Bu, u) + F(u, Bu)$$

for every $u \in W$. Hence by (1.4) \tilde{A} is contained in $\rho(\mathfrak{g}_0)$. Therefore we have $\rho(\mathfrak{g}_0) = \mathfrak{g}(V)$.

Case (2): For each $\tilde{A} \in \mathfrak{g}(V)$ $(A \in \mathfrak{gl}(p, C))$ we define a complex linear endomorphism B of W by

$$B: u = u^{(1)} + u^{(2)} \in W \mapsto Au^{(1)} + \overline{A}u^{(2)} \in W$$
.

Then by using (3.2) we can verify

$$\tilde{A}F(u, u) = F(Bu, u) + F(u, Bu)$$

for every $u \in W$. It follows from (1.4) that \tilde{A} belongs to $\rho(g_0)$. Thus, we have $\rho(g_0) = g(V)$.

Case (3): For each $\tilde{A} \in \mathfrak{g}(V)$ $(A \in \mathfrak{gl}(2p, C), AJ = J\overline{A})$ we define a complex linear endomorphism B of W by

$$B: u \in W \mapsto Au \in W$$
.

Then by (3.3) we have

$$\tilde{A}F(u, u) = F(Bu, u) + F(u, Bu)$$

for every $u \in W$. Hence by (1.4) \tilde{A} belongs to $\rho(\mathfrak{g}_0)$ and $\rho(\mathfrak{g}_0) = \mathfrak{g}(V)$.

Each cone V in (1), (2) and (3) is an irreducible homogeneous selfdual cone. On the other hand, it was proved by Rothaus [11] that for an irreducible homogeneous self-dual cone V, the Lie algebra g(V) is irreducible. Therefore the representation ρ is irreducible. Furthermore each domain D(V, F) in (1), (2) and (3) is non-symmetric (cf. [10]). Thus, from Theorem 2.1 we conclude that $g_h = g_a$. q.e.d.

Now we consider degenerate Siegel domains over the cones $V = H^+(p, F)$ $(p \ge 2)$, where F is R or C or K. Let F be a V-hermitian form on a complex vector space W of dimension m (m > 0). Then we get

LEMMA 3.2. If there exists a positive integer q (q < p) such that the linear closure of the set $\{F(u, u); u \in W\}$ in R coincides with the proper subspace $\begin{pmatrix} H(q, F) & 0\\ 0 & 0 \end{pmatrix}$ of R, then $g_{1/2} = (0)$.

Proof. Case F = R: We show that if a linear endomorphism $\tilde{A} \in g(V)$ belongs to $\rho(g_0)$, then A must be of the form;

$$(3.4) A = \begin{pmatrix} a & b \\ 0 & c \end{pmatrix},$$

where $a \in \mathfrak{gl}(q, \mathbf{R})$, $b \in M(q, p - q; \mathbf{R})$ and $c \in \mathfrak{gl}(p - q, \mathbf{R})$. In fact, let $\tilde{A} \in \rho(\mathfrak{g}_0)$, $A = \begin{pmatrix} a & b \\ d & c \end{pmatrix}$. Then by (1.4) there exists $B \in \mathfrak{gl}(W)$ such that (\tilde{A}, B) satisfies the condition; $\tilde{A}F(u, u) = F(Bu, u) + F(u, Bu)$ for every $u \in W$. Therefore A must satisfy the following; for each $Y \in H(q, \mathbf{R})$,

$$Aegin{pmatrix} Y & 0 \ 0 & 0 \end{pmatrix} + egin{pmatrix} Y & 0 \ 0 & 0 \end{pmatrix}{}^t\!A ext{ belongs to } egin{pmatrix} H(q, {m R}) & 0 \ 0 & 0 \end{pmatrix}$$
 ,

which implies d = 0.

Now we want to show $g_{1/2} = 0$. For each $X \in g_{1/2}$, by (2.2) and (2.4) there exist $c_{kl} \in W$ $(1 \le k \le l \le p)$ such that

$$\frac{1}{4}\rho([\varphi_{-1/2}(d), X]) = (\operatorname{Im} F^{ij}(c_{kl}, d))$$

for every $d \in W$. From our assumption we can see that $F^{ij} = 0$ if j > q. Therefore, the linear endomorphism $\rho([\varphi_{-1/2}(d), X])$ maps the space $R = H(p, \mathbf{R})$ into the proper subspace $\begin{pmatrix} H(q, \mathbf{R}) & 0\\ 0 & 0 \end{pmatrix}$ of R. On the other hand, from (3.4) there exists $A \in \mathfrak{gl}(p, \mathbf{R})$ of the form: $A = \begin{pmatrix} a & b\\ 0 & c \end{pmatrix}$ satisfying $\rho([\varphi_{-1/2}(d), X]) = \tilde{A}$. Thus, for each $Y_1 \in H(q, \mathbf{R})$, $Y_2 \in M(q, p - q; \mathbf{R})$ and $Y_3 \in H(p - q, \mathbf{R})$,

$$\begin{pmatrix} a & b \\ 0 & c \end{pmatrix} \begin{pmatrix} Y_1 & Y_2 \\ {}^tY_2 & Y_3 \end{pmatrix} + \begin{pmatrix} Y_1 & Y_2 \\ {}^tY_2 & Y_3 \end{pmatrix} \begin{pmatrix} {}^ta & 0 \\ {}^tb & {}^tc \end{pmatrix} \text{ belongs to } \begin{pmatrix} H(q, \textbf{\textit{R}}) & 0 \\ 0 & 0 \end{pmatrix} +$$

Hence we get $aY_2 + Y_2^t c + bY_3 = 0$ and $cY_3 + Y_3^t c = 0$, which implies b = 0. We can see that a = 0 and c = 0 by taking Y_2 and Y_3 suitably. So, $\tilde{A} = 0$ and $\rho([\varphi_{-1/2}(d), X]) = 0$. By Proposition 2.3 we conclude that $g_{1/2} = (0)$.

Case F = C: We proceed analogously as in the above case. Let $\tilde{A} \in \mathfrak{g}(V)$ belong to $\rho(\mathfrak{g}_0)$. Then by (1.4) it can be easily verified that A must be of the form;

where $a \in \mathfrak{gl}(q, C)$, $b \in M(q, p - q; C)$ and $c \in \mathfrak{gl}(p - q, C)$.

Now we show $g_{1/2} = (0)$. Let $X \in g_{1/2}$. Then by (2.2) and (2.4) there exist c_{kk} $(1 \le k \le p)$, $c_{kl,t}$ $(1 \le k \le l \le p, t = 1, 2) \in W$ such that

$$\frac{1}{4}\rho([\varphi_{-1/2}(d), X]) = (\operatorname{Im} F^{ij,s}(c_{kl,t}, d))$$

for each $d \in W$, where we put $F^{ii,s} = F^{ii}$, $c_{ii,s} = c_{ii}$ and $F(u, v) = \sum F^{ij,s}(u, v)e_{ij,s}$. From our assumption it follows that $F^{ij,s} = 0$ if $j \ge q$. Therefore the linear endomorphism $\rho([\varphi_{-1/2}(d), X])$ maps the space R = H(p, C) into the proper subspace $\begin{pmatrix} H(q, C) & 0 \\ 0 & 0 \end{pmatrix}$ of R. On the other hand, there exists $A \in \mathfrak{gl}(p, C)$ of the form (3.5) such that $\rho([\varphi_{-1/2}(d), X]) = \tilde{A}$. Thus for each $Y_1 \in H(q, C)$, $Y_2 \in M(q, p - q; C)$ and $Y_3 \in H(p - q, C)$,

$$\begin{pmatrix} a & b \\ 0 & c \end{pmatrix} \begin{pmatrix} Y_1 & Y_2 \\ {}^t\overline{Y}_2 & Y_3 \end{pmatrix} + \begin{pmatrix} Y_1 & Y_2 \\ {}^t\overline{Y}_2 & Y_3 \end{pmatrix} \begin{pmatrix} {}^t\overline{a} & 0 \\ {}^t\overline{b} & {}^t\overline{c} \end{pmatrix} \text{ belongs to } \begin{pmatrix} H(q, \textbf{C}) & 0 \\ 0 & 0 \end{pmatrix}$$

that is, $aY_2 + Y_2^{t}\bar{c} + bY_3 = 0$ and $cY_3 + Y_3^{t}\bar{c} = 0$. Taking Y_2 and Y_3 suitably we have b = 0, $a = i\partial E_q$ and $c = i\partial E_{p-q}$, where θ is a real number. By considering (3.2) we get $\tilde{A} = 0$. Therefore $\rho([\varphi_{-1/2}(d), X]) = 0$ for every $d \in W$. So, by Proposition 2.3, $g_{1/2} = (0)$.

Case F = K: By the same considerations as in the above, we can see that if $\tilde{A} \in \mathfrak{g}(V)$ belongs to $\rho(\mathfrak{g}_0)$, then A must be of the form;

where $a \in \mathfrak{gl}(2q, C)$, $b \in M(2q, 2(p-q); C)$ and $c \in \mathfrak{gl}(2(p-q), C)$ satisfying $aJ_1 = J_1\bar{a}, \ cJ_2 = J_2\bar{c}, \ bJ_2 = J_1\bar{b}, \ J = \begin{pmatrix} J_1 & 0\\ 0 & J_2 \end{pmatrix}$ (cf. (3.3)).

Now we want to show $g_{1/2} = (0)$. For each $X \in g_{1/2}$, by (2.2) and (2.4) there exist c_{kk} $(1 \le k \le p)$, $c_{kl,t}$ $(1 \le k \le l \le p, 1 \le t \le 4) \in W$ such that

$$\frac{1}{4}\rho([\varphi_{-1/2}(d), X]) = (\operatorname{Im} F^{ij,s}(c_{kl,t}, d))$$

for every $d \in W$, where we put $F^{ii,s} = F^{ii}$, $c_{ii,s} = c_{ii}$ and $F(u, v) = \sum F^{ij,s}(u,v)e_{ij,s}$. By our assumption, $F^{ij,s} = 0$ if j > q. Therefore the linear endomorphism $\rho([\varphi_{-1/2}(d), X])$ maps the space $R = H(p, \mathbf{K})$ into the proper subspace $\begin{pmatrix} H(q, \mathbf{K}) & 0 \\ 0 & 0 \end{pmatrix}$ of R. On the other hand, there exists $\tilde{A} \in \rho(\mathfrak{g}_0)$ of the form (3.6) such that $\rho([\varphi_{-1/2}(d), X]) = \tilde{A}$. Thus, for each $Y_1 \in H(q, \mathbf{K}), \ Y_2 \in M(2q, 2(p-q); \mathbf{C})$ and $Y_3 \in H(p-q, \mathbf{K})$ satisfying $Y_2J_2 = J_1\overline{Y}_2$,

$$egin{pmatrix} a&b\0&c\end{pmatrix}egin{pmatrix} Y_1&Y_2\t&\overline{Y}_2&Y_3\end{pmatrix}+egin{pmatrix} Y_1&Y_2\t&\overline{Y}_2&Y_3\end{pmatrix}egin{pmatrix} tar{a}&0\t&ar{b}&tar{c}\end{pmatrix} ext{ belongs to }egin{pmatrix} H(q,m{K})&0\0&0\end{pmatrix}.$$

Hence we have

 $aY_2 + Y_2^t \bar{c} + bY_3 = 0$ and $cY_3 + Y_3^t \bar{c} = 0$.

Taking Y_2 and Y_3 suitably we get a = 0, b = 0 and c = 0. So, $\tilde{A} = 0$ and $\rho([g_{-1/2}, X]) = (0)$. From Proposition 2.3 it follows that $g_{1/2} = (0)$. q.e.d.

3.3. In this paragraph we calculate infinitesimal automorphisms of all homogeneous Siegel domains of type II over the cone $V = H^+(p, \mathbf{R})$ $(p \ge 2)$.

SIEGEL DOMAINS

Let s be a positive integer and r(t) be a non-decreasing integer valued function defined on an interval [1, s] such that $1 \leq r(1)$, $r(s) \leq p$. Let W be the complex vector space of all complex $p \times s$ -matrices $u = (u_{ij})$ such that $u_{ij} = 0$ if i > r(j). We put $F(u, v) = \frac{1}{2}(u^t \overline{v} + \overline{v}^t u)$ for $u, v \in W$. Then it is known in [10] that F is a V-hermitian form on W and the Siegel domain D(V, F) is homogeneous. We note that every homogeneous Siegel domain of type II over the cone $H^+(p, \mathbf{R})$ $(p \geq 2)$ is isomorphic to the one given here (cf. [10], [13]). It was proved by Kaneyuki and Sudo [4] that the Siegel domain D(V, F) is non-degenerate if and only if r(s) = p.

THEOREM 3.3.¹⁾ For a Siegel domain D(V, F) mentioned above, the subspaces $g_{1/2}$ and g_1 of g_h are given as follows;

 $\mathfrak{g}_{\scriptscriptstyle 1/2}=(0),$

 g_1 is isomorphic to the vector space H(p - r(s), R).

Proof. First we suppose that D(V, F) is degenerate. Then r(s) < p and the linear closure of the set $\{F(u, u); u \in W\}$ in R coincides with the proper subspace $\begin{pmatrix} H(q, \mathbf{R}) & 0 \\ 0 & 0 \end{pmatrix}$ of R, where q = r(s) (cf. [4]). Hence, by Lemma 3.2 we have $g_{1/2} = (0)$.

Now we determine g_{1}^{2} We consider the associated tube domain D' with D(V, F) (cf. (2.9)). It is known in [10] that D' is the classical domain of type (III) and the Lie algebra $g'_{h} = g'_{-1} + g'_{0} + g'_{1}$ of all infinitesimal automorphisms of D' can be identified with $\mathfrak{Sp}(p, \mathbf{R})$ as follows (cf. [10], Chap. 2, §7);

$$\begin{split} \mathbf{g}'_{h} &= \mathfrak{Sp}(p, \mathbf{R}) = \left\{ \begin{pmatrix} A & B \\ C & -{}^{t}A \end{pmatrix}; A \in \mathfrak{gl}(p, \mathbf{R}), \ B, C \in H(p, \mathbf{R}) \right\}, \\ \mathbf{g}'_{-1} &= \begin{pmatrix} 0 & H(p, \mathbf{R}) \\ 0 & 0 \end{pmatrix}, \qquad \mathbf{g}'_{1} = \begin{pmatrix} 0 & 0 \\ H(p, \mathbf{R}) & 0 \end{pmatrix}, \\ \mathbf{g}'_{0} &= \left\{ \begin{pmatrix} A & 0 \\ 0 & -{}^{t}A \end{pmatrix}; A \in \mathfrak{gl}(p, \mathbf{R}) \right\}. \end{split}$$

For each $g = \begin{pmatrix} E_p & 0 \\ C & E_p \end{pmatrix} \in \exp \mathfrak{g}'_1, g$ acts on D' by

¹⁾ If s=1, then this theorem was proved by Tanaka [14] and Murakami [8]. Nakajima [18] calculated the dimensions of $g_{1/2}$ and g_1 of this theorem by using different methods.

²⁾ This idea of determining g_1 is due to Murakami [8].

$$g: z \in D' \mapsto z(Cz + E_p)^{-1} \in D'$$

The image $\xi(g_0)$ of g_0 is given by

$$\xi(\mathfrak{g}_0) = \left\{ \begin{pmatrix} A & 0 \\ 0 & -{}^t A \end{pmatrix} \in \mathfrak{g}_0'; \ \tilde{A} \in \rho(\mathfrak{g}_0) \right\} \quad (\text{cf. (2.10)}) \ .$$

We want to show that $\xi(g_1)$ coincides with the following subspace of g'_1 ;

(3.7)
$$\left\{ \begin{pmatrix} 0 & 0 \\ Y & 0 \end{pmatrix} \in \mathfrak{g}'_1; \ Y = \begin{pmatrix} 0 & 0 \\ 0 & y \end{pmatrix}, \ y \in H(p-q, \mathbf{R}) \right\}.$$

Let $X \in \mathfrak{g}_1$. Then, since $\xi(X) \in \mathfrak{g}'_1$, there exists $Y \in H(p, \mathbb{R})$ such that $\xi(X) = \begin{pmatrix} 0 & 0 \\ Y & 0 \end{pmatrix}$. By the conditions $\xi(\mathfrak{g}_{-1}) = \mathfrak{g}'_{-1}$ and $[\mathfrak{g}_{-1}, X] \subset \mathfrak{g}_0$ we have $[\mathfrak{g}'_{-1}, \xi(X)] \subset \xi(\mathfrak{g}_0)$. Therefore, for each $B \in H(p, \mathbb{R})$, \widetilde{BY} belongs to $\rho(\mathfrak{g}_0)$. So, BY must be of the form (3.4) for each $B \in H(p, \mathbb{R})$, which implies that Y must be of the form (3.7). Conversely let Y be an element in $H(p, \mathbb{R})$ of the form (3.7). We define the map g_t $(t \in \mathbb{R})$ of D(V, F) into $\mathbb{R}^c \times W$ by

$$g_t: (z, u) \in D(V, F) \mapsto (z(tYz + E_p)^{-1}, u) \in \mathbb{R}^c \times W$$

Then we can easily verify (cf. [8]) that

$$\operatorname{Im} (z(tYz + E_p)^{-1}) = \overline{(tYz + E_p)^{-1}} \operatorname{Im} z (tYz + E_p)^{-1}$$

and

$${}^{t}\overline{(tYz+E_{p})}{}^{-1}F(u,u)(tYz+E_{p}){}^{-1}=F(u,u)$$

for each $u \in W$.

Thus, g_t is a one-parameter group of transformations of D(V, F) and g_t induces a vector field $X \in g_1$ such that $\xi(X) = \begin{pmatrix} 0 & 0 \\ Y & 0 \end{pmatrix}$. By the fact $g_{1/2} = (0)$ and Proposition 2.8 we conclude that g_1 is isomorphic to the vector space $H(p-q, \mathbf{R})$.

Now we suppose that D(V, F) is non-degenerate. If r(1) = p, then W coincides with M(p, s; C) and the Siegel domain D(V, F) is the one given in (1) of Lemma 3.1. So, we can assume that $s \ge 2$ and r(1) < p. We put $t_0 = \min\{t \in [1, s]; t \text{ is an integer such that } r(t) = p\}$ and define the complex subspaces W_i (i = 1, 2) of W by

$$W_1 = \{ u = (u_{ij}) \in W; u_{ij} = 0 \text{ if } j < t_0 \}$$

and

$$W_2 = \{u = (u_{ij}) \in W; u_{ij} = 0 \text{ if } j \ge t_0\}$$

Then it can be seen that

 $W = W_1 + W_2$ (direct sum) and $F(W_1, W_2) = (0)$.

We denote by F_i the restriction of F to the subspace W_i . Then the vector space W_1 is isomorphic to $M(p, s - t_0 + 1; C)$, and the Siegel domain $D(V, F_1)$ in $R^c \times W_1$ is isomorphic to the one given in (1) of Lemma 3.1. Thus $g_{1/2}^{(1)} = (0)$.

On the other hand, for the Siegel domain $D(V, F_2)$ in $\mathbb{R}^c \times W_2$ we can see that the linear closure of the set $\{F_2(u, u); u \in W_2\}$ in \mathbb{R} coincides with the proper subspace $\begin{pmatrix} H(q, \mathbf{R}) & 0\\ 0 & 0 \end{pmatrix}$ of \mathbb{R} , where $q = r(t_0 - 1)$. Hence by Lemma 3.2 we have $g_{1/2}^{(2)} = (0)$. From Corollary 2.7 it follows that $g_{1/2}$ = (0). Therefore by Proposition 2.2 we get $g_h = g_a$. q.e.d.

3.4. In this paragraph we consider the Siegel domains of type II over the cone $V = H^+(p, C)$ $(p \ge 2)$.

Let s_1 and s_2 be two positive integers. Let $r_i(t)$ be a non-decreasing integer valued function defined on an interval $[1, s_i]$ such that $0 \le r_i(t)$ and $r_i(t) \le p$ (i = 1, 2). We denote by $W^{(i)}$ the complex vector space of all complex $p \times s_i$ -matrices $u^{(i)} = (u_{kl}^{(i)})$ such that $u_{kl}^{(i)} = 0$ if $k > r_i(l)$. Let W be the direct sum of the vector spaces $W^{(1)}$ and $W^{(2)}$. We put $F(u, v) = \frac{1}{2}(u^{(1)t}\overline{v}^{(1)} + \overline{v}^{(2)t}u^{(2)})$ for $u = u^{(1)} + u^{(2)}, v = v^{(1)} + v^{(2)} \in W = W^{(1)} + W^{(2)}$. Then it is known in [10] that the map F is a V-hermitian form on W and the Siegel domain D(V, F) is homogeneous. Furthermore it was proved in [4] that the Siegel domain D(V, F) is non-degenerate if and only if $r_1(s_1) = p$ or $r_2(s_2) = p$.

THEOREM 3.4.3) (i) If a Siegel domain D(V, F) mentioned above is degenerate, then the subspaces $g_{1/2}$ and g_1 of g_h are given by

 $\mathfrak{g}_{1/2}=(0),$

 g_1 is isomorphic to the vector space H(p-q, C), where $q = \max(r_1(s_1), r_2(s_2))$. (ii) If $r_1(s_1) = r_2(s_2) = p$, then $g_h = g_a$.

Proof. First we consider the case (i). The linear closure of the

³⁾ Nakajima [18] calculated the dimensions of $g_{1/2}$ and g_1 of this theorem by using different methods.

set $\{F(u, u); u \in W\}$ in R coincides with the proper subspace $\begin{pmatrix} H(q, C) & 0\\ 0 & 0 \end{pmatrix}$ of R (cf. [4]). Thus, by Lemma 3.2 it follows $g_{1/2} = (0)$.

Now we determine g_1 . We consider the tube domain D' associated with D(V, F) (cf. (2.9)). Then it is known in [10] that D' is the classical domain of type (I). The Lie algebra $g'_h = g'_{-1} + g'_0 + g'_1$ of all infinitesimal automorphisms of D' can be identified with $\mathfrak{Su}(p, p)$ as follows (cf. [10], Chap. 2, § 6);

$$g'_{h} = \exists u(p, p)$$

$$= \left\{ \begin{pmatrix} A & B \\ C & -{}^{i}\overline{A} \end{pmatrix}; A \in \mathfrak{gl}(p, C), B, C \in H(p, C) \right\} \pmod{\{i\theta E_{2p}; \theta \in R\}},$$

$$\mathfrak{g}'_{-1} = \begin{pmatrix} 0 & H(p, C) \\ 0 & 0 \end{pmatrix}, \qquad \mathfrak{g}'_{1} = \begin{pmatrix} 0 & 0 \\ H(p, C) & 0 \end{pmatrix},$$

$$\mathfrak{g}'_{0} = \left\{ \begin{pmatrix} A & 0 \\ 0 & -{}^{i}\overline{A} \end{pmatrix}; A \in \mathfrak{gl}(p, C) \right\} \pmod{\{i\theta E_{2p}; \theta \in R\}}.$$
Each $g = \begin{pmatrix} E_{p} & 0 \\ C & E_{p} \end{pmatrix} (\in \exp \mathfrak{g}'_{1}) \text{ acts on } D' \text{ by}$

$$g: z \in D' \mapsto z(Cz + E_p)^{-1} \in D' .$$

The image $\xi(g_0)$ of g_0 is the subalgebra of g'_0 given by

$$\xi(\mathfrak{g}_{0}) = \left\{ egin{pmatrix} A & 0 \ 0 & -^{t}\overline{A} \end{pmatrix} \in \mathfrak{g}_{0}'; \ \widetilde{A} \in
ho(\mathfrak{g}_{0})
ight\} \, .$$

We want to show that the subspace $\xi(g_1)$ of g'_1 coincides with the following subspace of g'_1 ;

(3.8)
$$\left\{ \begin{pmatrix} 0 & 0 \\ Y & 0 \end{pmatrix}; Y = \begin{pmatrix} 0 & 0 \\ 0 & y \end{pmatrix}, y \in H(p-q, C) \right\}.$$

In fact, let $X \in \mathfrak{g}_1$. Then $\xi(X)$ belongs to \mathfrak{g}'_1 and $\xi(X)$ is represented as

$$\xi(X) = \begin{pmatrix} 0 & 0 \\ Y & 0 \end{pmatrix}$$
, $Y \in H(p, C)$.

From the condition $[g_{-1}, X] \subset g_0$ and the fact $\xi(g_{-1}) = g'_{-1}$, we have $[g'_{-1}, \xi(X)] \subset \xi(g_0)$. Thus it can be seen that, for each $B \in H(p, C)$, BY must be of the form (3.5). It follows that Y must be of the form (3.8).

Conversely let Y be an element in H(p, C) of the form (3.8). We define the map g_t $(t \in \mathbb{R})$ of D(V, F) into $\mathbb{R}^c \times W$ by

$$g_t: (z, u) \in D(V, F) \mapsto (z(tYz + E_p)^{-1}, u) \in \mathbb{R}^c \times W$$

Then we can easily verify that

$$\operatorname{Im} (z(tYz + E_p)^{-1}) = {}^{t} \overline{(tYz + E_p)^{-1}} \operatorname{Im} z (tYz + E_p)^{-1}$$

and

$${}^{t}\overline{(tYz+E_{p})}^{-1}F(u,u)(tYz+E_{p})^{-1}=F(u,u)$$

for each $u \in W$. Therefore the map g_t is a one-parameter group of transformations of D(V, F) and the vector field X induced by g_t belongs to g_1 . Furthermore we have $\xi(X) = \begin{pmatrix} 0 & 0 \\ Y & 0 \end{pmatrix}$. Considering Proposition 2.8 we can identify g_1 with the vector space H(p-q, C).

Now we consider the case (ii). If $r_1(1) = r_2(1) = p$, then the Siegel domain D(V, F) is the one given in (2) of Lemma 3.1. Thus we get $g_h = g_a$. We suppose that $r_1(1) = p$ and $r_2(1) < p$. We put $t_0 = \min\{t \in [1, s_2]; t \text{ is an integer such that } r_2(t) = p\}$ and define the subspaces W_1 and W_2 of W by

$$egin{aligned} &W_1 = \{u = u^{(1)} + u^{(2)} \in W \,;\, u^{(2)}_{ij} = 0 & ext{if } j < t_0 \} \ , \ &W_2 = \{u = u^{(1)} + u^{(2)} \in W \,;\, u^{(1)} = 0, \,\, u^{(2)}_{ij} = 0 & ext{if } j \geq t_0 \} \ . \end{aligned}$$

Then we can see that

 $W = W_1 + W_2$ (direct sum) and $F(W_1, W_2) = (0)$.

The Siegel domain $D(V, F_1)$ in $\mathbb{R}^c \times W_1$ is isomorphic to the one given in (2) of Lemma 3.1. Thus we get $g_{1/2}^{(1)} = (0)$.

For the Siegel domain $D(V, F_2)$ in $\mathbb{R}^c \times W_2$, it can be seen that the linear closure of the set $\{F_2(u, u); u \in W_2\}$ in \mathbb{R} coincides with the proper subspace $\begin{pmatrix} H(q, C) & 0 \\ 0 & 0 \end{pmatrix}$ of \mathbb{R} , where $q = r_2(t_0 - 1)$ (cf. [4]). From Lemma 3.2 it follows that $\mathfrak{g}_{1/2}^{(2)} = (0)$. By Corollary 2.7 we have $\mathfrak{g}_{1/2} = (0)$. Applying Proposition 2.2 to the non-degenerate Siegel domain D(V, F), we get $\mathfrak{g}_{\mathfrak{h}} = \mathfrak{g}_{\mathfrak{a}}$.

If $r_1(1) \neq p$ and $r_2(1) = p$, then the fact $g_h = g_a$ can be analogously obtained.

Now we suppose that $r_1(1) \neq p$ and $r_2(1) \neq p$. We put $t_i = \min\{t \in [1, s_i]; t \text{ is an integer such that } r_i(t) = p\}$ (i = 1, 2) and define the subspaces W_i (i = 1, 2) of W by

$$W_1 = \{u = u^{(1)} + u^{(2)} \in W; u^{(1)}_{ij} = 0 \text{ if } j < t_1, u^{(2)}_{ij} = 0 \text{ if } j < t_2\}$$

and

$$W_2 = \{ u = u^{\scriptscriptstyle (1)} + u^{\scriptscriptstyle (2)} \in W \, ; \, u^{\scriptscriptstyle (1)}_{ij} = 0 \, \, ext{if} \, \, j \geq t_1, \, \, u^{\scriptscriptstyle (2)}_{ij} = 0 \, \, ext{if} \, \, j \geq t_2 \} \, ,$$

Then we have

$$W = W_1 + W_2$$
 (direct sum) and $F(W_1, W_2) = (0)$.

It is easy to see that the Siegel domain $D(V, F_1)$ in $\mathbb{R}^c \times W_1$ is isomorphic to the one given in (2) of Lemma 3.1. Thus we have $\mathfrak{g}_{1/2}^{(1)} = (0)$. And for the Siegel domain $D(V, F_2)$ in $\mathbb{R}^c \times W_2$, the linear closure of the set $\{F_2(u, u); u \in W_2\}$ in \mathbb{R} coincides with the proper subspace $\begin{pmatrix} H(q, C) & 0 \\ 0 & 0 \end{pmatrix}$ of \mathbb{R} , where $q = \max(r_1(t_1 - 1), r_2(t_2 - 1))$ (cf. [4]). Hence by Lemma 3.2 we get $\mathfrak{g}_{1/2}^{(2)} = (0)$. From Corollary 2.7 it follows that $\mathfrak{g}_{1/2} = (0)$. Using Proposition 2.2 we conclude that $\mathfrak{g}_h = \mathfrak{g}_a$.

THEOREM 3.5.4) If $r_1(s_1) < p$ and $r_2(s_2) = p$, then the subspaces $g_{1/2}$ and g_1 of g_h are given as follows;

 $\mathfrak{g}_{1/2}$ is isomorphic to the real vector space $M(s_0, p-q; C)$,

 g_1 is isomorphic to the vector space H(p-q, C),

where $s_0 = s_2 - t_0 + 1$, $q = \max(r_1(s_1), r_2(t_0 - 1))$ and $t_0 = \min\{t \in [1, s_2]; t \text{ is an integer such that } r_2(t) = p\}$, and $r_2(t_0 - 1)$ means zero if $t_0 = 1$.

Proof. We define the subspaces W_1 and W_2 of W by

$$egin{aligned} W_1 = \{ u = u^{(1)} + u^{(2)} \in W \, ; \, u^{(1)} = 0, \, \, u^{(2)}_{ij} = 0 \, \, ext{if} \, \, j < t_0 \} \, , \ W_2 = \{ u = u^{(1)} + u^{(2)} \in W \, ; \, u^{(2)}_{ij} = 0 \, \, ext{if} \, \, j \geq t_0 \} \, . \end{aligned}$$

Then we can see that

$$W = W_1 + W_2$$
 (direct sum) and $F(W_1, W_2) = (0)$.

If $W_2 = (0)$, then D(V, F) is the classical domain of type (I) (cf. [10], Chap. 2).^{*)} Therefore we consider the case $W_2 \neq (0)$.

The Siegel domain $D(V, F_2)$ in $\mathbb{R}^c \times W_2$ is degenerate and the linear closure of the set $\{F_2(u, u); u \in W_2\}$ in \mathbb{R} coincides with the proper sub-

⁴⁾ Nakajima [18] calculated the dimensions of $g_{1/2}$ and g_1 of this theorem by using different methods.

^{*)} By the following decomposition of the Lie algebra $g_{h}^{(1)}$, we can see that the theorem is valid for this case.

space $\begin{pmatrix} H(q, C) & 0 \\ 0 & 0 \end{pmatrix}$ of R (cf. [4]). Hence, by Lemma 3.2 we get $g_{1/2}^{(3)} = (0)$.

On the other hand, the Siegel domain $D(V, F_1)$ in $\mathbb{R}^c \times W_1$ is the classical domain of type (I). The Lie algebra $g_{h}^{(1)}$ can be identified with $\mathfrak{Su}(s_0 + p, p)$ as follows (cf. [10], Chap. 2, § 6);

$$\begin{split} \mathfrak{g}_{h}^{(1)} &= \mathfrak{Su}(s_{0} + p, p) \\ &= \left\{ \begin{pmatrix} A_{11} & A_{12} & A_{13} \\ A_{21} & A_{22} & A_{23} \\ A_{31} & A_{32} & A_{33} \end{pmatrix}; \begin{array}{l} A_{33} &= -{}^{t}\overline{A}_{11} \in \mathfrak{gl}(p, C), \ A_{22} \in \mathfrak{u}(s_{0}) \\ A_{12} &= i \, {}^{t}\overline{A}_{23}, \ A_{32} &= -i \, {}^{t}\overline{A}_{21} \in M(p, s_{0}; C) \\ A_{13}, \ A_{31} \in H(p, C) \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}, \begin{array}{l} (\operatorname{mod} \left\{ i\partial E_{2p+s_{0}}; \ \theta \in \mathbf{R} \right\}) \\ \mathfrak{g}_{-1}^{(1)} &= \begin{pmatrix} 0 & 0 & H(p, C) \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}, \begin{array}{l} \mathfrak{g}_{-1/2}^{(1)} &= \left\{ \begin{pmatrix} 0 & C & 0 \\ 0 & 0 & i \, {}^{t}\overline{C} \\ 0 & 0 & 0 \end{pmatrix} ; \ C \in M(p, s_{0}; C) \right\}, \\ \mathfrak{g}_{1}^{(1)} &= \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ H(p, C) & 0 & 0 \end{pmatrix}, \begin{array}{l} \mathfrak{g}_{1/2}^{(1)} &= \left\{ \begin{pmatrix} 0 & 0 & 0 \\ D & 0 & 0 \\ 0 & -i \, {}^{t}\overline{D} & 0 \end{pmatrix} ; \ D \in M(s_{0}, p; C) \right\}, \\ \mathfrak{g}_{0}^{(1)} &= \left\{ \begin{pmatrix} A & 0 & 0 \\ 0 & B & 0 \\ 0 & 0 & - {}^{t}\overline{A} \end{pmatrix} ; \ A \in \mathfrak{gl}(p, C), \ B \in \mathfrak{u}(s_{0}) \right\} \end{split}$$

 $(\mod \{ i \theta E_{2p+s_0}; \theta \in \mathbf{R} \})$.

First we note that for

$$g = egin{pmatrix} E_p & 0 & 0 \ D & E_{s_0} & 0 \ -rac{1}{2}i\,{}^tar{D}D & -i\,{}^tar{D} & E_p \end{pmatrix} \in \exp \mathfrak{g}_{1/2}^{(1)}$$

and

$$h = \begin{pmatrix} E_p & 0 & 0 \\ 0 & E_{s_0} & 0 \\ Y & 0 & E_p \end{pmatrix} \in \exp \mathfrak{g}_1^{(1)},$$

g and h act on $D(V, F_1)$ as follows (cf. [10]);

$$g(z, u_1) = (z', u'_1)$$
 and $h(z, u_1) = (z(Yz + E_p)^{-1}, {}^t(Yz + E_p)^{-1}u_1)$,

where

$$z' = z(-\frac{1}{2}i \, {}^t \overline{D}Dz - i \, {}^t \overline{D}{}^t u_1 + E_p)^{-1}$$

and

$$u_{1}' = {}^{t}(-\frac{1}{2}i {}^{t}\overline{D}Dz - i {}^{t}\overline{D}{}^{t}u_{1} + E_{p})^{-1}({}^{t}z{}^{t}D + u_{1})$$

for each $(z, u_1) \in D(V, F_1)$.

Now we show that if \tilde{A} belongs to $\rho(g_0)(A \in \mathfrak{gl}(p, C))$, then A must be of the form (3.5). In fact, there exists $B \in \mathfrak{gl}(W)$ such that (\tilde{A}, B) satisfies the condition: $\tilde{A}F(u, u) = F(Bu, u) + F(u, Bu)$ for every $u \in W$. Putting $u = u_2 \in W_2$ we have

$$\tilde{A}F(u_2, u_2) = F(Bu_2, u_2) + F(u_2, Bu_2)$$

which implies

$$AF_{2}(u_{2}, u_{2}) + F_{2}(u_{2}, u_{2})^{t}\overline{A} = F_{2}((Bu_{2})_{2}, u_{2}) + F_{2}(u_{2}, (Bu_{2})_{2}) .$$

Therefore by the same considerations as in Lemma 3.2 it follows that A must be of the form (3.5). By Proposition 2.6 we have

$$\Phi_{-\lambda}(\mathfrak{g}_{-\lambda}) = \mathfrak{g}_{-\lambda}^{(1)} \qquad (\lambda = 1, \frac{1}{2})$$

and

$$arPsi_0(\mathfrak{g}_0) = \left\{ egin{pmatrix} A & 0 & 0 \ 0 & B & 0 \ 0 & 0 & -{}^t\overline{A} \end{pmatrix} \in \mathfrak{g}_0^{(1)} \, ; \, ilde{A} \in
ho(\mathfrak{g}_0)
ight\} \, .$$

Now we want to show that

(3.9)
$$\Phi_{1/2}(\mathfrak{g}_{1/2}) = \left\{ \begin{pmatrix} 0 & 0 & 0 \\ D & 0 & 0 \\ 0 & -i \, {}^t \overline{D} & 0 \end{pmatrix} \in \mathfrak{g}_{1/2}^{(1)}; D = (0, D_1), D_1 \in \mathcal{M}(s_0, p - q; C) \right\}.$$

Let $X \in \mathfrak{g}_{1/2}$. Then by (2) of Proposition 2.6 $\Phi_{1/2}(X)$ belongs to $\mathfrak{g}_{1/2}^{(1)}$. Thus, there exists $D \in M(s_0, p; C)$ such that

$$arPsi_{1/2}(X) = egin{pmatrix} 0 & 0 & 0 \ D & 0 & 0 \ 0 & -i\,{}^tar{D} & 0 \end{pmatrix}.$$

From (1) and (4) of Proposition 2.6 it follows that $[\mathfrak{g}_{-1/2}^{(1)}, \Phi_{1/2}(X)]$ belongs to $\Phi_0(\mathfrak{g}_0)$. So, for each $C \in M(p, s_0; C)$,

$$\begin{bmatrix} \begin{pmatrix} 0 & C & 0 \\ 0 & 0 & i \, {}^t \overline{C} \\ 0 & 0 & 0 \end{pmatrix}, \quad \begin{pmatrix} 0 & 0 & 0 \\ D & 0 & 0 \\ 0 & -i \, {}^t \overline{D} & 0 \end{pmatrix} \end{bmatrix} \text{ belongs to } \varPhi_0(\mathfrak{g}_0)$$

Therefore \widetilde{CD} is contained in $\rho(g_0)$. Thus CD must be of the form (3.5), which implies that D must be of the form (3.9).

Conversely let $D(\in M(s_0, p; C))$ be of the form (3.9). We define the map g_t $(t \in \mathbf{R})$ of D(V, F) into $\mathbb{R}^c \times W$ by

$$g_t: (z, u_1 + u_2) \in D(V, F) \mapsto (z', u_1' + u_2') \in R^c \times W$$
,

where

Then, by elementary calculations we can verify that

$$\operatorname{Im} z' - F(u', u') = {}^{t}\overline{Q}(\operatorname{Im} z - F(u, u))Q$$

where $Q = (-\frac{1}{2}it^2 \, {}^t\overline{D}Dz - it \, {}^t\overline{D}{}^tu_1 + E_p)^{-1}$, $u = u_1 + u_2$ and $u' = u'_1 + u'_2$. Therefore the map g_t is a one-parameter group of transformations of D(V,F). Let X be the vector field induced by g_t . Then it is obvious that X belongs to $g_{1/2}$ and $\Phi_{1/2}(X) = \begin{pmatrix} 0 & 0 & 0 \\ D & 0 & 0 \\ 0 & -i \, {}^t\overline{D} & 0 \end{pmatrix}$. By (2) of Proposition 2.6 we have proved that $g_{1/2}$ is isomorphic to the real vector space $M(s_0, p - q; C)$.

Now we determine g_1 . We can show

(3.10)
$$\Phi_{\mathbf{I}}(\mathfrak{g}_{\mathbf{I}}) = \left\{ \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ Y & 0 & 0 \end{pmatrix} \in \mathfrak{g}_{\mathbf{I}}^{(1)} ; Y = \begin{pmatrix} 0 & 0 \\ 0 & y \end{pmatrix}, y \in H(p - q; \mathbf{C}) \right\} .$$

In fact, let $X \in \mathfrak{g}_1$. Then by (3) of Proposition 2.6 $\Phi_1(X)$ belongs to $\mathfrak{g}_1^{(1)}$. So, there exists $Y \in H(p, C)$ such that

$$\varPhi_1(X) = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ Y & 0 & 0 \end{pmatrix}.$$

From the condition $[g_{-1}, X] \subset g_0$ and (4) of Proposition 2.6 it follows that for each $B \in H(p, C)$,

$$\left[\begin{pmatrix} 0 & 0 & B \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ Y & 0 & 0 \end{pmatrix}\right] \text{ belongs to } \varPhi_{0}(\mathfrak{g}_{0}) \ .$$

Hence, \widetilde{BY} belongs to $\rho(g_0)$, which implies that BY must be of the form

(3.5). Therefore Y must be of the form (3.10). Conversely let $Y(\in H(p, C))$ be of the form (3.10). We define the map h_t $(t \in \mathbb{R})$ of D(V, F) into $\mathbb{R}^c \times W$ by

$$h_t: (z, u_1 + u_2) \in D(V, F) \mapsto (z', u_1' + u_2') \in R^c \times W$$
,

where $z' = z(tYz + E_p)^{-1}$, $u'_1 = {}^t(tYz + E_p)^{-1}u_1$ and $u'_2 = u_2$. Then we can verify that

$$\operatorname{Im} z' - F(u', u') = {}^{\iota} (\overline{tYz + E_p})^{-1} (\operatorname{Im} z - F(u, u)) (tYz + E_p)^{-1}$$
 ,

where $u = u_1 + u_2$, $u' = u'_1 + u'_2 \in W$. Therefore the map h_t is a oneparameter group of transformations of D(V, F) and h_t induces a vector field $X \in \mathfrak{g}_1$ such that $\Phi_1(X) = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ Y & 0 & 0 \end{pmatrix}$. Thus, by (3) of Proposition 2.6 we have proved that \mathfrak{g}_1 is isomorphic to the vector space H(p - q, C). q.e.d.

Remark. If $r_1(s_1) = p$ and $r_2(s_2) < p$, then the Siegel domain D(V, F) is isomorphic to the one given in the above theorem. If $s_1 = s_2 = 1$, $r_1(1) = p - 1$ and $r_2(1) = p$, then the fact dim $g_{1/2} = 2$ was proved by Sudo [12] by using different methods.

3.5. In this paragraph we treat the Siegel domains of type II over the cone $V = H(p, \mathbf{K})$ $(p \ge 2)$.

Let s be a positive integer and r(t) be a non-decreasing integer valued function defined on an interval [1, s] such that $1 \le r(1), r(s) \le 2p$. We denote by W the complex vector space of all complex $2p \times s$ -matrices $u = (u_{ij})$ such that $u_{ij} = 0$ if i > r(j). We put $F(u, v) = \frac{1}{2}(u \ v = J\overline{v} \ u'J)$ for $u, v \in W$. Then it is known in [10] that the map F is a V-hermitian form on W and the Siegel domain D(V, F) is homogeneous. Furthermore it was proved in [4] that the domain D(V, F) is non-degenerate if and only if r(s) = 2p or 2p - 1.

THEOREM 3.6.5) (i) If a Siegel domain D(V, F) mensioned above is degenerate, then the subspaces $g_{1/2}$ and g_1 of g_h are given by

 $\mathfrak{g}_{1/2}=(0),$

 g_1 is isomorphic to the vector space $H(p-q, \mathbf{K})$, where q = [(r(s) + 1)/2].

⁵⁾ Nakajima [18] calculated the dimensions of $g_{1/2}$ and g_1 of this theorem by using different methods.

SIEGEL DOMAINS

(ii) If $s \ge 2$ and r(1) = 2p, or if $s \ge 3$ and there exists an integer t_0 such that $1 < t_0 \le s - 1$, $r(t_0) = 2p$ and $r(t_0 - 1) \le 2p - 2$, then $g_h = g_a$.

Proof. First we consider the case (i). The linear closure of the set $\{F(u, u); u \in W\}$ in R coincides with the proper subspace $\begin{pmatrix} H(q, K) & 0 \\ 0 & 0 \end{pmatrix}$ of R, where q = [(r(s) + 1)/2] (cf. [4]). Hence by Lemma 3.2 we have $g_{1/2} = (0)$.

We determine g_1 . Now, we consider the tube domain D' associated with D(V, F) (cf. (2.9)). Then it is known in [10] that D' is the classical domain of type (II). The Lie algebra $g'_h = g'_{-1} + g'_0 + g'_1$ of all infinitesimal automorphisms of D' can be identified with $30^*(4p)$ as follows (cf. [10], Chap. 2, §7);

$$\begin{split} \mathfrak{g}'_{h} &= \mathfrak{so}^{*}(4p) \\ &= \left\{ \begin{pmatrix} A & B \\ C & -^{t}\overline{A} \end{pmatrix}; A \in \mathfrak{gl}(2p, C), AJ = J\overline{A}, B, C \in H(p, \mathbf{K}) \right\}, \\ \mathfrak{g}'_{-1} &= \begin{pmatrix} 0 & H(p, \mathbf{K}) \\ 0 & 0 \end{pmatrix}, \qquad \mathfrak{g}'_{1} = \begin{pmatrix} 0 & 0 \\ H(p, \mathbf{K}) & 0 \end{pmatrix}, \\ \mathfrak{g}'_{0} &= \left\{ \begin{pmatrix} A & 0 \\ 0 & -^{t}\overline{A} \end{pmatrix}; A \in \mathfrak{gl}(2p, C), AJ = J\overline{A} \right\}. \end{split}$$

We note that $g = \begin{pmatrix} E_{2p} & 0 \\ Y & E_{2p} \end{pmatrix}$ ($\in \exp \mathfrak{g}_1'$) acts on D' by

$$g: z \in D' \mapsto z(Yz + E_{zp})^{-1} \in D'$$

It can be easily seen that the image $\xi(g_0)$ of g_0 (cf. (2.10)) is the following subalgebra of g'_0 ;

$$\xi(\mathfrak{g}_0) = \left\{ egin{pmatrix} A & 0 \ 0 & -^t \overline{A} \end{pmatrix} \in \mathfrak{g}_0'; \ \widetilde{A} \in
ho(\mathfrak{g}_0)
ight\} \, .$$

We want to show that $\xi(g_1)$ coincides with the following subspace of g'_1 ;

(3.11)
$$\begin{cases} \begin{pmatrix} 0 & 0 \\ Y & 0 \end{pmatrix} \in \mathfrak{g}'_1; \ Y = \begin{pmatrix} 0 & 0 \\ 0 & y \end{pmatrix}, \ y \in H(p-q, \mathbf{K}) \end{cases}$$

In fact, let $X \in \mathfrak{g}_1$. Then $\xi(X)$ belongs to \mathfrak{g}'_1 and there exists $Y \in H(p, \mathbf{K})$ such that $\xi(X) = \begin{pmatrix} 0 & 0 \\ Y & 0 \end{pmatrix}$. On the other hand, $\xi(\mathfrak{g}_{-1}) = \mathfrak{g}'_{-1}$. So, by the condition $[\mathfrak{g}_{-1}, X] \subset \mathfrak{g}_0$ we have $[\mathfrak{g}'_{-1}, \xi(X)] \subset \xi(\mathfrak{g}_0)$. Hence, for each $B \in$ $H(p, \mathbf{K}), \widetilde{BY}$ must be contained in $\rho(\mathfrak{g}_0)$. Therefore BY must be of the form (3.6). Thus, Y must be of the form (3.11). Conversely let Y be an element in $H(p, \mathbf{K})$ of the form (3.11). We define the map g_t $(t \in \mathbf{R})$ of D(V, F) into $\mathbf{R}^c \times W$ by

$$g_t: (z, u) \in D(V, F) \mapsto (z(tYz + E_{zp})^{-1}, u) \in \mathbb{R}^c \times W$$
.

Then we can verify that

$$\operatorname{Im} (z(tYz + E_{2p})^{-1}) = \overline{(tYz + E_{2p})^{-1}} \operatorname{Im} z (tYz + E_{2p})^{-1}$$

and

$$e^{\overline{(tYz+E_{2p})}^{-1}F(u,u)(tYz+E_{2p})^{-1}}=F(u,u)$$

Therefore the map g_t is a one-parameter group of transformations of D(V, F), and g_t induces a vector field $X \in g_1$ such that $\xi(X) = \begin{pmatrix} 0 & 0 \\ Y & 0 \end{pmatrix}$. Thus, by the fact $g_{1/2} = (0)$ and Proposition 2.8 g_1 can be identified with the vector space H(p - q, K).

Now we consider the case (ii). If r(1) = 2p, then the complex vector space W coincides with M(2p, s; C) and the Siegel domain D(V, F) is the one given in (3) of Lemma 3.1. So, we have $g_h = g_a$. We proceed to the second case. We define the subspaces W_1 and W_2 of W by

$$W_1 = \{ u = (u_{ij}) \in W ; u_{ij} = 0 \text{ if } j < t_0 \}$$

and

$$W_2 = \{ u = (u_{ij}) \in W \, ; \, u_{ij} = 0 \, \, ext{if} \, \, j \geq t_0 \} \; .$$

Then we have

$$W = W_1 + W_2$$
 (direct sum) and $F(W_1, W_2) = (0)$.

The vector space W_1 is isomorphic to $M(2p, s - t_0 + 1; C)$ and the Siegel domain $D(V, F_1)$ in $R^c \times W_1$ is isomorphic to the one given in (3) of Lemma 3.1. Thus, we have $g_{1/2}^{(1)} = (0)$. For the Siegel domain $D(V, F_2)$ in $R^c \times W_2$, by our assumption $r(t_0 - 1) \leq 2p - 2$ the linear closure of the set $\{F_2(u, u); u \in W_2\}$ in R coincides with the proper subspace $\begin{pmatrix} H(q, K) & 0 \\ 0 & 0 \end{pmatrix}$ of R, where $q = [(r(t_0 - 1) + 1)/2]$ (cf. [4]). Thus, by Lemma 3.2 we get $g_{1/2}^{(2)} = (0)$. It follows from Corollary 2.7 that $g_{1/2} = (0)$. Applying Proposition 2.2 to the non-degenerate Siegel domain D(V, F), we conclude that $g_h = g_a$.

SIEGEL DOMAINS

§ 4. Homogeneous Siegel domains over circular cones

In this section, we will study how to construct all homogeneous non-degenerate Siegel domains over circular cones and study their equivalence. We omit the terminology "of type II of rank 2", since we consider here exclusively N-algebras of type II of rank 2.

4.1. We will recall some of definitions and results about N-algebras and skeletons due to Kaneyuki and Tsuji [5] in the case of rank 2.

Let N be a finite dimensional algebra over the real number field. Suppose that N is the direct sum of the bigraded subspaces N_{ij} $(1 \le i)$ $(j \leq 3)$ and that N is equipped with a positive definite inner product \langle , \rangle . Let j be a linear endomorphism of the subspace $N_{13} + N_{23}$ of N. Then the triple $(N, \langle , \rangle, j)$ is called an *N*-algebra⁶ if the following conditions are satisfied;

(4.1)

 $j N_{i3} = N_{i3}$ $(i=1,2), \; j^2 = -1$, $\langle ja,jb
angle = \langle a,b
angle$ for $a,b\in N_{13}+N_{23}$, (4.2)

$$(4.3) j(a_{12}a_{23}) = a_{12}j(a_{23}) ,$$

(4.4) for every
$$a_{12}, b_{12} \in N_{12}$$
 and $a_{23}, b_{23} \in N_{23}$,
 $\langle a_{12}a_{23}, b_{12}b_{23} \rangle + \langle a_{12}b_{23}, b_{12}a_{23} \rangle = 2\langle a_{12}, b_{12} \rangle \langle a_{23}, b_{23} \rangle$

Remark. Let $(N, \langle , \rangle, j)$ be an N-algebra with dim $N_{12} \cdot \dim N_{23} \neq 0$. Then the following condition is satisfied; max (dim N_{12} , dim N_{23}) \leq dim N_{13} (cf. [5]).

A figure \mathfrak{S} in the plane is called a connected 2-skeleton (of type II) if \mathfrak{S} is one of the following \mathfrak{S}_1 or \mathfrak{S}_2 ;

This definition is slightly different from that of [5], but these are equivalent.

where n and m_1 in \mathfrak{S}_1 are positive integers, and n, m_1, m_2 in \mathfrak{S}_2 are positive integers such that max $(n, 2m_2) \leq 2m_1$.

Let $(N, \langle , \rangle, j)$ be an N-algebra. Then it is said that $(N, \langle , \rangle, j)$ corresponds to \mathfrak{S}_1 (resp. \mathfrak{S}_2) if dim $N_{12} = n$, dim $N_{23} = 0$ and dim $N_{13} = 2m_1$ (resp. dim $N_{12} = n$, dim $N_{23} = 2m_2$ and dim $N_{13} = 2m_1$). In this case, \mathfrak{S}_1 (resp. \mathfrak{S}_2) is called the *diagram* of $(N, \langle , \rangle, j)$.

Let $(N, \langle , \rangle, j)$ and $(N', \langle , \rangle', j')$ be two N-algebras which correspond to the skeletons \mathfrak{S}_1 or \mathfrak{S}_2 . Then $(N, \langle , \rangle, j)$ is said to be *isomorphic* to $(N', \langle , \rangle', j')$ if there exists a bigrade-preserving algebra isomorphism φ of N onto N' such that

(4.5)
$$\begin{array}{l} \langle \varphi(a), \varphi(b) \rangle' = \langle a, b \rangle, \ a, b \in N \\ \varphi \circ j = j' \circ \varphi \quad \text{on } N_{13} + N_{23} \end{array} .$$

It follows immediately from the above definition that if two N-algebras which correspond to the skeletons \mathfrak{S}_1 or \mathfrak{S}_2 are isomorphic, then their diagrams are the same one.

According to [5], [13], there is a one-to-one correspondence between the set of all (holomorphic) isomorphism classes of homogeneous Siegel domains of type II over circular cones and the set of all isomorphism classes of N-algebras whose diagrams are \mathfrak{S}_1 or \mathfrak{S}_2 .

In what follows, for a Siegel domain D(C(n + 2), F) corresponding to an N-algebra whose diagram is \mathfrak{S}_1 (resp. \mathfrak{S}_2), we say that D(C(n + 2), F)corresponds to \mathfrak{S}_1 (resp. \mathfrak{S}_2).

It is known in [5] that for given positive integers n, m_1 , there exists a unique homogeneous Siegel domain which corresponds to \mathfrak{S}_1 . Furthermore the explicit forms of these domains are found in [5], [10].

4.2. By the facts stated above we will consider the case of \mathfrak{S}_2 .

DEFINITION 4.1. Let $\{T_k\}_{1 \le k \le n}$ be a system of $m_1 \times m_2$ -complex matrices T_k $(1 \le k \le n)$ satisfying the condition;

(4.6)
$${}^{t}\overline{T}_{k}T_{l} + {}^{t}\overline{T}_{l}T_{k} = 2\delta_{kl}E_{m_{2}} \quad (1 \le k, l \le n) .$$

Let $\{T'_k\}_{1 \le k \le n}$ be another system of $m_1 \times m_2$ -complex matrices satisfying (4.6). Then $\{T_k\}_{1 \le k \le n}$ is said to be *equivalent* to $\{T'_k\}_{1 \le k \le n}$ if there exists a triple $(O_1, U_1, U_2) \in O(n) \times U(m_1) \times U(m_2)$ such that

(4.7)
$$(T_1, \dots, T_n) = U_1(T'_1, \dots, T'_n)(O_1 \otimes U_2) ,$$

for the $m_1 \times nm_2$ -matrices (T_1, \dots, T_n) and (T'_1, \dots, T'_n) .

From (4.7) it can be seen that the above "equivalence" is an equivalence relation in the set of all systems satisfying (4.6).

Let $\{T_k\}_{1 \le k \le n}$ be a system of $m_1 \times m_2$ -matrices satisfying (4.6). Let N_{12} be the euclidean space \mathbb{R}^n with the inner product (,) and N_{k3} be the complex euclidean space \mathbb{C}^{m_k} (k = 1, 2) with the hermitian inner product (,). Let N be the direct sum of real vector spaces N_{ij} $(1 \le i < j \le 3)$. Then for a fixed orthonormal base $\{e_k\}_{1 \le k \le n}$ of N_{12} , we define in N an inner product \langle , \rangle , a multiplication and a complex structure j as follows;

(4.8)
$$\langle a_{12} + a_{23} + a_{13}, b_{12} + b_{23} + b_{13} \rangle$$

 $= (a_{12}, b_{12}) + \operatorname{Re}(a_{23}, b_{23}) + \operatorname{Re}(a_{13}, b_{13}),$
 $a_{ij}, b_{ij} \in N_{ij}$ $(1 \le i < j \le 3)$.

(4.9) $e_k a_{23} = T_k a_{23}$ holds in N_{13} $(1 \le k \le n)$ and $a_{ij} a_{st} = 0$ if $j \ne s$.

$$(4.10) ja_{k_3} = ia_{k_3} (k = 1, 2)$$

LEMMA 4.2. With respect to (4.8), (4.9) and (4.10) the vector space N is an N-algebra which corresponds to \mathfrak{S}_2 . Every N-algebra which corresponds to \mathfrak{S}_2 can be obtained in this way by taking some system satisfying (4.6).

Proof. It can be easily seen that $(N, \langle , \rangle, j)$ satisfies all the conditions but (4.4). Using (4.6), (4.8) and (4.9), we obtain

$$egin{aligned} &\langle e_k a_{23}, e_l b_{23}
angle + \langle e_k b_{23}, e_l a_{23}
angle \ &= \operatorname{Re}\left(T_k a_{23}, T_l b_{23}\right) + \operatorname{Re}\left(T_k b_{23}, T_l a_{23}\right) \ &= \operatorname{Re}\left(({}^t \overline{T}_k T_l + {}^t \overline{T}_l T_k) a_{23}, b_{23}\right) = 2 \delta_{kl} \operatorname{Re}\left(a_{23}, b_{23}\right) \ &= 2 \langle e_k, e_l
angle \langle a_{23}, b_{23}
angle \ , \end{aligned}$$

which implies (4.4). By Remark in the paragraph 4.1 it is obvious that $(N, \langle , \rangle, j)$ corresponds to \mathfrak{S}_2 . Hence the first assertion was proved.

Conversely let $(N, \langle , \rangle, j)$ be an N-algebra which corresponds to \mathfrak{S}_2 . Then by (4.1) and (4.2) we can identify N_{13} (resp. N_{23}) with C^{m_1} (resp. C^{m_2}) as hermitian vector spaces. Let us identify N_{12} with \mathbb{R}^n as euclidean vector spaces and put $\{e_k\}_{1\leq k\leq n}$ be an orthonormal base of $N_{12} = \mathbb{R}^n$. Let L_k denote the left multiplication by e_k in N (i.e., $L_k(x) = e_k x$ for $x \in N$) $(1 \leq k \leq n)$. Then L_k restricted to the subspace N_{23}

induces a complex linear mapping of N_{23} into N_{13} (cf. (4.3)). Hence, under the identification of N_{i3} with C^{m_i} (i = 1, 2) L_k induces a complex $m_1 \times m_2$ -matrix T_k such that $T_k a_{23} = e_k a_{23}$ $(1 \le k \le n)$. On the other hand, (4.4) implies

$$L_k^*L_l + L_l^*L_k = 2\delta_{kl}1$$
,

where * is the adjoint with respect to the inner product \langle , \rangle . Thus, it follows that the system $\{T_k\}_{1 \le k \le n}$ satisfies the condition (4.6). q.e.d.

In view of the above lemma the system $\{T_k\}_{1 \le k \le n}$ is called the *ad*missible system of $(N, \langle , \rangle, j)$ with respect to the orthonormal base $\{e_k\}_{1 \le k \le n}$.

LEMMA 4.3. Let $(N, \langle , \rangle, j)$ and $(N', \langle , \rangle', j')$ be two N-algebras which correspond to \mathfrak{S}_2 . Let $\{e_k\}_{1 \leq k \leq n}$ (resp. $\{e'_k\}_{1 \leq k \leq n}$) be an arbitrary orthonormal base of N_{12} (resp. N'_{12}) and let $\{T_k\}_{1 \leq k \leq n}$ (resp. $\{T'_k\}_{1 \leq k \leq n}$) be the admissible system of $(N, \langle , \rangle, j)$ (resp. $(N', \langle , \rangle', j')$) with respect to $\{e_k\}_{1 \leq k \leq n}$ (resp. $\{e'_k\}_{1 \leq k \leq n}$). Then $(N, \langle , \rangle, j)$ is isomorphic to $(N', \langle , \rangle', j')$ if and only if $\{T_k\}_{1 \leq k \leq n}$ is equivalent to $\{T'_k\}_{1 \leq k \leq n}$.

Proof. Suppose that $(N, \langle , \rangle, j)$ is isomorphic to $(N', \langle , \rangle', j')$. Then from (4.5) it follows that there exists a triple (f, g, h) of linear isometries;

$$f: N_{12} \to N'_{12}, \quad g: N_{23} \to N'_{23}, \quad h: N_{13} \to N'_{13}$$

satisfying

$$(4.11) f(e_k)g(a_{23}) = h(e_k a_{23})$$

and

$$(4.12) h \circ j = j' \circ h \text{ on } N_{13} \text{ and } g \circ j = j' \circ g \text{ on } N_{23}.$$

Let $O = (\alpha_{lk})$ be the orthogonal matrix of degree n defined by $f(e_k) = \sum \alpha_{lk} e'_l$ $(1 \le k \le n)$. Then (4.11) implies $\sum \alpha_{lk} e'_l g(a_{23}) = h(e_k a_{23})$. Hence, we have

(4.13)
$$\sum \alpha_{lk} L'_l \circ g = h \circ L_k \qquad (1 \le k \le n) .$$

From (4.12) it follows that g (resp. h) induces a unitary matrix G (resp. H) of degree m_2 (resp. m_1). Thus, (4.13) shows that $\sum \alpha_{lk} T'_l G = H T_k$ ($1 \le k \le n$). From this we have

$$(T'_1, \cdots, T'_n)(O \otimes G) = H(T_1, \cdots, T_n)$$

SIEGEL DOMAINS

Hence, $\{T_k\}_{1 \le k \le n}$ is equivalent to $\{T'_k\}_{1 \le k \le n}$ (cf. Definition 4.1).

The converse of our assertion is analogously proved. q.e.d.

4.3. It was proved in [5] that homogeneous Siegel domains and N-algebras are in one-to-one correspondence. By considering the correspondence in detail in the rank 2 case, we will prove that every homogeneous non-degenerate Siegel domain D(C(n + 2), F) is constructed directly in terms of the system $\{T_k\}_{1 \le k \le n}$.

Let $(N, \langle , \rangle, j)$ be an N-algebra whose diagram is \mathfrak{S}_2 and let $\{T_k\}_{1 \leq k \leq n}$ be the admissible system of $(N, \langle , \rangle, j)$. Now we will construct the Siegel domain D(C(n+2), F) which corresponds to $(N, \langle , \rangle, j)$ in the sense of Corollary 2.7 in [5]. By Theorem 2.6 in [5] we can construct the T-algebra $(\mathfrak{A} = \sum_{1 \leq i, j \leq 3} \mathfrak{A}_{ij}, *, j)$ which corresponds to $(N, \langle , \rangle, j)$ as follows;

$$\mathfrak{A}_{ii} = \mathbf{R} \ (1 \leq i \leq 3), \ \mathfrak{A}_{ij} = N_{ij}, \ \mathfrak{A}_{ji} = N^{\star}_{ij} \ (1 \leq i < j \leq 3)$$

where * is an involutive linear endomorphism of N_{ij} such that $* \circ j = j \circ *$ on $N_{13} + N_{23}$. And the multiplications in \mathfrak{A} have the following properties;

(4.14)
$$\begin{aligned} a_{ij}a_{ji} &= \langle a_{ij}, a_{ji}^* \rangle & (1 \le i < j \le 3) , \\ \langle a_{13}a_{32}, e_k \rangle &= \langle a_{13}, e_k a_{32}^* \rangle = \operatorname{Re}\left(a_{13}, T_k a_{32}^*\right) , \end{aligned}$$

where $a_{ij} \in \mathfrak{A}_{ij}$.

We denote by $R(\mathfrak{A})$ the direct sum $\mathfrak{A}_{11} + \mathfrak{A}_{22} + \mathfrak{A}_{12}$ and denote by $W(\mathfrak{A})$ the direct sum $\mathfrak{A}_{13} + \mathfrak{A}_{23}$ (= $C^{m_1} + C^{m_2}$). We define the subset V(N) of $R(\mathfrak{A})$ as

$$V(N) = \{a = a_{11} + a_{22} + a_{12} \in R(\mathfrak{A}); a_{11} > 0, a_{11}a_{22} - \langle a_{12}, a_{12} \rangle > 0\}^{*}\}$$

Then we can see that V(N) is a homogeneous convex cone and actually isomorphic to C(n + 2) under the following linear isomorphim f of $R(\mathfrak{A})$ onto \mathbb{R}^{n+2} ;

$$(4.15) \qquad f: a = a_{11} + a_{22} + a_{12} \in R(\mathfrak{A}) \mapsto {}^{t}(a_{11}, a_{22}, a_{12}^{1}, \cdots, a_{12}^{n}) \in \mathbb{R}^{n+2},$$

where $a_{12} = \sum a_{12}^k e_k$.

We define the map $F: C^{m_1+m_2} \times C^{m_1+m_2} \mapsto C^{n+2}$ by putting $F = {}^t(F^1, \dots, F^{n+2})$, where

*) By $a_{11}a_{22}$ we mean a usual multiplication of real numbers $a_{ii} \in \mathfrak{A}_{ii} = \mathbb{R}(i=1,2)$.

(4.16)
$$\begin{aligned} F^{1}(u,v) &= (u_{1},v_{1}), \qquad F^{2}(u,v) = (u_{2},v_{2}), \\ F^{k+2}(u,v) &= \frac{1}{2}\{(u_{1},T_{k}v_{2}) + (T_{k}u_{2},v_{1})\} \qquad (1 \leq k \leq n) \end{aligned}$$

for $u = u_1 + u_2$, $v = v_1 + v_2 \in C^{m_1 + m_2} = C^{m_1} + C^{m_2}$. Then we have

THEOREM 4.4.⁷⁾ (i) For F above, the domain D(C(n + 2), F) is a homogeneous non-degenerate Siegel domain.

(ii) Conversely every homogeneous non-degenerate Siegel domain D(C(n + 2), F) is constructed in the above way (4.16) by taking some system $\{T_k\}_{1 \le k \le n}$ satisfying (4.6).

(iii) Furthermore suppose that D(C(n + 2), F') is constructed by $\{T'_k\}_{1 \le k \le n}$. Then D(C(n + 2), F) is holomorphically isomorphic to D(C(n + 2), F') if and only if $\{T_k\}_{1 \le k \le n}$ is equivalent to $\{T'_k\}_{1 \le k \le n}$.

Proof. First we will show that the map F defined by (4.16) is a C(n+2)-hermitian form on $C^{m_1} + C^{m_2}$ and the Siegel domain D(C(n+2), F) thus constructed is the one which corresponds to $(N, \langle , \rangle, j)$ in the sense of [5]. By Theorem A in [13], the homogeneous Siegel domain which corresponds to the T-algebra $(\mathfrak{A}, *, j)$ is given by the following V(N)-hermitian form $\tilde{F} = \sum_{1 \le k \le l \le 2} F_{kl}$ on $W(\mathfrak{A})$;

$$F_{kl}(u,v) = \frac{1}{4} \{ (u_{k3}v_{l3}^* + v_{k3}u_{l3}^*) + i(u_{k3}j(v_{l3}^*) + j(v_{k3})u_{l3}^*) \}$$

for $u = u_{13} + u_{23}$, $v = v_{13} + v_{23} \in W(\mathfrak{A})$. Hence, by (4.14) we have

$$F_{kk}(u, v) = \frac{1}{4} \{ 2 \langle u_{k3}, v_{k3} \rangle + i \langle \langle u_{k3}, j(v_{k3}^*)^* \rangle + \langle j(v_{k3}), u_{k3} \rangle) \}$$

= $\frac{1}{2} \{ \langle u_{k3}, v_{k3} \rangle + i \langle u_{k3}, j(v_{k3}) \rangle \}$ (by $* \circ j = j \circ *$)
= $\frac{1}{2} \{ \operatorname{Re}(u_{k3}, v_{k3}) + i \operatorname{Re}(u_{k3}, iv_{k3}) \}$ (by (4.8))
= $\frac{1}{2} (u_{k3}, v_{k3}) \qquad (k = 1, 2) .$

And we have

$$\langle F_{12}(u,u), e_k \rangle = \frac{1}{2} \langle u_{13}u_{23}^*, e_k \rangle + \frac{1}{4} i \langle u_{13}j(u_{23})^*, e_k \rangle + \langle j(u_{13})u_{23}^*, e_k \rangle$$

= $\frac{1}{2} \operatorname{Re}(u_{13}, T_k u_{23}) \text{ (by (4.14))},$

which implies

$$F_{12}(u,v) = \frac{1}{4} \sum_{1 \le k \le n} \{ (u_{13}, T_k v_{23}) + (T_k u_{23}, v_{13}) \} e_k$$

⁷⁾ If $m_1 = m_2$ in \mathfrak{S}_2 , then this construction is reduced to Pjateckii-Sapiro's [10].

We define the complex linear isomorphism g of $W(\mathfrak{A})$ onto $C^{m_1} + C^{m_2}$ by

$$g: u_{13} + u_{23} \in W(\mathfrak{A}) \mapsto \frac{1}{\sqrt{2}} u_{13} + \frac{1}{\sqrt{2}} u_{23} \in C^{m_1} + C^{m_2}.$$

Then we have

$$f(\tilde{F}(u, v)) = F(g(u), g(v))$$
 $(u, v \in W(\mathfrak{A}), \text{ cf. } (4.15))$

Thus, it can be seen that the map F defined by (4.16) is a C(n + 2)-hermitian form on $C^{m_1} + C^{m_2}$ and the Siegel domain D(C(n + 2), F) in $C^{n+2} \times C^{m_1+m_2}$ is linearly isomorphic to the Siegel domain $D(V(N), \tilde{F})$ in $R(\mathfrak{A})^c \times W(\mathfrak{A})$. Hence, the homogeneous Siegel domain D(C(n + 2), F) is the one which corresponds to $(N, \langle , \rangle, j)$ in the sense of Corollary 2.7 in [5]. From Lemma 4.2 it follows that every homogeneous Siegel domain of type II over the cone C(n + 2) which corresponds to the skeleton \mathfrak{S}_2 is constructed by (4.16) by taking some system $\{T_k\}_{1 \leq k \leq n}$ satisfying (4.6).

Now we will show that a homogeneous Siegel domain D(C(n + 2), F)is non-degenerate if and only if D(C(n + 2), F) corresponds to \mathfrak{S}_2 . Suppose that D(C(n + 2), F) corresponds to \mathfrak{S}_2 . Then, as was proved above, D(C(n + 2), F) is constructed by (4.16) by some system $\{T_k\}_{1 \le k \le n}$ satisfying (4.6). The subset $\{F(u, u); u \in C^{m_1} + C^{m_2}\}$ of \mathbb{R}^{n+2} contains n + 2linearly independent vectors in \mathbb{R}^{n+2} . In fact, take unit vectors $u_i \in C^{m_i}$ (i = 1, 2) and put

$$u^1 = u_1 + 0$$
, $u^2 = 0 + u_2$, $u^{k+2} = T_k u_2 + u_2 \in C^{m_1} + C^{m_2}$
 $(1 \le k \le n)$.

Then we can verify that $\{F(u^1, u^1), F(u^2, u^2), \dots, F(u^{n+2}, u^{n+2})\}$ spans \mathbb{R}^{n+2} . Suppose that D(C(n+2), F) corresponds to \mathfrak{S}_1 . Then it was proved in [5], [10] that the C(n+2)-hermitian form F on \mathbb{C}^{m_1} is given by

$$(4.17) F(u,v) = {}^{t}((u,v), 0, \cdots, 0) (u,v \in C^{m_1}) .$$

Hence D(C(n+2), F) is degenerate.

Thus, the first and the second assertions of the theorem were proved. The last assertion follows immediately from Lemma 4.3. q.e.d.

§ 5. The exceptional bounded symmetric domain of type (V)

5.1. Let $\{T_1, T_2\}$ be a system satisfying the condition (4.6) and define

an $m_1 \times 2m_2$ -matrix B as $B = (T_1, T_2)$. Then it follows from (4.6) that ${}^t\overline{T}_1T_2$ is a skew-hermitian matrix of degree m_2 , and we have

(5.1)
$${}^{t}\overline{B}B = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix} \otimes {}^{t}\overline{T}_{1}T_{2} + E_{2m_{2}}.$$

LEMMA 5.1. Let $\{T_1, T_2\}$ and $\{T'_1, T'_2\}$ be two systems satisfying (4.6). Suppose that ${}^t\overline{T}_1T_2$ (resp. ${}^t\overline{T}'_1T'_2$) has eigenvalues $\{i\lambda_1, \dots, i\lambda_{m_2}\}, \lambda_1 \leq \dots, \leq \lambda_{m_2}$ (resp. $\{i\lambda'_1, \dots, i\lambda'_{m_2}\}, \lambda'_1 \leq \dots, \leq \lambda'_{m_2}$). Then $\{T_1, T_2\}$ is equivalent to $\{T'_1, T'_2\}$ if and only if $(\lambda_1, \dots, \lambda_{m_2}) = (\lambda'_1, \dots, \lambda'_{m_2})$ or $(\lambda_1, \dots, \lambda_{m_2}) = (-\lambda'_{m_2}, \dots, -\lambda'_1)$.

Proof. Suppose that $(\lambda_1, \dots, \lambda_{m_2}) = (\lambda'_1, \dots, \lambda'_{m_2})$ or $(\lambda_1, \dots, \lambda_{m_2}) = (-\lambda'_{m_2}, \dots, -\lambda'_1)$. Then there exists $U_2 \in U(m_2)$ such that ${}^t\overline{U}_2{}^t\overline{T}_1T'_2U_2 = \varepsilon {}^t\overline{T}_1T_2, \ \varepsilon = \pm 1$. Putting $B'' = B' \left(\begin{pmatrix} 1 & 0 \\ 0 & \varepsilon \end{pmatrix} \otimes U_2 \right)$, we have ${}^t\overline{B}''B'' = {}^t\overline{B}B$. Hence, by an analogous consideration as in Lemma 4.3 in [5], there exists $U_1 \in U(m_1)$ satisfying $B = U_1B''$, that is, $B = U_1B' \left(\begin{pmatrix} 1 & 0 \\ 0 & \varepsilon \end{pmatrix} \otimes U_2 \right)$. Therefore $\{T_1, T_2\}$ is equivalent to $\{T'_1, T'_2\}$ (cf. Definition 4.1). By making use of (5.1) we can easily prove the "only if" part. q.e.d.

The following proposition is stated without proof in Pjateckii-Sapiro [10], but for the sake of completeness we prove it without using the theory of Clifford algebras.

PROPOSITION 5.2. There exists a unique homogeneous Siegel domain (up to holomorphic equivalence) which corresponds to \mathfrak{S}_2 with (n, m_1, m_2) = (6,4,4). Furthermore this Siegel domain is constructed by the following system $\{T_k\}_{1\leq k\leq 6}$;

(5.2)
$$T_{1} = E_{4}, \quad T_{2} = i \begin{pmatrix} -E_{2} & 0 \\ 0 & E_{2} \end{pmatrix}, \quad T_{3} = \begin{pmatrix} 0 & E_{2} \\ -E_{2} & 0 \end{pmatrix},$$
$$T_{4} = i \begin{pmatrix} 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & -1 \\ 1 & 0 & 0 & 0 \\ 0 & -1 & 0 & 0 \end{pmatrix}, \quad T_{5} = \begin{pmatrix} 0 & 0 & 0 & 1 \\ 0 & 0 & -1 & 0 \\ 0 & 1 & 0 & 0 \\ -1 & 0 & 0 & 0 \end{pmatrix},$$
$$T_{6} = i \begin{pmatrix} 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 \end{pmatrix}.$$

Proof. It can be easily seen that the above $\{T_k\}_{1 \le k \le 6}$ is a system satisfying (4.6) with $(n, m_1, m_2) = (6, 4, 4)$. Conversely let $\{S_k\}_{1 \le k \le 6}$ be a system satisfying (4.6) with $(n, m_1, m_2) = (6, 4, 4)$. Then, by (4.6) S_k belongs to U(4) $(1 \le k \le 6)$.

Now we will prove that $\{S_k\}_{1 \le k \le 6}$ is equivalent to $\{T_k\}_{1 \le k \le 6}$. Since $\{S_1, S_2\}$ is a system satisfying (4.6) with $(n, m_1, m_2) = (2, 4, 4)$, it follows from Lemma 5.1 that there exists a triple (O_1, U_1, U_2) in $O(2) \times U(4) \times U(4)$ such that

(5.3)
$$U_1(S_1, S_2)(O_1 \otimes U_2) = (E_4, S_2')$$
,

where $S'_2 = iE_4$, $i\begin{pmatrix} -1 & 0\\ 0 & E_3 \end{pmatrix}$ or $i\begin{pmatrix} -E_2 & 0\\ 0 & E_2 \end{pmatrix}$. Putting $O_2 = \begin{pmatrix} O_1 & 0\\ 0 & E_4 \end{pmatrix} \in O(6)$, by (5.3) we have $U_1(S_1, \dots, S_6)(O_2 \otimes U_2) = (E_4, S'_2, U_1S_3U_2, \dots, U_1S_6U_2)$. So, without loss of generality we can assume that $(S_1, \dots, S_6) = (E_4, S_2, \dots, S_6)$, where $S_2 = iE_4$ or $i\begin{pmatrix} -1 & 0\\ 0 & E_3 \end{pmatrix}$ or $i\begin{pmatrix} -E_2 & 0\\ 0 & E_2 \end{pmatrix}$. The case $S_2 = iE_4$ or $i\begin{pmatrix} -1 & 0\\ 0 & E_3 \end{pmatrix}$ does not occur. In fact, suppose that $S_2 = iE_4$. Then it can be seen that $\{E_4, iE_4, S_3\}$ does not satisfy the condition (4.6). Furthermore suppose that $S_2 = i\begin{pmatrix} -1 & 0\\ 0 & E_3 \end{pmatrix}$. Then it follows from the condition ${}^i\bar{S}_3S_k + {}^i\bar{S}_kS_3 = 0$ (k = 1, 2) that S_3 is represented as

$$S_3 = egin{pmatrix} 0 & z_1 & z_2 & z_3 \ -ar{z}_1 & 0 & 0 & 0 \ -ar{z}_2 & 0 & 0 & 0 \ -ar{z}_3 & 0 & 0 & 0 \end{pmatrix}, \; z_k \in oldsymbol{C} \qquad (1 \leq k \leq 3) \; .$$

This contradicts to the condition ${}^{t}\overline{S}_{3}S_{3} = E_{4}$. Hence S_{2} must be $T_{2} = i\begin{pmatrix} -E_{2} & 0\\ 0 & E_{2} \end{pmatrix}$. From (4.6) it follows that S_{k} ($3 \le k \le 6$) is represented as (5.4) $S_{k} = \begin{pmatrix} 0 & X_{k}\\ -{}^{t}\overline{X}_{k} & 0 \end{pmatrix}$, ${}^{t}\overline{X}_{k}X_{l} + {}^{t}\overline{X}_{l}X_{k} = 2\delta_{kl}E_{2}$ ($3 \le k, l \le 6$).

We will show that $\{S_k\}_{1 \le k \le 6}$ is equivalent to $\{S_k''\}_{1 \le k \le 6}$, where $S_1'' = T_1$, $S_2'' = T_2$ and $S_3'' = T_3$. In fact, let $U_3 = \begin{pmatrix} t \overline{X}_3 & 0 \\ 0 & E_2 \end{pmatrix}$. Then by (5.4) we have $U_3 \in U(4)$ and

$$U_{3}(S_{1}, \dots, S_{6})(E_{6} \otimes {}^{t}\overline{U}_{3}) = (U_{3}S_{1} {}^{t}\overline{U}_{3}, \dots, U_{3}S_{6} {}^{t}\overline{U}_{3})$$

= $(T_{1}, T_{2}, T_{3}, U_{3}S_{4} {}^{t}\overline{U}_{3}, U_{3}S_{5} {}^{t}\overline{U}_{3}, U_{3}S_{6} {}^{t}\overline{U}_{3})$

Thus, without loss of generality we can assume that

$$\{S_k\}_{1 \leq k \leq 6} = \{T_1, T_2, T_3, S_4, S_5, S_6\}$$
 ,

where S_k ($4 \le k \le 6$) is represented as follows;

(5.5)
$$S_k = \begin{pmatrix} 0 & Y_k \\ Y_k & 0 \end{pmatrix}$$
, ${}^t \overline{Y}_k = -Y_k \in U(2)$, $Y_k Y_l + Y_l Y_k = 0$
 $(4 \le k \ne l \le 6)$.

In view of (5.5) there exists $U_4 \in U(2)$ such that $U_4Y_4{}^t\overline{U}_4 = iE_2$ or $-iE_2$ or $i\begin{pmatrix} 1 & 0\\ 0 & -1 \end{pmatrix}$. Furthermore from the condition $Y_4Y_5 + Y_5Y_4 = 0$ it follows that $(U_4Y_4{}^t\overline{U}_4)(U_4Y_5{}^t\overline{U}_4) + (U_4Y_5{}^t\overline{U}_4)(U_4Y_4{}^t\overline{U}_4) = 0$. Therefore by the fact $U_4Y_5{}^t\overline{U}_4 \in U(2)$, $U_4Y_4{}^t\overline{U}_4$ must be $i\begin{pmatrix} 1 & 0\\ 0 & -1 \end{pmatrix}$. Putting $U_5 = \begin{pmatrix} U_4 & 0\\ 0 & U_4 \end{pmatrix} \in U(4)$, we have

$$U_5(S_1, \cdots S_6)(E_6 \otimes {}^t\overline{U}_5) = (T_1, T_2, T_3, T_4, T_5, T_6)$$
,

where T'_{5} and T'_{6} are represented as follows;

$$T'_{k} = \begin{pmatrix} 0 & Z_{k} \\ Z_{k} & 0 \end{pmatrix}$$
, ${}^{t}\bar{Z}_{k} = -Z_{k} \in U(2) \ (k = 5, 6)$, $Z_{5}Z_{6} + Z_{6}Z_{5} = 0$.

On the other hand, by the condition ${}^t\bar{T}_{_4}T'_k + {}^t\bar{T}'_kT_4 = 0$ (k = 5, 6), Z_k is represented as

$$Z_5=egin{pmatrix} 0&e^{i heta}\ -e^{-i heta}&0 \end{pmatrix}, \quad Z_6=egin{pmatrix} 0&e^{i\eta}\ -e^{-i\eta}&0 \end{pmatrix} \qquad (heta,\eta\in R) \;.$$

And by the condition $Z_5Z_6 + Z_6Z_5 = 0$ we have $e^{i(\gamma-\theta)} = \epsilon i$, $\epsilon = \pm 1$. Now we put

$$U_{\mathfrak{s}} = egin{pmatrix} e^{iartheta} & 0 & 0 & 0 \ 0 & 1 & 0 & 0 \ 0 & 0 & e^{iartheta} & 0 \ 0 & 0 & 1 \ \end{pmatrix} \in U(4) \ \ ext{ and } \ \ O_{\mathfrak{z}} = egin{pmatrix} E_{\mathfrak{s}} & 0 \ 0 & arepsilon \end{pmatrix} \in O(6) \ .$$

Then the direct verification shows that

$${}^{t}\overline{U}_{6}(T_{1}, T_{2}, T_{3}, T_{4}, T_{5}', T_{6}')(O_{3} \otimes U_{6}) = (T_{1}, \cdots, T_{6}).$$

Hence, $\{S_k\}_{1 \le k \le 6}$ is equivalent to $\{T_k\}_{1 \le k \le 6}$.

q.e.d.

5.2. We will investigate infinitesimal automorphisms of homogeneous Siegel domains over circular cones. The same notations as in the previous sections will be employed.

LEMMA 5.3. Let D(C(n + 2), F) be a homogeneous Siegel domain which corresponds to the skeleton \mathfrak{S}_2 . Then the representation ρ is irreducible if and only if $m_1 = m_2$ in \mathfrak{S}_2 .

Proof. As is known in Theorem 4.4, the C(n + 2)-hermitian form $F = {}^{t}(F^{1}, \dots, F^{n+2})$ is given by (4.16).

Suppose that $m_1 = m_2$ in \mathfrak{S}_2 . Then it was proved by Pjateckii-Sapiro ([10], Chap. 5, §18) that $\rho(\mathfrak{g}_0)$ coincides with $\mathfrak{g}(C(n+2))$. Since C(n+2) is an irreducible homogeneous self-dual cone (cf. Vinberg [17]), $\mathfrak{g}(C(n+2))$ is irreducible (cf. Rothaus [11]). Thus it follows that ρ is irreducible.

Now we will show that if $m_1 \neq m_2$ in \mathfrak{S}_2 , then ρ is not irreducible. It is known in [17] that the Lie algebra $\mathfrak{g}(C(n+2))$ consists of all matrices A of the form;

(5.6)
$$A = \begin{pmatrix} \lambda & 0 & 2a_1 & \cdots & 2a_n \\ 0 & \mu & 2b_1 & \cdots & 2b_n \\ b_1 & a_1 & & \\ \vdots & \vdots & \frac{1}{2}(\lambda + \mu)E_n + \alpha \\ b_n & a_n \end{pmatrix},$$

where λ, μ, a_k and b_k are real numbers $(1 \le k \le n)$ and α is a real skewsymmetric matrix of degree n. Let $A \in \mathfrak{g}(C(n+2))$ and $B \in \mathfrak{gl}(W)$. Then (A, B) satisfies the condition; AF(u, u) = F(Bu, u) + F(u, Bu) (for every $u \in W = C^{m_1} + C^{m_2}$) if and only if B is represented as follows;

(5.7)
$$B = \begin{pmatrix} B_1 + \frac{1}{2}\lambda E_{m_1} & B_{12} \\ B_{21} & B_2 + \frac{1}{2}\mu E_{m_2} \end{pmatrix},$$

where $B_{12} = \sum a_k T_k$, $B_{21} = \sum b_k {}^t \overline{T}_k$ and B_1 (resp. B_2) is a skew-hermitian matrix of degree m_1 (resp. m_2) satisfying the conditions

$$(5.8) B_1(T_1,\cdots,T_n) = (T_1,\cdots,T_n)(\alpha \otimes E_{m_2} + E_n \otimes B_2)$$

and

(5.9)
$$2b_k E_{m_1} = T_k B_{21} + {}^t \overline{B}_{21} {}^t \overline{T}_k \qquad (1 \le k \le n) \; .$$

TADASHI TSUJI

Now we suppose that $m_1 \neq m_2$. Then by (5.9) we have

$$2b_{k}E_{m_{1}} = \sum_{1 \leq l \leq n} b_{l}(T_{k}^{t}\bar{T}_{l} + T_{l}^{t}\bar{T}_{k}) \qquad (1 \leq k \leq n) \; .$$

From the fact ${}^{t}\overline{T}_{k}T_{k} = E_{m_{2}}$ (cf. (4.6)) it follows that there exists $U \in U(m_{1})$ satisfying $UT_{k} = \begin{pmatrix} E_{m_{2}} \\ 0 \end{pmatrix}$. By putting $UT_{l} = \begin{pmatrix} C_{l} \\ D_{l} \end{pmatrix}$ $(l \neq k)$, we have

$$\begin{aligned} 2b_k E_{m_1} &= \sum_l b_l U(T_k {}^t \overline{T}_l + T_l {}^t \overline{T}_k){}^t \overline{U} = \sum_l b_l \Big\{ \begin{pmatrix} E_{m_2} \\ 0 \end{pmatrix} ({}^t \overline{C}_l, {}^t \overline{D}_l) + \begin{pmatrix} C_l \\ D_l \end{pmatrix} (E_{m_2}, 0) \Big\} \\ &= \sum_l b_l \begin{pmatrix} C_l + {}^t \overline{C}_l & {}^t \overline{D}_l \\ D_l & 0 \end{pmatrix} \quad (1 \le k \le n) , \end{aligned}$$

which implies that $b_1 = b_2 = \cdots = b_n = 0$. From (1.7) we conclude that if $m_1 \neq m_2$, then the representation ρ is not irreducible. q.e.d.

The following theorem is stated implicitly in Pjateckii-Sapiro [10], as we remarked in the introduction.

THEOREM 5.4. The exceptional bounded symmetric domain in C^{16} of type (V) (in the sense of E. Cartan) is realized as D(C(8), F), where $F = {}^{t}(F^{1}, \dots, F^{8})$ is the following C(8)-hermitian form on C^{8} ;

$$F^{1}(u, u) = \sum_{1 \le k \le 4} |u_{k}|^{2}, \qquad F^{2}(u, u) = \sum_{1 \le k \le 4} |u_{k+4}|^{2},$$

$$F^{3}(u, u) = \operatorname{Re} \left(u_{1}\overline{u}_{5} + u_{2}\overline{u}_{6} + u_{3}\overline{u}_{7} + u_{4}\overline{u}_{8}\right),$$

$$F^{4}(u, u) = \operatorname{Im} \left(-u_{1}\overline{u}_{5} - u_{2}\overline{u}_{6} + u_{3}\overline{u}_{7} + u_{4}\overline{u}_{8}\right),$$

$$F^{5}(u, u) = \operatorname{Re} \left(u_{1}\overline{u}_{7} + u_{2}\overline{u}_{8} - u_{3}\overline{u}_{5} - u_{4}\overline{u}_{6}\right),$$

$$F^{6}(u, u) = \operatorname{Im} \left(u_{1}\overline{u}_{7} - u_{2}\overline{u}_{8} + u_{3}\overline{u}_{5} - u_{4}\overline{u}_{6}\right),$$

$$F^{7}(u, u) = \operatorname{Re} \left(u_{1}\overline{u}_{8} - u_{2}\overline{u}_{7} + u_{3}\overline{u}_{6} - u_{4}\overline{u}_{5}\right),$$

$$F^{8}(u, u) = \operatorname{Im} \left(u_{1}\overline{u}_{8} + u_{2}\overline{u}_{7} + u_{3}\overline{u}_{6} + u_{4}\overline{u}_{5}\right),$$

for $u = {}^{t}(u_1, \cdots, u_8) \in \mathbb{C}^8$.

Proof. We will show that the Lie algebra g_h of all infinitesimal automorphisms of D(C(8), F) is simple. It can be seen that D(C(8), F) is constructed by the system $\{T_k\}_{1 \le k \le 6}$ of (5.2) by using (4.16). Thus, D(C(8), F) corresponds to the skeleton \mathfrak{S}_2 with $(n, m_1, m_2) = (6, 4, 4)$. Therefore, by Lemma 5.3 the representation ρ is irreducible.

Now we want to determine g_0 . We define $A \in g(C(8))$ by putting

$$A = \begin{pmatrix} \lambda & 0 & 2\alpha_1 & \cdots & 2\alpha_6 \\ 0 & \mu & 2b_1 & \cdots & 2b_6 \\ b_1 & \alpha_1 & & & \\ \vdots & \vdots & \frac{1}{2}(\lambda + \mu)E_6 + \alpha \\ b_6 & \alpha_6 & & \end{pmatrix}, \quad \alpha = (\alpha_{kl}) \in \mathfrak{gl}(6, \mathbb{R}) , \quad t\alpha = -\alpha .$$

Then by direct computations making use of (5.7), (5.8) and (5.9) we can verify that $B \in \mathfrak{gl}(8, \mathbb{C})$ satisfies the condition; AF(u, u) = F(Bu, u) + F(u, Bu) (for every $u \in \mathbb{C}^{8}$) if and only if B is represented as follows;

(5.11)
$$B = \begin{pmatrix} B_1 + \frac{1}{2}\lambda E_4 & \sum_{1 \le k \le 6} a_k T_k \\ \sum_{1 \le k \le 6} b_k {}^t \overline{T}_k & B_2 + \frac{1}{2}\mu E_4 \end{pmatrix} + i\theta E_8,$$

where $\theta \in \mathbf{R}$, and $B_1 = (a_{\alpha\beta})$ and $B_2 = (b_{\alpha\beta})$ are skew-hermitian matrices of degree 4 given by

$$\begin{array}{l} a_{12}=b_{12}=\frac{1}{2}\{(-\alpha_{35}+\alpha_{46})-i(\alpha_{36}+\alpha_{45})\},\\ a_{13}=-\bar{b}_{24}=\frac{1}{2}\{-(\alpha_{13}+\alpha_{24})-i(\alpha_{14}-\alpha_{23})\},\\ a_{14}=\bar{b}_{23}=\frac{1}{2}\{-(\alpha_{15}+\alpha_{26})-i(\alpha_{16}-\alpha_{25})\},\\ a_{23}=\bar{b}_{14}=\frac{1}{2}\{(\alpha_{15}-\alpha_{26})-i(\alpha_{16}+\alpha_{25})\},\\ a_{24}=-\bar{b}_{13}=\frac{1}{2}\{(-\alpha_{13}+\alpha_{24})+i(\alpha_{14}+\alpha_{23})\},\\ a_{34}=b_{34}=\frac{1}{2}\{(\alpha_{35}+\alpha_{46})+i(\alpha_{36}-\alpha_{45})\},\\ a_{11}=i\alpha_{12}, \quad a_{22}=i(\alpha_{12}+\alpha_{34}+\alpha_{56}), \quad a_{33}=i\alpha_{34}, \quad a_{44}=i\alpha_{56},\\ b_{11}=0, \quad b_{22}=i(\alpha_{34}+\alpha_{56}), \quad b_{33}=i(\alpha_{12}+\alpha_{34}), \quad b_{44}=i(\alpha_{12}+\alpha_{56}). \end{array}$$

Hence, from this fact and (1.4) it follows that dim $g_0 = \dim g(C(8)) + 1 = 30$.

We want to show that $g_{1/2} \neq (0)$. We define a polynomial vector field $X = \sum_{1 \le k \le 8} p_{1,1}^k \partial/\partial z_k + \sum_{1 \le \alpha \le 8} (p_{1,0}^{\alpha} + p_{0,2}^{\alpha}) \partial/\partial w_{\alpha}$ on C^{16} as follows;

$$p_{1,1}^1 = 2z_1w_1 , \quad p_{1,1}^2 = 2\{(z_3 - iz_4)w_5 + (z_5 + iz_6)w_7 + (z_7 + iz_8)w_8\} , \\ p_{1,1}^3 = z_1w_5 + (z_3 - iz_4)w_1 + (z_5 + iz_6)w_3 + (z_7 + iz_8)w_4 , \\ p_{1,1}^4 = -iz_1w_5 + (iz_3 + z_4)w_1 + (-iz_5 + z_6)w_3 + (-iz_7 + z_8)w_4 , \\ p_{1,1}^5 = z_1w_7 + (-z_3 + iz_4)w_3 + (z_5 + iz_6)w_1 + (z_7 + iz_8)w_2 , \\ p_{1,1}^6 = iz_1w_7 + (-iz_3 - z_4)w_3 + (-iz_5 + z_6)w_1 + (iz_7 - z_8)w_2 , \\ p_{1,1}^7 = z_1w_8 + (-z_3 + iz_4)w_4 + (-z_5 - iz_6)w_2 + (z_7 + iz_8)w_1 , \\ p_{1,1}^8 = iz_1w_8 + (-iz_3 - z_4)w_4 + (-iz_5 + z_6)w_2 + (-iz_7 + z_8)w_1 ,$$

and

TADASHI TSUJI

$$egin{aligned} p_{1,0}^1 &= iz_1 \;, \;\; p_{1,0}^2 &= p_{1,0}^3 &= p_{1,0}^4 &= 0 \;, \;\; p_{1,0}^5 &= iz_3 - z_4 \;, \ p_{1,0}^6 &= 0 \;, \;\; p_{1,0}^7 &= iz_5 + z_6 \;, \;\; p_{1,0}^8 &= iz_7 + z_8 \;, \ p_{0,2}^1 &= 2w_1^2 \;, \;\; p_{0,2}^2 &= 2w_1w_2 \;, \;\; p_{0,2}^3 &= 2w_1w_3 \;, \ p_{0,2}^4 &= 2w_1w_4 \;, \;\; p_{0,2}^5 &= 2w_1w_5 \;, \ p_{0,2}^6 &= 2(w_2w_5 + w_3w_8 - w_4w_7) \;, \;\; p_{0,2}^7 &= 2w_1w_7 \;, \;\; p_{0,2}^8 &= 2w_1w_8 \;, \end{aligned}$$

Then by elementary calculations, for each $c = {}^{t}(c^{1}, \dots, c^{s}) \in C^{s}$ we have

$$[arphi_{{}^{-1/2}}\!(c),X] = \sum a'_{kl} z_l \partial/\partial z_k + \sum b'_{lphaeta} w_{eta} \partial/\partial w_{lpha}$$
 ,

where the matrices $A(c) = (a'_{kl})$ and $B(c) = (b'_{\alpha\beta})$ are given by

Hence by (5.6), A(c) belongs to $\mathfrak{g}(C(8))$. Considering (5.11) we can verify that (A(c), B(c)) satisfies the condition; A(c)F(u, u) = F(B(c)u, u) + F(u, B(c)u) for every $u \in \mathbb{C}^8$. Therefore, by (1.4) $[\varphi_{-1/2}(c), X]$ belongs to \mathfrak{g}_0 , and we have $[\mathfrak{g}_{-1/2}, X] \subset \mathfrak{g}_0$. From (1.9), thus it follows that X belongs to $\mathfrak{g}_{1/2}$ and $\mathfrak{g}_{1/2} \neq (0)$.

So, as a consequence of Theorem 2.1, we conclude that g_h is simple. By the well-known theorem of Borel-Koszul [1], [7], D(C(8), F) is holo-

morphically isomorphic to an irreducible bounded symmetric domain in C^{16} .

This bounded symmetric domain is the exceptional domain of type (V). In fact, by using (1.6) we have dim $g_h = 2(\dim g_{-1} + \dim g_{-1/2}) + \dim g_0 = 78$. And there is no classical irreducible bounded symmetric domain in C^{16} whose Lie algebra of all infinitesimal automorphisms is of dimension 78 (cf. e.g., Helgason [2]). q.e.d.

Remark. The form F given by (5.10) is different from that of the note [15]. But it can be seen that this domain is isomorphic to that of [15] under a linear transformation (cf. Proposition 5.2).

§6. Automorphisms of Siegel domains over circular cones

In this section, we calculate infinitesimal automorphisms of homogeneous Siegel domains over circular cones.

The Lie algebra g_h of a homogeneous non-degenerate Siegel domain D(C(n+2), F) for which the representation ρ is irreducible is determined completely by the following theorem.

THEOREM 6.1. The Lie algebra g_h of all infinitesimal automorphisms of a homogeneous Siegel domain D(C(n + 2), F) which corresponds to the skeleton \mathfrak{S}_2 with $m_1 = m_2(=m)$ is given as follows;

(n, m)	gr gr
(2, <i>m</i>)	(i) $g_h = \mathfrak{su}(m+2,2)$ provided that $D(C(4), F)$ is constructed by the system $\{T_1, T_2\}$ $(T_1, T_2 \in U(m))$ such that $\overline{T}_1 T_2$ has $\{i, \dots, i\}$ or $\{-i, \dots, -i\}$ as its eigenvalues. (ii) $g_h = g_a$, otherwise.
(4,2)	g _h =ŝo*(10)
(6,4)	$g_{\hbar} = \epsilon_6(-14)$
otherwise	gr=ga

Proof. Pjateckii-Sapiro ([10], Chap. 2) gave case by case the explicit realizations of all classical domains. From his realizations it follows that if D(C(n + 2), F) is classical, then (n, m) = (2, m) or (4, 2).

Suppose that (n, m) = (2, m). Then it was proved in [10] that D(C(4), F) is a symmetric domain if and only if ${}^{t}\overline{T}_{1}T_{2}$ has $\{i, \dots, i\}$ or

 $\{-i, \dots, -i\}$ as its eigenvalues and that in this case D(C(4), F) is the classical domain in C^{4+2m} of type (I).

Suppose that (n, m) = (4, 2). Then there exists a unique homogeneous Siegel domain which corresponds to the skeleton \mathfrak{S}_2 with $(n, m_1, m_2) =$ (4, 2, 2) (cf. [10], [16]). And it was proved in [10] that this domain is the classical domain in C^{10} of type (II).

Suppose that (n, m) = (6, 4). Then there exists a unique homogeneous Siegel domain which corresponds to the skeleton \mathfrak{S}_2 with $(n, m_1, m_2) =$ (6, 4, 4) (Proposition 5.2) and this domain is the exceptional domain in C^{16} of type (V) (Theorem 5.4).

By the uniqueness theorem of realization (cf. Kaneyuki [3]), there exists no symmetric Siegel domain of type II over circular cones other than the domains listed above (cf. [10], and for the exceptional domain of type (VI), see e.g., Vinberg [17]). Thus, our assertion follows from Theorem 2.1 and Lemma 5.3. q.e.d.

Now we determine infinitesimal automorphisms of homogeneous degenerate Siegel domains of type II over C(n + 2). As we stated in section 4, every homogeneous degenerate Siegel domain D(C(n + 2), F) in $C^{n+2} \times C^m$ (m > 0) can be constructed by the following C(n + 2)-hermitian form F on C^m ;

$$F(u, v) = {}^{t}((u, v), 0, \dots, 0), \quad u, v \in C^{m} \text{ (cf. } (4.17))$$

PROPOSITION 6.2. For the homogeneous degenerate Siegel domain D(C(n + 2), F) in $\mathbb{C}^{n+2} \times \mathbb{C}^m$ (m > 0), the subspaces $g_{1/2}$ and g_1 of g_h are given by

$$\mathfrak{g}_{1/2} = (0) \,\,,$$
 $\mathfrak{g}_1 = \left\{ a \left(\sum_{1 \le k \le n} z_{k+2}^2 \partial / \partial z_1 + z_2^2 \partial / \partial z_2 + \sum_{1 \le k \le n} z_2 z_{k+2} \partial / \partial z_{k+2} \right); \, a \in \mathbf{R} \right\} \,.$

Proof. First we will determine g_0 . Let $A \in g(C(n+2))$ and $B \in gl(m, C)$. Then it can be easily verified that (A, B) satisfies the condition; AF(u, u) = F(Bu, u) + F(u, Bu) (for each $u \in C^m$) if and only if (A, B) is represented as

(6.1)
$$A = \begin{pmatrix} \lambda & 0 & 2a_1 & \cdots & 2a_n \\ 0 & \mu & 0 & \cdots & 0 \\ 0 & a_1 & & & \\ \vdots & \vdots & \frac{1}{2}(\lambda + \mu)E_n + \alpha \\ 0 & a_n & & \end{pmatrix}, \quad B + {}^t\overline{B} = \lambda E_m ,$$

where λ, μ, a_k $(1 \le k \le n)$ are real numbers and α is a real skew-symmetric matrix of degree n (cf. (5.6)). Thus, by (1.4) we have determined g_0 .

Now we show $g_{1/2} = (0)$. In view of Corollary 2.7 we can assume that m = 1. Let $X \in g_{1/2}$. Then by (2.2), (2.3) and (2.4), there exist $c_l, b \in C$ $(1 \leq l \leq n + 2)$ satisfying the following conditions;

(6.2) X is represented as $X = 2i \sum \overline{c}_i z_i w \partial \partial z_1 + \sum c_i z_i \partial \partial w + b w^2 \partial \partial w$,

(6.3) $b = 2i\bar{c}_1$,

(6.4) for each $d \in C$, the matrix

$\int \operatorname{Im} (c_1)$	\vec{d}) Im $(c_2\vec{d})$	• • •	$\operatorname{Im}(c_{n+2}\overline{d})$	
0	0	• • •	0	
	:		:	
			:	
l 0	0	•••	0 J	

belongs to g(C(n+2)).

Hence, by (5.6) and (6.4), $\text{Im}(c_l \bar{d}) = 0$ for each $d \in C$ $(1 \le l \le n + 2)$. So, $c_l = 0$ $(1 \le l \le n + 2)$. From (6.2) and (6.3) it follows that X = 0. Thus, $g_{1/2} = (0)$ was proved.

Now we determine g_1 . By (1.3) we have

$$\mathfrak{g}_{-1/2} = \{2i(w,c)\partial/\partial z_1 + \sum c^{\alpha}\partial/\partial w_{\alpha}; c = \sum c^{\alpha}f_{\alpha} \in C^m\}$$

Let $X = \sum p_{2,0}^k \partial/\partial z_k + \sum p_{1,1}^a \partial/\partial w_a \in \mathfrak{g}_1$. Then by the condition $[\mathfrak{g}_{-1/2}, X] = (0)$, we get $\partial p_{2,0}^k \partial/\partial z_1 = 0$ $(1 \le k \le n+2)$ and $p_{1,1}^a = 0$ $(1 \le a \le m)$. We write $p_{2,0}^k = \sum a_{ij}^k z_i z_j$ $(a_{ij}^k = a_{ji}^k)$. Then we have

(6.5)
$$a_{1j}^k = a_{j1}^k = 0$$
 $(1 \le j, k \le n+2)$.

For each i $(1 \le i \le n+2)$, we define the $(n+2) \times (n+2)$ -matrix A_i by

(6.6)
$$A_{i} = \begin{pmatrix} a_{i_{1}}^{1} & a_{i_{2}}^{1} & \cdots & a_{i_{n+2}}^{1} \\ a_{i_{1}}^{2} & a_{i_{2}}^{2} & \cdots & a_{i_{n+2}}^{2} \\ \vdots & \vdots & \vdots \\ a_{i_{1}}^{n+2} & a_{i_{2}}^{n+2} & \cdots & a_{i_{n+2}}^{n+2} \end{pmatrix}$$

Then we have

$$\frac{1}{2}\rho([\partial/\partial z_i, X]) = A_i$$
 and $\sigma([\partial/\partial z_i, X]) = 0$.

By (1.10) and (1.4), $(A_i, 0)$ must be of the form (6.1). Comparing (6.6) with (6.1), we can see that the real numbers a_{ij}^k $(1 \le i, j, k \le n+2)$ must satisfy the following relations;

$$(6.7) \quad a_{ik+2}^1 = 2a_{i2}^{k+2} \quad (1 \le i \le n+2, \ 1 \le k \le n) ,$$

- (6.8) $a_{i2}^{\scriptscriptstyle 1} = 0$ $(1 \le i \le n+2)$,
- $(6.9) \quad a_{i2}^2 = 2a_{ik+2}^{k+2} \quad (1 \le i \le n+2, \ 1 \le k \le n) ,$
- $(6.10) \quad a_{ik+2}^{2} = 0 \qquad (1 \leq i \leq n+2, \ 1 \leq k \leq n) ,$
- $(6.11) \quad a_{il+2}^{k+2} = -a_{ik+2}^{l+2} \qquad (1 \le i \le n+2, \ 1 \le k \ne l \le n) \ .$

By (6.5) we have $a_{i1}^1 = a_{1i}^1 = 0$ ($1 \le i \le n + 2$). Applying (6.7) and (6.11) for $1 \le k \ne l \le n$, we get

$$a_{k+2l+2}^1 = 2a_{k+22}^{l+2} = 2a_{2k+2}^{l+2} = -2a_{2l+2}^{k+2} = -2a_{l+22}^{k+2} = -a_{l+2k+2}^1 = -a_{k+2l+2}^1$$
 ,

which implies $a_{k+2l+2}^1 = 0$. Therefore, considering (6.8) we showed

(6.12)
$$a_{ij}^1 = 0$$
 if $1 \le i \le 2$ or $1 \le j \le 2$ or $3 \le i \ne j \le n+2$.

By (6.5) and (6.10) we get

(6.13)
$$a_{ij}^2 = 0$$
 if $(i, j) \neq (2, 2)$

From (6.5) we have $a_{1i}^{k+2} = a_{i1}^{k+2} = 0$ $(1 \le i \le n+2)$ and by (6.7), (6.12) we can see $a_{2i}^{k+2} = a_{i2}^{k+2} = 0$ $(i = 2 \text{ or } 3 \le i \ne k+2 \le n+2)$. Furthermore if $1 \le i \ne j \ne k \ne i \le n$, then by (6.11) a_{i+2j+2}^{k+2} is skew-symmetric with respect to the indices j, k and symmetric with respect to the indices i, j. So, $a_{i+2j+2}^{k+2} = 0$ if $1 \le i \ne j \ne k \ne i \le n$. Hence by (6.9), (6.11) we have

(6.14)
$$a_{ij}^{k+2} = 0$$
 if $(i, j) \neq (2, k+2)$ and $(i, j) \neq (k+2, 2)$ $(1 \le k \le n)$.

On the other hand, we can see

(6.15)
$$a_{22}^2 = 2a_{2k+2}^{k+2}$$
 (by (6.9))
 $= a_{k+2k+2}^1$ (by (6.7)) $(1 \le k \le n)$

As a consequence of (6.12)-(6.15), it follows that X must be represented by

(6.16)
$$X = a_{22}^2 \left(\sum_{1 \le k \le n} z_{k+2}^2 \partial / \partial z_1 + z_2^2 \partial / \partial z_2 + \sum_{1 \le k \le n} z_2 z_{k+2} \partial / \partial z_{k+2} \right).$$

Conversely if X is a polynomial vector field of the form (6.16), then it can be easily seen that X satisfies all the conditions in (1.10). Thus, the subspace g_1 of g_h consists of all polynomial vector fields of the form (6.16). q.e.d.

Finally we consider the homogeneous non-degenerate Siegel domains which correspond to the skeleton \mathfrak{S}_2 with $n \leq 2m_2 < 2m_1$. Let $\{T_k\}_{1 \leq k \leq n}$ be a system of $m_2 \times m_2$ -matrices satisfying the condition (4.6). We put $T'_k = \binom{T_k}{0}$, where 0 means the $(m_1 - m_2) \times m_2$ -zero matrix. Then it is easy to see that the system $\{T'_k\}_{1 \leq k \leq n}$ satisfies the condition (4.6) and corresponds to this skeleton \mathfrak{S}_2 . We denote by D(C(n + 2), F) the Siegel domain in $C^{n+2} \times C^{m_1+m_2}$ which is constructed by the system $\{T'_k\}_{1 \leq k \leq n}$. Then, by (4.16) the C(n + 2)-hermitian form F is given by

(6.17)
$$\begin{aligned} F^{1}(u,v) &= (u_{1},v_{1}) + (u_{3},v_{3}), \qquad F^{2}(u,v) &= (u_{2},v_{2}), \\ F^{k+2}(u,v) &= \frac{1}{2}\{(u_{1},T_{k}v_{2}) + (T_{k}u_{2},v_{1})\} \qquad (1 \leq k \leq n) \end{aligned}$$

for $u = (u_1 + u_3) + u_2$, $v = (v_1 + v_3) + v_2 \in C^{m_1 + m_2} = (C^{m_2} + C^{m_1 - m_2}) + C^{m_2}$.

PROPOSITION 6.3. For the Siegel domain D(C(n + 2), F) given by (6.17), if $n \neq 2$, $(n, m_2) \neq (4, 2)$ and $(n, m_2) \neq (6, 4)$, then $g_h = g_a$. If n = 2 and ${}^t\overline{T}_1T_2$ does not have $\{i, \dots, i\}$ and $\{-i, \dots, -i\}$ as its eigenvalues, then $g_h = g_a$.

Proof. We put the subspaces W_1 and W_2 of $C^{m_1+m_2} = (C^{m_1} + C^{m_1-m_2}) + C^{m_2}$ by $W_1 = C^{m_2} + C^{m_2}$ and $W_2 = C^{m_1-m_2}$, respectively. Then we can see that $F(W_1, W_2) = (0)$. The Siegel domain $D(C(n + 2), F_2)$ in $C^{n+2} \times W_2$ is the one given in Proposition 6.2. Therefore we have $g_{1/2}^{(2)} = (0)$. On the other hand, the Siegel domain $D(C(n + 2), F_1)$ in $C^{n+2} \times W_1$ is the one given in Theorem 6.1. Thus, by Theorem 6.1 we get $g_{1/2}^{(1)} = (0)$. From Corollary 2.7 it follows that $g_{1/2} = (0)$. Applying Proposition 2.2 to the non-degenerate Siegel domain D(C(n + 2), F), we conclude that $g_h = g_a$.

BIBLIOGRAPHY

- [1] A. Borel, Kählerian coset spaces of semi-simple Lie groups, Proc. Nat. Acad. Sci. U.S.A., 40 (1954), 1147-1151.
- [2] S. Helgason, Differential Geometry and Symmetric Spaces, Academic Press, New York, 1962.
- [3] S. Kaneyuki, On the automorphism groups of homogeneous bounded domains, J. Fac. Sci. Univ. Tokyo, 14 (1967), 89-130.

TADASHI TSUJI

- [4] S. Kaneyuki and M. Sudo, On Silov boundaries of Siegel domains, J. Fac. Sci. Univ. Tokyo, 15 (1968), 131–146.
- [5] S. Kaneyuki and T. Tsuji, Classification of homogeneous bounded domains of lower dimension, (to appear in Nagoya Math. J., 53).
- [6] W. Kaup, Y. Matsushima and T. Ochiai, On the automorphisms and equivalences of generalized Siegel domains, Amer. J. Math., 92 (1970), 475-498.
- [7] J. L. Koszul, Sur la forme hermitienne canonique des espaces homogènes complexes, Canad. J. Math., 7 (1955), 562-576.
- [8] S. Murakami, On Automorphisms of Siegel Domains, Lecture Notes in Math., 286, Springer, 1972.
- [9] K. Nakajima, Some studies on Siegel domains, (preprint).
- [10] I. I. Pjateckii-Sapiro, Géométrie des Domaines Classiques et Théorie des Fonctions Automorphes, French translation, Dunod, Paris, 1966.
- [11] O. S. Rothaus, Domains of positivity, Abh. Math. Sem. Univ. Hamburg, 24 (1960), 189-235.
- [12] M. Sudo, On infinitesimal automorphisms of Siegel domains over classical cones, (preprint).
- [13] M. Takeuchi, On infinitesimal affine automorphisms of Siegel domains, Proc. Japan Acad., 45 (1969), 590-594.
- [14] N. Tanaka, On infinitesimal automorphisms of Siegel domains, J. Math. Soc. Japan, 22 (1970), 180-212.
- [15] T. Tsuji, On infinitesimal automorphisms and homogeneous Siegel domains over circular cones, Proc. Japan Acad., 49 (1973), 390–393.
- [16] T. Tsuji, Classification of homogeneous Siegel domains of type II of dimensions 9 and 10, Proc. Japan Acad., 49 (1973), 394-396.
- [17] E. B. Vinberg, The structure of the group of automorphisms of a homogeneous convex cone, Trans. Moscow Math. Soc., 13 (1965), 63-93.
- [18] K. Nakajima, Symmetric spaces associated with Siegel domains, (preprint).

Mie University