ON THE ZEROS OF A CONFORMAL VECTOR FIELD

DAVID E. BLAIR

1. Introduction

In [1] S. Kobayashi showed that the connected components of the set of zeros of a Killing vector field on a Riemannian manifold \((M^n, g)\) are totally geodesic submanifolds of \((M^n, g)\) of even codimension including the case of isolated singular points. The purpose of this short note is to give a simple proof of the corresponding result for conformal vector fields on compact Riemannian manifolds. In particular we prove the following

Theorem. Let \((M^n, g)\) be a compact Riemannian manifold of dimension \(n \geq 2\). Let \(F\) be the set of zeros of a conformal vector field \(\xi\) and let \(F = \bigcup V_i\) where the \(V_i\)'s are the connected components of \(F\). Then each \(V_i\) is either an umbilical submanifold of \((M^n, g)\) of even codimension including the case of isolated singular points or an isolated singular point of a conformal non-Killing vector field on a Euclidean sphere.

The idea of our proof is to reduce the problem to Kobayashi's case by a simple application of a theorem of M. Obata characterizing a sphere to conformality. In Section 2 we discuss Obata's result and then prove our theorem in Section 3.

2. Preliminaries

A Riemannian metric \(\bar{g}\) is said to be conformal to \(g\) if there exists a smooth function \(\rho\) on \(M^n\) such that \(\bar{g} = e^{2\rho}g\). Let \(f: M^n \to M^n\) be a diffeomorphism of \(M^n\) onto itself; we say \(f\) is a conformal diffeomorphism if \(f^*g\) is conformal to \(g\).

Let \(C(M^n, g)\) denote the Lie group of all conformal diffeomorphisms of \((M^n, g)\) and \(C_0(M^n, g)\) the connected component of the identity. A

Received July 19, 1973.

(*) Partially supported by NSF Grant GP-36684.
subgroup G of $C(M^n, g)$ is said to be essential if it does not become a group of isometries under any conformal change of metric, and a conformal vector field is said to be essential if its one-parameter group is essential. In [2] and [3] M. Obata obtained the following results.

THEOREM (Obata [2]). Let (M^n, g) be a compact Riemannian manifold of dimension $n > 2$. Then $C_0(M^n, g)$ is essential if and only if (M^n, g) is conformally diffeomorphic to a Euclidean sphere.

THEOREM (Obata [3]). Let ξ be an essential conformal vector field on a Euclidean sphere. Then ξ has either exactly one or exactly two singular points.

3. **Proof of the Theorem**

The proof of the theorem is, for $n > 2$, by cases using Obata’s result. If $C_0(M^n, g)$ is inessential, then there exists a conformal change of metric, say $\bar{g} = e^{2\xi}g$, such that $C_0(M^n, g)$ is a group of isometries with respect to \bar{g}. Thus given a conformal vector field ξ on (M^n, g), ξ is Killing on (M^n, \bar{g}) and hence by Kobayashi’s Theorem each V_t is a totally geodesic submanifold of (M^n, \bar{g}) of even codimension. Thus it remains only to show that V_t is umbilical in (M^n, g). To this end let \bar{V} and \bar{F} be the Riemannian connexions of g and \bar{g} respectively and let $P = \text{grad } \rho$. Then

\[\bar{V}_XY = F_XY + (X\rho)Y + (Y\rho)X - g(X, Y)P . \]

(3.1)

Now let ι denote the imbedding of V_t in M^n. Considering V_t as a submanifold of (M^n, g) with g' and F' denoting the induced Riemannian metric and connexion, choose a local orthonormal frame η_1, \ldots, η_k of normal vector fields on V_t, $k = \text{codim } V_t$, and let h^* denote the corresponding second fundamental forms. Then the Gauss equation is

\[\bar{V}_{\iota_*X}\iota_*Y = \iota_*F'_X Y + h^*(X, Y)\eta_* \]

(3.2)

summed on α. Considering V_t as a submanifold of (M^n, \bar{g}) with \bar{F}' denoting the induced Riemannian connexion, the Gauss equation is

\[\bar{V}_{\iota_*X}\iota_*Y = \iota_*\bar{F}'_X Y . \]

(3.3)

Thus using (3.1), (3.2) and (3.3) we have

\[\iota_*F'_X Y + h^*(X, Y)\eta_* = \iota_*\bar{F}'_X Y - (\iota_*X\rho)\iota_*Y - (\iota_*Y\rho)\iota_*X + g(\iota_*X, \iota_*Y)P . \]
Now taking the g inner product with η_β we have

$$h^\beta(X, Y) = (\eta_\beta P)g'(X, Y)$$

and hence that V_ξ is umbilical in (M^n, g).

If on the other hand $C_\xi(M^n, g)$ is essential then (M^n, g) is conformally diffeomorphic to a Euclidean sphere, but a conformal vector field remains conformal under a conformal change of metric. Thus if a conformal vector field ξ is essential, its zeros are isolated. If ξ is inessential then again there exists a conformal change of metric with respect to which ξ becomes a Killing vector field.

Finally if $n = 2$, there exist local isothermal parameters with respect to which (M^2, g) becomes a Hermitian (complex) manifold. If now ξ is a conformal vector field on (M^2, g), the conformal transformations of its oneparameter group are given by analytic functions. Thus by the identity theorem for analytic functions, their fixed points are isolated and hence the zeros of ξ are isolated.

References

Michigan State University