D. E. Blair Nagoya Math. J. Vol. 55 (1974) 1-3

ON THE ZEROS OF A CONFORMAL VECTOR FIELD

DAVID E. BLAIR^(*)

1. Introduction

In [1] S. Kobayashi showed that the connected components of the set of zeros of a Killing vector field on a Riemannian manifold (M^n, g) are totally geodesic submanifolds of (M^n, g) of even codimension including the case of isolated singular points. The purpose of this short note is to give a simple proof of the corresponding result for conformal vector fields on compact Riemannian manifolds. In particular we prove the following

THEOREM. Let (M^n, g) be a compact Riemannian manifold of dimension $n \ge 2$. Let F be the set of zeros of a conformal vector field ξ and let $F = \bigcup V_i$ where the V_i 's are the connected components of F. Then each V_i is either an umbilical submanifold of (M^n, g) of even codimension including the case of isolated singular points or an isolated singular point of a conformal non-Killing vector field on a Euclidean sphere.

The idea of our proof is to reduce the problem to Kobayashi's case by a simple application of a theorem of M. Obata characterizing a sphere to conformality. In Section 2 we discuss Obata's result and then prove our theorem in Section 3.

2. Preliminaries

A Riemannian metric \bar{g} is said to be conformal to g if there exists a smooth function ρ on M^n such that $\bar{g} = e^{2\rho}g$. Let $f: M^n \to M^n$ be a diffeomorphism of M^n onto itself; we say f is a conformal diffeomorphism if f^*g is conformal to g.

Let $C(M^n, g)$ denote the Lie group of all conformal diffeomorphisms of (M^n, g) and $C_0(M^n, g)$ the connected component of the identity. A

Received July 19, 1973.

^(*) Partially supported by NSF Grant GP-36684.

DAVID E. BLAIR

subgroup G of $C(M^n, g)$ is said to be *essential* if it does not become a group of isometries under any conformal change of metric, and a conformal vector field is said to be *essential* if its one-parameter group is essential. In [2] and [3] M. Obata obtained the following results.

THEOREM (Obata [2]). Let (M^n, g) be a compact Riemannian manifold of dimension n > 2. Then $C_0(M^n, g)$ is essential if and only if (M^n, g) is conformally diffeomorphic to a Euclidean sphere.

THEOREM (Obata [3]). Let ξ be an essential conformal vector field on a Euclidean sphere. Then ξ has either exactly one or exactly two singular points.

3. Proof of the Theorem

The proof of the theorem is, for n > 2, by cases using Obata's result. If $C_0(M^n, g)$ is inessential, then there exists a conformal change of metric, say $\bar{g} = e^{2\rho}g$, such that $C_0(M^n, g)$ is a group of isometries with respect to \bar{g} . Thus given a conformal vector field ξ on (M^n, g) , ξ is Killing on (M^n, \bar{g}) and hence by Kobayashi's Theorem each V_i is a totally geodesic submanifold of (M^n, \bar{g}) of even codimension. Thus it remains only to show that V_i is umbilical in (M^n, g) . To this end let \bar{V} and \bar{V} be the Riemannian connexions of g and \bar{g} respectively and let $P = \operatorname{grad} \rho$. Then

$$\overline{\mathcal{V}}_{\mathcal{X}}Y = \mathcal{V}_{\mathcal{X}}Y + (X\rho)Y + (Y\rho)X - g(X,Y)P .$$
(3.1)

Now let ι denote the imbedding of V_i in M^n . Considering V_i as a submanifold of (M^n, g) with g' and $\overline{V'}$ denoting the induced Riemannian metric and connexion, choose a local orthonormal frame η_1, \dots, η_k of normal vector fields on V_i , $k = \operatorname{codim} V_i$, and let h^{α} denote the corresponding second fundamental forms. Then the Gauss equation is

$$\nabla_{\iota_*X}\iota_*Y = \iota_*\nabla_X'Y + h^{\alpha}(X,Y)\eta_{\alpha} \tag{3.2}$$

summed on α . Considering V_i as a submanifold of (M^n, \bar{g}) with \bar{V}' denoting the induced Riemannian connexion, the Gauss equation is

$$\bar{\mathcal{V}}\iota_{*\mathcal{I}}\iota_{*}Y = \iota_{*}\bar{\mathcal{V}}_{\mathcal{I}}Y . \tag{3.3}$$

Thus using (3.1), (3.2) and (3.3) we have

$$\iota_* \overline{\nu}'_X Y + h^{\alpha}(X, Y) \eta_{\alpha} = \iota_* \overline{\nu}'_X Y - (\iota_* X \rho) \iota_* Y - (\iota_* Y \rho) \iota_* X + g(\iota_* X, \iota_* Y) P$$

Now taking the g inner product with η_{β} we have

$$h^{\mathfrak{s}}(X,Y) = (\eta_{\mathfrak{s}}\rho)g'(X,Y)$$

and hence that V_i is umbilical in (M^n, g) .

If on the other hand $C_0(M^n, g)$ is essential then (M^n, g) is conformally diffeomorphic to a Euclidean sphere, but a conformal vector field remains conformal under a conformal change of metric. Thus if a conformal vector field ξ is essential, its zeros are isolated. If ξ is inessential then again there exists a conformal change of metric with respect to which ξ becomes a Killing vector field.

Finally if n = 2, there exist local isothermal parameters with respect to which (M^2, g) becomes a Hermitian (complex) manifold. If now ξ is a conformal vector field on (M^2, g) , the conformal transformations of its oneparameter group are given by analytic functions. Thus by the identity theorem for analytic functions, their fixed points are isolated and hence the zeros of ξ are isolated

REFERENCES

- [1] S. Kobayashi, Fixed points of isometries, Nagoya Math. J. 13 (1958) 63-68.
- [2] M. Obata, The conjectures on conformal transformations of Riemannian manifolds, J. Diff. Geom. 6 (1971) 247-258.
- [3] M. Obata, Conformal transformations of Riemannian manifolds, J. Diff. Geom. 4 (1970) 311-333.

Michigan State University