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GAUSS'S TERNARY FORM REDUCTION AND ITS APPLICATION

TO A PRIME DECOMPOSITION SYMBOL

YOSHIOMI FURUTA

Introduction

We defined a prime decomposition symbol [du d29 p] in a previous
paper [3], and characterized in [4] the set of rational primes p which are
decomposed completely in a non-abelian central extension which is of
degree 8 in substance. The explicit value of the symbol was determined
by using a solution of certain ternary quadratic diophantine equation.
The solution corresponds to a square root of an ideal class of the principal
genus of a quadratic field. This is translated to a problem in classes of
integral quadratic forms, namely to find a form whose duplication is a
given one contained in a principal genus. An explicit method to find the
form is given by Gauss in [5, Art. 286], which is due to his ternary
form reduction.

The purpose of the present paper is to look at again this Gauss's
method in somewhat different formulation, and apply it to the symbol
cited above.

In Section 1 we consider a ternary quadratic lattice with a symmetric
bilinear form <p(a, β) and a certain product a*β, which coincide respectively
with the simultaneous invariant and covariant of two binary quadratic
forms whose coefficients are indicated by a and β. It might be noticed
further that φ{a, β) and a*β are comparable with the inner product and
the outer product of vector analysis. In these point of view, we reformu-
late in Section 2 Gauss's method cited above, and in Section 3 we apply
it to the symbol [du d2, α], which is the product of [dud2,p] for prime
factors p of an integer α. More precisely, we treat the following three
problems:

( I ) To estimate the value of [du d2, a] explicitly by means of Gauss's
method.
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(II) To classify the set of integers a having the same value of [dl9

d2, a] for a given pair {du d2}.

(III) To classify the set of pairs {du d2) having the same value of

[du d2, a] for a given integer α.

Problem (II) has been treated already in [4]. Thus it will be summarized

in the present point of view.

§1. Ternary quadratic lattices

Let L = Z0Z/2ΘZ and LQ = Z®Z®Z. For an element a = (aί} α2, α3)

of L, let [a] = I*1 ^ 2 | and a[x] = [*]•[«]•'[*] = aλx\ + 2a2x,x2 + a3x
2

2, where\a2 az\
[x] = [χ1? χ2]. α is called primitive if G.C.D. {aly 2α2, α3} = 1. We define a

symmetric bilinear form ^ of L by

(1.1) (̂αf, β) = a2b2 — K«i*8 + αA) ,

where α = (αb α2, α3) and β = (&1? 62, 63) are elements of L. We set

φ(a) = ^>(α, α) = α 2 — αjα3 .

Then

φ(a) = dis a:[x] = — det [α] and

φ(a, β) - J(9<α + β) - φ(a) - φ(β)) .

2φ(a, β) is usually denoted by d(a, β) and called a simultaneous invariant

of quadratic forms a[x] and β[x]. a and /3 are said to be orthogonal if

φ(a, β) = 0.

We define a product a*β by

(1.2) <**β = (2(αj62 - a26j), a>A - azbu 2(a2bz - a 3

Then

(1.3) [a*β] - M

and αr*j8 is orthogonal to both a and β. Moreover the direct calculation

implies a*a = 0, a*β = — ]8*α, ^^(^ + r) = a*β + α*r and αr*(j8*r) + iS*(r*αr)

+ r*(α*]8) = 0.

— i(«*]8)W is usually denoted by Ja,β[x] and called simultaneous
covariant of a[x] and β[x].
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The following formula is well known1* as a syzygy in the theory of

invariants.

(1.4) Ja,β[xY = φ(β). β[xY - J(a, β) a[x] β[x) + <p(β) a[x]\

Thus we have

(1.5) (a*β)(xy = 4(φ(a) β[x]* - 2φ(a, β) a[x] β[x] + φ(β) a[xY)

Let L(a) = {/3 eL; ^ α , /3) = 0}. Then we have2)

PROPOSITION 1.1. Let a = (au α2, α3) be a primitive element of L and

put a0 = G.C.D {al9 α3}, ax = αoαί and a3 = a0a3. Let v and w be integers

such that a[v + af

zw = 1. TΛβzi L(a) = Zωx® Zω2, ẑ /iβre ωj = (aί, 0, — aθ

and ω2 = (2a2tί;, a0, 2a2u) or = (a2w, ao/2, a2u) according as a § Lo or a e Lo.

PROPOSITION 1.2. Let a = (a^ a2, a3) e L czzd G.C.D. {au a3} = 1.

(a) = {a*β; βeL}.

Proof. This follows from [4, Theorem 2], since

a, a2]Γf/2 , ]

3 ξβ Yη -f/2JLa2 a j

= [a! aΛ\ 0 11Γ-^ f/2] , \-λ f/2]Γ0 -l lΓa, a2l
La2 aJL-1 OJL f/2 57 J L f/2 97 J Ll θJLa2 a3J

= [a*β] with β = ( — λ, f/2, η).

We note the following formulas, which are obtained by direct calcu-

lations in analogous way as in vector analysis taking φ(a, β) and a*β as

inner and outer product respectively.

(1.6) a*(β*ΐ) = 4(φ(a, β)ϊ - φ(a, ϊ)β)

(1.7) φ(a*β, T*δ) = 4(φ(a, δ)φ(ϊ, β) - φ(a, ϊ)φ(β, δ))

a1 a2 α 3

!

(1.8) φ(a*β, ϊ) = φ(β, T*a) - - 6, b2 bz

§2. Gauss's ternary form reduction

We call primitive elements ax and a2 to be (properly) equivalent if

there exists a matrix T of SL(2, Z) such that [a2] = Γ fαJ 'Γ. Denote by

1) Cf. Hooley [6].
2) See [4, p. 214], where the second type of the base ω2 is omitted when αεL 0 .
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{a} the equivalent class containing a. When φ(a) = φ(β), a composition

{α} {/3} is defined through the composition^ of corresponding classes of

quadratic forms a[x] and β[x]. This composition is connected with the

ideal product by the well known correspondence between absolute ideal

classes in narrow sense of the quadratic field Q(Vφ(a)) and equivalence

classes of quadratic forms with discriminant φ(ά). More precisely, let a =

(au α2, α3) be a primitive element of L, and put α = Zax + Z(a2 + V d).

Then a is an ideal of Q(Vφ(a)) and a[x] = INal^ NfaXi + (α2 + Vφ(ά))x2).

Denote by {a} the ideal class in narrow sense containing α. Then the

correspondence is given by {a} and {a} connected as above. We put (a) =

{α}, which is an ideal class of Q(Vφ(a)) corresponding to {a}. There is a

well known method by means of united forms4) to get a form T such that

{γ} = {a} {/3}. By this method it is easy to get a duplication T of a given

δ in L: {T} = {δ}2. In order to get conversely δ from a duplication Γ, Gauss

has given in [5, Art. 282-286] a method of ternary form reduction. We

shall reformulate it in view of the previous section.

For a, β eL we define λayβ by

(2.1) λatβ = (φ(a)f φ(a, β), φ{β)) .

Set φ(Λ) = {φ(ϊ); TeΛ} for a sublattice A of L. Then we have φ{Λ) =

{X./JM; ίχ] eZ2} when yl = Za® Zβ. Moreover λa%β is equivalent to λa,iβ,

in L, if ZaΦZβ = Zoί ® Zβr and Λβ|/Ϊ, ^α,,^ eL. By the formula (1.7) or

by direct calculation, we have

(2.2) ί9(α*j8) = 4φ(λaiβ) .

Hence ((a*β)/2) and (λaiβ) are ideal classes of the same quadratic field when

((tf*β)/2) and ^β>i3 are primitive elements of L. In the following we shall

show that (λatβ) = {(a*β)l2)\ and hence {Λα)/3} = {(

LEMMA 2.1. Let a = (α1? α2, α3) 6e α primitive element of L, and put

K = Q(V d ), where d = (̂<Ύ). Lβί 6 be a rational integer. Then there exists

[x] e Z2 such that b = a[x] if and only if there exists an ideal 6 of K such

that b = M), where b is contained in the ideal class (a) corresponding to a.

Proof. Suppose b = a[x]. Let a = Zax + Z(a2 + Vd). Then α! = iVα

and α e (α). This means that for the first component b of an primitive

3) See for instance Cassels [1, Chapter 14].
4) Cf. Dulin and Butts [2], Pall [7] or Cassels [1, Chapter 14] in which the

united forms are called concordant forms.
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element β of L there is an ideal b such that b = Nh and b e (β). There-

fore it is enough to show the necessity that there exists β of L such that

β is equivalent to a and the first component of β is b. We have a well

known method5) to get β as follows: Let b = a[yuy2], where we can

assume that G.C.D. {yu y2} = 1. Take integers u and v such that yxυ —

y2u = 1, and let T= Γ̂ 1 j Ί . Then TeSL(2,Z) and T a.'T = [J *1,

which is to be required.

Conversely suppose that b = iVb and b € (#). Then there is an integer
b2 such that h = Zb + Z(b2 + Vd). Let β = |iV&~α| iV(6Xi + (b2 + V~d)x2).

Then 6 = β[l, 0] and b e (β). Hence (α) = (β), which implies b = a[s] with

some [x] e Z2.

LEMMA 2.2. Lβί K be a quadratic field with discriminant d. Let a

and b be rational integers which are norms of ideals of K, If a dίophantine

equation

(2.3) ax2 = z2 - dy2

has a solution such that z = b, then there exist ideals a and b of K such

that a = Na, b = Nh and {a} = {b}2.

Proof. Let α = Na and 6 = i W by assumption. Then the solvability

of (2.3) implies N(a(V)2) = N(z + yj~d). This implies a(V)2 = z + yV^d by

regarding decomposition to prime factors of both sides of the above equality

and, if necessary, suitable choice of α and V such that a = Na and b = NV.

Thus we have a = h\(z + yV~d)/b) - b2.

THEOREM 2.3. Let a, βeL, and suppose that λa^ and j(a*β) are primi-

tive elements of L. Then λa,β is a duplication of j(a*β), i.e., {Za,β} =

{%(a*β)Y.

Proof. Put ΐ = i(a*β), λ — λaiβ and η = a*ΐ. Then since ΐ is orthogo-

nal to a, the formula (1.5) implies

(2.4) η[xY = 4(φ(a)T[x]2 + 9{T)a[xf)

for any [x] = [xl9 x2] e Z2. Set [x] = [1, 0], and put z = η[l, 0], b = ϊ[l, 0],

y = a[l, 0], a = λ[l, 0] and d = φ{ϊ) = p^). Then by Lemma 2.1, both α

and b axe norms of ideals of Q(V d). We have further α = φ(ά), since

λ[xu x2] = ψ{α)x\ + 2φ(α, β)x1x2 + φ{β)x\ = φ{αxι + βx2). Hence (2.4) implies

5) Cf. Watson [9, Chapter 1, Theorem 1].
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z2 = 4α62 + 4dy2. Then by Lemma 2.2, there are ideals α and 6 of Q(V d)

such that {α} = {b}2. This implies the theorem by Lemma 2.1.

Now the problem to get a form δ from T such that {δ}2 = {ϊ} is reduced

to the problem to get a pair of forms {a, β} such that T = λUiβ. Since

Λr. sM = φ(<xXi + /3x2) and p is a ternary quadratic form, the procedure to

have [a, β} from ΐ is called by Gauss a representation of a binary form

ϊ by a ternary form 9, and also called a ternary form reduction. Gauss

has exhibited in [5] an explicit method for the ternary form reduction.

We can arrange it as follows6) by using matrices.

Let ϊ = (cu c2 c3) 6 L, and suppose that there exist a = (au a2, α3) and

β = φu b2, 63) such t h a t ϊ[x] = λa%β[x] = φ(ax1 + βx2). Put axι + βx2 = (yl9

y2, y,). Then T[x] - [xί9 x 2 ][^ J2] [^] = 9(^1, y2, Js) = y\ - Λy, = [yi, y2,

0 0 - i ] r Ί

1 0\[<a, <β]\ J .
oj LX 2J

and β from ?" is equivalent to get a and β from

(2.5)

Hence to get

c3J L6, 62 M [ i 0 0 \ [ a j j

In order use inverse matrices, we fill up matrix elements by integers and

let

and

so that (2.5) is rewrite as follows:

(2.6) Af = S T-'S ,

where

'a,

βi

a2

b2

s2

63

S3_

o o -M a
r = i o l o = I l

L-i 0 OJ JL/IN-
Put T, = 1 \S-\ Then (2.6) becomes

6) Shanks [8] refers also Gauss's method with some improvements.
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Now if ϊ[x] belongs to a principal genus, we can determine the above

integers m0, mx and m2 so that det M = — 1. In fact the system of the

following diophantine equations has a system of solutions Aί9 A29 AZ9 B{

and B2:

(B\ = C l + φ(r)Az

Jftft = -C2 + φ(ϊ)A2

[Bl = CZ + <p{r)A,

\AX A2 BΛ-1

Let M = \A2 Az BΛ , where Bo = —φ(ΐ) = Then M is to be re-

quired. We can get the matrix Tx of (2.7) by fundamental transformations

Γ* 1
of matrices. Let T2 = 1 \TX. Then the third column ι[tn) ί28, ί33] of T2

implies(2.8) a*β = (2ί33, ί28, 2*18)
detT2

The elements α = (α1? α2, α3) and β = (6l7 62, 63) such that Γ = ίβίi5 are obtained

from the inverse of T2,

a

(2.9)

because

ί Γ
α2 α3

62 δ3

αα α 2 α 3

6i δ 2 6 3

a, a,

b1 b<

CLX a 2

6i b2

§3. Application to a prime decomposition symbol

Let K = Q(V dv V c?2) be a bicyclic biquadratic field. For a rational

prime p, a symbol [du d2, p] is defined in [3] when there exists a central

extension K of K/Q for which the genus field if* is not equal to K, p is

not ramified in K and p is of degree 1 in K*lQ. We define [du d2, a]

multiplicatively for a rational integer a whose prime factors satisfy the

above condition.
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We call a pair {du d2) type A when dx = d2 = 1 mod 4, and call it

type B when dx = 1 mod 8 and d2 ^ 1 mod 4. For the sake of simplicity

we treat hereafter only the above two types of pairs {du d2}. Moreover

we add the following condition (R) called Redei type:

(R) dx and d2 are mutually prime and (djq) = 1 for any prime factors

q of d2 and (djq) = 1 for any prime factors q of dx.

Then the condition of [du d2, a] to be defined is equivalent that the follow-

ing three conditions are satisfied.

(pi) p = 1 mod dxd2 for any prime divisor p of a.

(p2) (djp) = (c?2/p) = 1 for any prime divisor p of a.

(p3) (Q*IP) — 1 for any prime divisor g of c/jdg and any prime divisor p

of a but p φ q, where #* stands for a prime discriminant, i.e., q* =

(-iyq-1)/2q, - 4 or ± 8 so that the discriminant of QiVd.d,) is writ-

ten as a product of those q*.

We denote by S) the set of triples {du d2, a] which satisfy the above

conditions type A or type B, and (R), (pi), (p2), (p3). Separate 2) to ®^

and S)Λ according that the pair {du d2) is of type A or type B.

Let {du d2, a} e S), and put a = 4a or a according that {du d2} is of

type A or type B. Then [3, Theorem 5.1] implies

(3.1) W . 4. „]_(£)_ (A).

where b is any primitive solution with X = b of the following diophantine

equation

(3.2) z2 = άX2 + d^Y2

Now we consider Problem (I) in Introduction. Let a, β e Lo. Then \{a*β)

is orthogonal to α, and φ(i(a*β)) = (̂̂ «,̂ ) by (2.2). Hence (1.5) implies

(3.3) (K«*(«*i8))M)2 - ^MK«*/3)M) 2 + Λ , > [ x ] 2 .

Thus we can get the value of [dl9 d2, a] as follows: There are integers cx

and c2 such that dλd2 = c\ — άc3 by the condition (p2). Put ΐ = (a, c2, c3)

and find α and jSsuch that ΐ = λaiβ by Gauss's method as in Section 2.

Then by (3.1), (3.2) and (3.3), we have

(3.4) [dl9 d2, a] = (
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for [x] e Z2 such that j(a*β)[x] is an integer relatively prime to a[x].

EXAMPLE. Calculation of [3, —23,13]. This belongs to type B. d,d2

= -69 = 32 - 13-6. Put T = (13, 3, 6). As a system of solutions of

(B\ = 13 - 69 A3

ϊ = 6 - 69-At

.B,^ - 3 - 6 9 A 2,

we have Bx = 17, B2 = 12, A, = - 2 , A3 = - 4 , A2 - - 3 . Then M =

113 3 3]
3 6 2 , since m0 = 32 - 8 = 1, mx = -34 + 3 6 - 2 and m2 = -48 + 51
3 2 l j

= 3. In the same way as to obtain a reduced form of integral quadratic

forms, a matrix ϊ\ satisfying (2.7) is obtained, that is
ri l - 5 ]

Γ i = 0 0 1 .
LI 2 - 7 j

Then T2 = 1 \T, and $(a*β) = (14, 1, 5). This implies [3, -23, 13] =

(3/K«*i8)[O, 1]) = (ί) = - 1 . We have also or = (4, 3, -1) and β = (-2, 2, 1),

since
Γ 4 3 - 1 ]

since S= T;1 = - 2 2 1 .
L 0 1 Oj

Problem (II) has been treated in [4] already. This is reformulated as

follows using notation in Section 2.

P R O P O S I T I O N 3.1. Let {dlf d2} be of type A or type B, and chose aeL

so that dxd2 — φ(a). Then we have

[du d2, φ(a*β)] =

for βeL when a[x] and (a*β)[x] are relatively prime, and {dί9 d2, φ(a*β)} e S).

As in [4], this proposition is followed from (3.1), (3.2) and

<3.5) Ja*βJxY = φ(a*β)a[x]2 + φ(a)((a*β)[x])2 ,

which is implied from (1.4) and Proposition 1.2.

In order to treat Problem (III), we use again (3.5) with ά = φ(ά) and

dxd2 = φ{a*β). Denote by L{d^) the set of (aly α2, α3) of L such that aλ is

divisible by dx. We remark that if {dl9 d2, α}e!δ and α = φ(a) with aeL,

then there is an integer α2 such that φ(a) = a\ mod du which is followed from

the condition of [du d2, a] to be defined. Hence we can choose the above
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a to be in L{d^). Moreover suppose that φ(a*β) = 0 for βeL. Then since

φ(a*β) = Hφ(a, β)2 - φ(a)φ(β)) by (1.7), we have φ(a, β)2 = alφ(β) mod dt.

Hence we can choose β to be in L(dt) too. Conversely it is easy to see

that φ(a*β) = 0 mod d1 if both a and β belong to L{d^).

We have the following Proposition as a solution of Problem (ΠI).

PROPOSITION 3.2. Let dxd2 = φ(a*β) and dxd2 = φ(a*βf) for a, β, β; e

L(dτ). Suppose that β' — β + dxη with ηeL. Then we have

[du d2, a] = [du d'2ί a]

when a = φ(a), and both {du d2, a} and {dl9 d'2, a} belong to S)^ or they both

belong to S)^.

Proof. The formulas (3.1), (3.2) and (3.5) imply [dl9 d2, a] = (dj(a*β)[x\)

and [dl9dί,a] = (dJiaxβ'ftx]). Moreover (a*β')[x] = (a*(β + dlV))[x] = (a*β)[x]

+ dx{a^)[x\. Hence ((α*j80M/d1) = ((α*j8)[x]/d1). This implies the proposition

owing to the condition dί = l mod 4.
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