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LEVY'S BROWNIAN MOTION; TOTAL POSITIVITY

STRUCTURE OF M(t)-PROCESS AND

DETERMINISTIC CHARACTER

AKΐO NODA

§ 1. Introduction

Let X = {X(A); A e Q} be a Levy's Brownian motion with the basic
time parameter space Q, where Q is taken to be the n-dimensional metric
space Qnκ of constant curvature (2 < n < oo, — oo < Λ; < oo), i.e., Q is one of

(a) Euclidean space for /c — 0, (b) sphere for K > 0 and
(c) real hyperbolic space for K < 0.

The increment X(A) — X(B) is, by definition, Gaussian in distribution and
has mean 0 and variance d(A, B), the distance between A and B. The
existence of such a Gaussian random field is well known ([3], [4], [16] and
[23]).

To investigate a Levy's Brownian motion (mainly for tc = 0), P. Levy
introduced, in [10], the M(ί)-process:

M(t) = μ(O\St)-X(O),

where St = {A e Q; d(A, O) — t] and μ(O\St) is the conditional expectation
of X(O) given the values {X(A); A e St}. The Gaussian process {M(t);t e
[0, T)} with T = oo for K < 0, = π\ϊ<J~T for K > 0, has the well-known
expression in terms of the average of X(A) — X(O) over the sphere St in
Q. P. Levy obtained further interesting representations of the M(t)-
process and with the help of them he discussed Markov properties as
well as non-deterministic properties of a Levy's Brownian motion with
K = 0. In line with his approach we shall investigate the detailed structure
of M(t) to develop the theory of a Levy's Brownian motion for every K,
for which we expect plenty of interesting probabilistic properties to be
discovered.

In the present paper we actually find the following two properties:
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( i ) The total positivity structure of the M(Y)-process in the odd-

dimensional case n = 2v + 1 and in the infinite-dimensional case n = oo

(ii) The deterministic character of a Levy's Brownian motion with

the infinite-dimensional parameter space Q°°\

We shall first discuss the topic (i). A centered Gaussian process Y =

{ Y(t); t e [0, T)} (7(0) = 0) with covariance function R is said to be (strictly)

totally positive if for any r, for all 0 < U < <tr < T and for all 0 <

s, < < sr < T,

u •••> *Λ = det [R(tuSj)] > 0
j , , sr/ o)

holds (Definition 2). A Gaussian process with independent increments is

totally positive. Our first main result is to prove that the Λf(£)-process

is totally positive for n = 2v + loτn=oo (Theorem 2).

The following discussions in the odd-dimensional case n = 2v + 1

(Section 4) illustrate the idea of the proof of the theorem as well as the

particular structure of the M(Z)-process behind the total positivity.

The ikf(Z)-process satisfies the stochastic differential equation

( I ) LM(t) = wo(t)B(t), 0<t<T,

with a white noise B(t), some positive function wo(t) and the differential

operator L of order v + 1 expressed in terms of positive functions {w^tyltl

as follows:

L = d 1 d Id 1

dt w0) dt wXi) dt wv+1(t)

As an equivalent statement to the equation (I), we obtain the canonical

representation of M(t):

(II) M(t) = f F(t, u)wQ(u)dB(u) ,
Jo

where the canonical kernel F(t, u) is the Green's function associated with

L:

F(t, u) = wv+1(t) ί wXy,) Γ Γ ' w£yv)dyv dy1 .
J u J u J u

Noting that the total positivity of the process (dldt){ljwυ + 1{t)) M(t) implies

the same for M(t), it is easily seen from the formulae (I) and (II) that the

M(Z)-process is totally positive.
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We also find the total positivity structure for some related Gaussian
processes: The derivative M'(t) of the iW(£)-process, and the MmJ(t)-
processes which were introduced by H. P. McKean, Jr. [15] for K = 0.

In the even-dimensional case n = 2v, it is proved that such a total
positivity structure for the Λf(Z)-process does not hold (Remark 2 in Sec-
tion 4).

We then proceed to discuss the infinite-dimensional case n = oo (Sec-
tion 3). To be surprised, the strict total positivity property holds in the
infinite-dimensional case. Set E(τ, ύ) = eτu. We can choose a function
τ(i) on [0, T] such that the ikf^-process is expressed in the form

(IΠ) M{t) = f (1 - E(τ(t), u))Z(du)lf2 ,
J - o o

where Z(du) is a Gaussian random measure with mean 0 and variance
f(du)7 which is the spectral measure (discussed in Section 2) of a Levy's
Brownian motion. Since the kernel E(τ, u) is strictly totally positive ([7]),
it now follows from the formula (III) that the processes M(t) and M'(t)
are both strictly totally positive.

Our second topic is concerned with the prediction problems. For our
purpose the expression (III) of M(t) is of great advantage. Given a strictly
increasing sequence {ίjlli in (0, T), we shall consider the problem whether
the mean square error

jΓ-i) = inf E \(M(t) -±at M(t)γ]
Σίαf = l,r<oo L ι = l J

is zero or not, where the infimum is taken over all coefficients {a^r

ι=λ for

any r < oo such that 2ϋl=i &% — 1. If we observe

Γ (e'«>» - ± aie<™»)2ΐ(du)l2 ,
J -oo \ ι = i /

that comes from (III), then we see that our problem can ba solved by
using the theory of Mύntz-Szasz type approximation (see [14], [21] and [27]).

From these considerations on the M(ί)-process given in Section 3, we
find in Section 5 the deterministic character of a Levy's Brownian motion
itself. This character can be illustrated by introducing the set

K(e) = {AeQ; <;(

for a non-empty subset e of Q, where σ2(A\e) — E[(X(A) — μ(A\e))2] is the
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mean square error of X{A) given the values {X(B) B e e}. At each point

A e K(e), the random variable X(A) is predictable without error. Our

second main result. Theorem 4 states that, with a particular choice of

e = lX=i Stt (1<N< oo), we have

(u st{) =
Q if N = oo ΐoτ K φθ oτ iΐ f]ti2 = oo for Λ; = 0 ,

iV

U S f ί otherwise .

This improves the Levy's result [13] which says that K(e) = Q for every

e e Q containing an interior point.

The author is grateful to Professor T. Hida for his encouragement

and valuable advice.

§ 2. Preliminaries

In this section, we shall first give a definition of Levy's Brownian

motion, the parameter space of which is more general than the one in

the definition originally given by P. Levy [10]. Such a Brownian motion

is a most important example of a Gaussian random field with isotropic

increments. As is well known, a structure function is always associated

with such a Gaussian random field, and the function determines the proba-

bility distribution of the field under the additional assumption that X(O)

= 0. We shall therefore be interested in the exact form of the spectral

measure of the structure function of a Levy's Brownian motion. It will

be given in Theorem 1, which is due to G. M. Molcan [16], as well as in

Proposition 1. In the final part of this section we shall give a definition

of total positivity for Gaussian processes.

Parameter spaces Qnκ that we shall be concerned with are now intro-

duced (2 < n < oo, — oo < A: < oo):

\A = (α0, al9 α2, •); ao = 0, J] a) < oo, α, = 0 for j > n +1\
3 = 1 )

for K = 0 ,

{ A = (α0, al9 a2, . •); (α0 + 1/V~02 +

(A = (α0, a» α2,

a) =
3=1

1/κ ,

.)

aό = 0 for j > n + l | for K > 0 ,

α0 > 0, (α0 + 1/VkΓ)2 - Σ a) = 1/|Λ|,

aj = 0 for j > n + l ] for Λ: < 0 .
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The distance d(A, B) on Qnκ is defined by the formula

//^

d(A, B) =

J=1
(μ, - 6,)2)1 / 2 for K = 0 ,

cos"1 |* |(α0 + 1/7T

for fc > 0 ,

Σ

cosh-1 [|*|{(a0 + l/V|F|)(60 + 1/VR) - g a,

for A; < 0 .

DEFINITION 1. ( i ) Let Qn'κ (often denoted by Q simply) be taken to

be a parameter space. A Gaussian system X= {X(A); A e Qn'κ} is called

a Gaussian random field with isotropic increments if X(A) — X(B) has mean

0 and variance r(d{A, B)) with some function r on [0, oo). The function

r is called the structure function of X.

(ii) A Gaussian random field X with isotropic increments is called

a Levy's Brownian motion if the structure function r is given by r(t) = t.

We denote by \\n'κ the class of structure functions that are continu-

ous. Structure functions naturally request certain properties which can

easily be expressed in terms of spherical functions on Q. In order to

discuss the spectral representation of r e f], it suffices for us to treat the

following three cases:

(a) K = 0, (b) fc = 1 and (c) K = - 1.

It is well known ([19], [20], [26], [4], [3], [1] and [17]) that each reΠ

can be represented in the form

( 1 ) (t) = f Φx(t))dr(λ) + cΨ(t) ,

where (i) the family {Φλ(t) λ e A} consists of spherical functions on Q. The

exact form of Φλ(t) depends on the choice of /c as is explained below (cf.

[24]).

(a) K = 0.

Φ1(t) =

Γ eut
Jo

cos e sinn-2
sinn-2 Θdθ/In_o

lim ΦΓ'° (Vmt)
771—> c o

with λ e A = [0, oo), and

Ia.t = J* sin*-2 θdθ = r ( - f l - ^ -

for n < oo ,

foγn=oo,
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(b) e = l .

!

Cπ

(cos t — i sin t cos θ)λ sinw"2 Θdθ/In_2 for π < co ,
Jo
lim Φf'XO = (cos t)1 for τι = co ,

with ΛeΛ = {0, 1, 2, •• .}.

(c-n) K = — 1 and n < co.

φ $ ) = P (cosh t - sinh t cos 0)' sin""2 θdθ\In^ ,
Jo

with Λ e A = Λj U yί7/, Λτ = {λeC; λ= - (n - l)/2 + iy, ,y > 0} and An =

[-(n-1)12,0].

(c-oo) Λ: — — 1 and 7 2 = 0 0 .

Φλ(t) = lim ΦΓ-XO = (cosh t)λ,

with λe Λ = (—00, 0].

(ii) The function Ψ in (1) has the following expression:

(a) K = 0. 5Γ(ί) = ί2/2.

(b) A: = 1. ϊp (ί) - 0.

(c) κ= - 1 .

I f* log (cosh t — sinh ί cos θ) sin71"2 θdθ\In^ for n < 00 ,
Jo
lim Ψ^-\t) = log (cosh *) for τι = 00 .

(iii) The number c is non-negative and Γ is a non-negative measure

on Λ\{0} with the following conditions:

(b) * = 1. r(Λ\{0}) < 00.

(a) Λ: = 0 or (c) K = — 1. For each neighborhood Z7 of 0 in Λ,

Ϊ(Λ\U) < 00 and f μ|2+'dr(^) < 00 hold.
J £7\{0>

We call (c, 7) the spectral measure oΐ re Π.

We are now in a position to give the exact form of the spectral

measure (c, Γ) of r(£) = t, the structure function of a Levy's Brownian

motion, in the cases n = 2v + 1 (odd-dimension) and n = 00 (infinite-

dimension). In the finite-dimensional cases the following results are known

([26], [4] and [16]).
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THEOREM 1. For n = 2v + 1, the exact form of the spectral measure

(c, ϊ) of r(t) — t is given as follows:

(a) /c = 0. c = 0 ami Γ(d2) is absolutely continuous on A with the

density function f(X) = 2v\l(VΊcΓ(ι> +

(b) K = 1. c = 0 and 7(d;i) = Σm=i bmδ{2m-i}(dλ), with Dίrac measure

δ{a} at a point ae R, where

4v\ (2m)(2m + 2) . (2m + 2v - 2) (2m + v - 1)
(p + 1/2) (2m - l)2(2m +1)^77(2™ + 2^ - 3)(2mT2v - ί)

bm =

(c) K = — 1. c = 1 and Γ(cU) is absolutely continuous on Λτ with the

density function f(y) for λ = — v + ίy e ΛI and has the form

[(v-D/2]

Σ bmδ[-2m}(dλ) on Λn ,
l

(y odd),

where

(f + (v- lf)(f + (y- 3)2)

X

( / + v2)2( v2 + (v - 2) 2) - . . ( / + 1)

1)!! w -r yv - ±J Λ Y -T-yί,-„,,... y j -r ί ; ^ e υ e ^ ̂

(v - 2)2) •••(/ + 22)

= (v - 2m)(
2m

It deserves to be mentioned that in the case n = <χ> we have a limit

form of the result in Theorem 1 for each /c.

PROPOSITION 1. For n = oo, the exact form of the spectral measure

(c, ϊ) of r(t) — t is given as follows:

(a) fc = 0. c = 0 and Γ(d>l) is absolutely continuous on A with the

density function f(λ) = Λ/2/TΓ Λ~2.

(b) A: == 1. c - 0 and r(d;i) - Σ 6w^{2m-1}(d^) with
m=l

bm = (2m - 3)!!/(2m - 2)!! (2m - 1).

(c) K = - 1. c = 1 and r(d^) = 2 6w<5{_2m}(d^) with
m = l

bm = (2m-l)\\i(2m)\\(2m).

Proof. In view of the explicit expression of Φ")S and ΪP*00 ,̂ it suffices

to prove the following formulae:
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(a) K = 0. Λ/S/TΓ Γ (1 - e~wι2)l-2dt = t
Jo

(b) K == 1. /" — :—
i^i ( 2 ι » - 2)! ! 2m- 1

(c) * = - 1. Σ - / o ... — — s = cosh"1 x - log x .
m=i (2m)!! 2m

In fact, these formulae can easily be shown.

In what follows we shall use the following notation and terminology

(cf. [7]). For a kernel K(x, y), xe I, y eJ (I, J a R), set

det [K(xi9 yi)

A kernel K(x,y) is said to be totally positive if for any r, for all xx

< xr and for all y1 < < yry we have

/xl9 ••> *
κ

If strict positivity always holds, then we say that K(x, y) is strictly totally

positive.

DEFINITION 2, Let Y= {Y(t); t e [0, T)} (Y(0) - 0) be a centered Gaus-

sian process with covariance function R(t, s). The Gaussian process Y is

said to be (strictly) totally positive if R(t, s), (£, s) e (0, T)2, is (strictly) totally

positive.

We note the following property of a totally positive Gaussian process

Y with the non-degenerate condition:

R(tu -,tr\ > 0 for all 0 < Λ < - < ί r < Γ.

The conditional expectation £[Y(£0)|y(^); 1 < i < r] (0 < t0 < U < < tr

< T) is expressed in the form

E[Y(Q\Y(Q', l<i<r] = Σ^YiQ,

where the uniquely determined coefficients {αj[=1 satisfy

( - l y - ^ i ^ O , ί = l, . . . , r .

In case Y is strictly totally positive, strict positivity holds for every ί.
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§3. M(ί)-pi ocess; infinite-dimensional case

This section and the next are devoted to discuss the detailed structure

of the M(ί)-process of a Levy's Brownian motion. In the first half of this

section we shall obtain the spectral representation of the M(ί)-process

(Proposition 2) as a consequence of Theorem 1 and Proposition 1, and

then prove our first main result, Theorem 2, in the infinite-dimensional

case n = oo. In the second half of this section we shall give a solution

to a certain prediction problem concerning the M(Z)-process for n = oo

(Proposition 4). This fact is closely connected with the famous Mϋntz-

Szasz theorem (see, for example, [14], [21] and [27]) and will play a key role

in the proof of Theorem 4 in Section 5.

We recall the definition of the Λf(ί)-process. Let X = {X(A); A e Qn"

= Q} be a Levy's Brownian motion. Denote by St the sphere in Q with

radius t and center at the origin O = (0, 0, •) e Q: St = {A e Q; d(A, O)

= t}. Using the notations μ(A\e) = E[X(A)\X(B); Bee] and σ\A\e) =

E[(X(A) — μ(A\e))2], introduced in Section 1, for a non-empty subset e of

Q, we define

M(t) = μ(O I St) and M(t) - M(t) - X(O).

The Gaussian process {M(t); te [0, T]} is called the M(t)-process. In view

of the isotropic property of X, we have the following expression of M(i)

for n < oo:

( 2) M(t) = f (X(A) - X(O))dσt(A),
J S t

where σt is the uniform probability measure on the sphere St. For ^1=00^

it is easily seen that

(20 M(t) = lim Mm>κ(t)

(cf. [10] and [2]).

Now the covariance function Γ(t, s) = E[M(t)M(s)] is calculated by

the use of the spectral representation (1) of r(t) = t. For n < 00, we have

Γ(t, s) = f f E[(X(A) - X(O))(X(B) - X(O)))dσt(A)dσ£B)

= λ.[t + s - [ d(A, B0)dσt(A)\ (Bo is fixed in Ss arbitrarily.)
2 1 Jst J
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= 1{< + s - f f (1 - Φx(d(A, Bϋ)))dr(λ)dσt(A)

- c \ Ψ{d(A,B0))dσt{A)

= l ί ί + s - [ (1 - Φ,(ί)Φ,(s))dr(^) - c(?f(ί) + Ψ(s))\ ,
2 I JΛ{O} J

where we have made use of the formulae for Φλ and ¥:

Φx(d(A, B0))dσt(A) =ί.
?r(β).

Again applying the formula (1) with r(t) = ί, ,Γ(ί, s) is finally expressed in

the form

{ 3 ) Γ(t, s) = f (1 - Φ,(ί))(l - Φλ(s))dT(X)l2 .
J AίO}

For 7i = oo, the formula (20 enables us to obtain Γ(t, s) as the limit of

the corresponding quantity in the finite-dimensional cases:

Γ(t,s) = limΓm'Λ(ί, s)

= lim ί (1 - ΦT"(t))(l - Φΐ"(s))drm"(X)/2 .
m->oo J Λ™>K\{0}

It can easily be shown by Theorem 1 and Proposition 1 that the formula

(3) also holds in the infinite-dimensional case.

The following proposition is an immediate consequence of the above

expression (3) of Γ(t, s).

PROPOSITION 2. For every pair (n, tc) (2 < n < oo, — oo < tc < oo), the

M(t)-process can be expressed in the form

(4) M(t) = f (1 - Φχ(i))Z(dλ)I^Γ2 ,
J Λ\{0}

where Z(dX) is a Gaussian random measure with mean 0 and variance ϊ(dλ),

which is the spectral measure of a Levy's Brownian motion.

From now onward in this section we shall discuss the case n = oo.

Introduce the following changes of variables te [0, T) and λeΛ\{0}:

(f/2

( 5 ) T = τ(t) = I - log (cos t) u= u(λ) =

[log (cosh t) ,

-A 2 for K = 0 ,

— λ for K = 1 ,

λ for K = — 1 .
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Then we have Φλ(t) = eτu with τ e [0, oo) and w e ( - oo,0); the spectral

measure T(dX) changes into the measure γ(du) on (— oo, 0) and the spectral

representation (4) of M(t) now takes the form

(40 M(t) = Γ (1 - e^)Z(du)l^2 ,
J — oo

where Z(du) is a Gaussian random measure with mean 0 and variance

f(du).

Now noting that the derivative M'(t) of M(t) has the expression

Mf(t) = τ\t) Γ e*u\u\Z{du)lf2 ,

the covariance function r(ί, 5) = #[M'0OM'(s)] = (d2ldtds)F(t, s) is given by

T(t, s) = τ'(t)τ'(s) Γ E(τ(t), u)E(τ(s), u)u2f(du)/2 ,
J — CO

where £J(τ, ύ) = er2i. It is known ([7]) that the exponential kernel E(τ, u)

is strictly totally positive.

We are now ready to prove the following

THEOREM 2 (the case n = 00). The following Gaussian processes are

all strictly totally positive:

( i ) The M(t)-process;

(ii) The M\t)-process.

Proof. The assertion (i) follows easily from (ii) if we note the relation

Γ(t, s) = P Γ T(u, v)dudv. We shall prove (ii). Since τ'(t) > 0 on (0, T),
J 0 J 0

it suffices to prove that the kernel

K(τ, σ) = E(τ, u)E(σ, u)m(du), m(du) = u2f(du), 0 < r, σ < 00 ,
j —00

is strictly totally positive. We make use of the basic composition formula

(see [7]): Let Kλ(xv y), K2(y, z) and Kz{x, z) (x e I, yeJ, zeL; I,J,L(zR)

be kernels satisfying

K,(x, z) = Kfa y)K2(y, z)dμ(y)

with some measure μ on J. Then, for any r, for all x1 < < xr and for

all 2i < • < zr, we have
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( 6 ) κ i X u " > * Λ = f . . . f κ i X u ' ' " ' X r ) κ 2 ( y u ' ' '>y

\ z u - 9 z r / J J y i < . . <yr \ y l 9 - , y r / \ z l 9 ' - , z r

X dμiy,) dμ(yr) .

It follows from this formula (6) that for any r, for all τx < < τr and

for all σx < < σr,

κ ( τ » - • • > * ' ) = f . . . f ε h ' • • • ' T Λ E ( < 7 " • • • ' σ Λ

\σίf - • , GJ J J uχ,< -.<ur \ul9 - , ur I \ul9 , urJ

X m{duϊ) m(dur) > 0,

which completes the proof.

From the strict total positivity of M'(t)9 we obtain an interesting

property of sign changes of the conditional correlation function p(A9 O\

Uί-i Sti) = E\ξ(AIU?-i St)ξ(O\UU Stt)] (0 < U < < tr < T), where

ξ(A I e), e C Q, is defined by

= ί(X(A) ^(AI e))lσ(A \ e) if σ(A | e) > 0,

' 1 0 if

PROPOSITION 3. For n — oo ατιd βuβrj /c, αzid /or all 0 < ^ < < tr

y we have

V ( A O|U s ίy) > o i/ u < d(A7 o) < ti+1

The detailed discussion of the conditional correlation function ρ(A, O \

(Jr

j=1 Stj) is seen in [18] and so the proof of Proposition 3 is omitted here.

In the rest of this section we investigate a certain prediction problem

concerning the M(ί)-process. For a non-empty subset e of (0, T) and for

te[0, T]\e, we put

μM(t\e) = E[M(t)\M(8); see].

We note that μM(t \ e) may be calculated by assuming that M(s0) — 0 with

some point sQ e e, because the quantity μM(t \ e) depends only on {M(u) —

M(v) = M(u) — M(v); 0 < u, v < T). The predictability that we are now

concerned with is to determine whether the mean square error

σUt\e) = E[(M{t) ~

is zero or not. While, the analytic property of the M(ί)-process, which
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was first noted by P. Levy [11] for K = 0 and is easily seen from the ex-

pression (40 of M(t), tells us that σM(t | e) = 0 for any t & e if a subset e

has an accumulation point in (0, T). This leads us to consider the case

e = {tt)f=1 with a strictly increasing sequence {tι)f=1 in (0, T) (I < N < oo).

PROPOSITION 4. For n — oo ami euer y A:, â icZ /or a strictly increasing

sequence {tτ)f=1 in (0, T), we have

N

= 0 i,

> 0 if ̂ ΣΛ hfti) <C oo ,

i = l

/or aπ,^ ί § {£i}f=i, where

(t~2 for fc = 0[1 /or

Proof. We first note the following formulae of the mean square error:

inf £f(M(ί)-Σ 0^(0)0,
o or r<iV—o

where the infimum is taken over all coefficients {az)
r

i=l such that ΣUi^ί

= 1 with r = iV if N < oo or any r < oo if N = oo. In view of the ex-

pression (40 of M(t) we can also write

o\it I {ί Jf=1) = inf Γ (e- - Σ ate^Yr(du)l2
Σί Λi=l, J -co ί = l

r = iV<ooor r>iV=co

inf Γ ((e'M - e« ) - Σ Cίίβ' - eTl!1))V(rf")/2 ,

r = iV<oo orr<iV = αi

where we put τ = τ(ί) and τ̂  = τ(^) (see (5)).

In case AT< oo, the problem is easily solved: Noting that the support

of the spectral measure f(du) contains an infinite number of points (Pro-

position 1), we always have

σM(t I {Qtd > 0 for any t e {ίjf=1.

Next consider the case N = oo. We first prove that tfi¥(ί|{£jπ=i) = 0

for any t${ti}?=1 in the following two cases:
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(i) 2] τϊι — °° f° r every K and (ii) 2] r,"1 < oo for K Φ 0.
ί = i ί=i

Our aim is to prove that H({τi}?=1) coincides with the whole space H =

L2((— oo?0), dγ(u)l2), where we denote by //({τj^i) the closed subspace of

i ί generated by the system of functions {eτίU — eτiU; i = 2, 3, •}. Indeed,

this is a stronger assertion than what is requested to prove.

Suppose that H({τ^~=ύ Q H were true. Then we can choose a non-

zero function f(u) e H such, that

(f(μ), eτiU - eτίU)H = 0 for all i = 2, 3, .

For a complex number z in C+ = {ze C; Re z > 0}? consider the function

F(z) = J°

which is holomorphic in C+ with real zeros {τjjli Taking an arbitrarily

small number ε e (0, τt)9 we see that the function

F'{z) = f e »f(u)udf(μ)l2 ,
J —CO

for ^ e Ce = {z e C; Re z > ε}, is bounded and has real zeros {sjΓ î such

that Ti < st< τi + 1.

Now we have to deal with the two cases (i) and (ii) separately. The

case (i) ΣΓ=i^ί~1 — °° f° r every K is easily treated; indeed, we have ΣΓ=iSi"
1

= co and this implies that F\z) = 0 i.e. F(z) ΞΞ 0, ze Cε (see, for example,

[27] p. 85). We have thus proved that f(u) = 0 i.e. ίf({τ,}r=1) = H.

On the other hand, in the case (ii) X]Γ=i τΐ1 < °° for Λ: ̂  0, we see that

the support of f consists of negative (odd for K > 0, or even for K < 0)

integers {um}Z=i (Proposition 1). Hence the function

F'(z) = Σ e«*f(um)unbj2
m = l

is a bounded holomorphic almost periodic function in Ce. By the Bohr

theorem (see [9] p. 270), it follows that the zeros of such a function F'(z)

are in the region {z e Cε; Re z < c} with some c > 0. This contradicts the

fact that we have real zeros {Si}?=1 of F'(z) such that lim^^ st = oo. We

have thus proved that iί({τjr=i) = H also in the case (ii).

Finally, for K = 0, we prove that ^ ( ί | {ίj^i) > 0 for any ίe{ίt}Γ»i if

Σi°=i^ r l < °° i e if ΣΓ=iΛ(ί<)< oo. Noting that the spectral measure

f(dw) has the continuous density f(u)9 we can find three numbers a, b and
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c such that - oo <a<b<0 and f(u) > 2c > 0 for α < zz < 6. It follows

that

1)> inf f°
any r <°°

ίδ / r

Now we appeal to the Mϋntz-Szasz theorem ([14] and [21]) to see that the

last expression is always positive for τ 6 {τjΓLi This completes the proof

of Proposition 4.

Remark 1. In the proof of Proposition 4, we have used only the fact

that the spectral measure γ of a Levy's Brownian motion has a continu-

ous density function for K = 0 and is discrete with the maximum point

in the support of f for tc Φ 0. The exact form of f (Proposition 1) plays

no role, which means that Proposition 4 can be extended to some other

Gaussian random fields with isotropic increments. In this paper, however,

we content ourselves with giving considerations only on a Levy's Brownian

motion.

§4. M(/)-process; odd-dimensional case

This section is devoted to the investigation of the total positivity

structure of M(ί)-processes and of some Gaussian processes derived from

them in the case of odd-dimensional parameter: n = 2v + 1. We shall

begin with a review of the canonical representation of M(t) (Proposition

5) due to S. Takenaka, I. Kubo and H. Urakawa [23]. By using the repre-

sentation we shall obtain the stochastic differential equation satisfied by

the M(£)-process (Proposition 5'). Alternative approach, more appropriate

to investigate ikf(2)-processes, to the equation will be given in the cases

(a) K = 0 and every v; (b) /c = 1 and v = 2. We use the spectral repre-

sentation (4) of M(i) established in Section 3. Some other Gaussian pro-

cesses involving ΛP(£)-processes and McKean's Mm)j(ί)-processes are also

discussed on the same lines, and the total positivity is proved for these

processes.

We begin with the canonical representation of M(t).

PROPOSITION 5 ([23]). .For n = 2v + 1 and every K, the canonical repre-

sentation of M(t) is given by
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( 7 ) M(ί) = Γ P(g(u)lg(t))wo(u)dB(u) , 0 < t < T,
Jo

where B(i) is a Brownian motion, wQ(t) = Λ/(2V) !/2 (c(t))v,

P(x) = Γ (1 - u2y-ιdul(2v - 2)!!, 0 < a < 1,
J#

g(t) = I tan*
(tanh t,

1 for ιc = 0 ,

cos £ for fc = 1,

cosh Z for Λ: = — 1.

We now have the expression

( 8) P(g(u)lg(t)) = wv+1(t) Γ wv(yd Γ Γ " 1 wι{yv)dyv - - dyx ,
J u J u J u

λvith the positive functions {wt(t)}lt\ given by

ffl = g'(t), wt(t) = g'(t)g(t) (2<i<v),

Define a differential operator L of order v + 1 by

L d 1 d d 1

Then L can be expressed in the form

L = -£-AA • D.,
at

where

A = 4τ
at

The canonical kernel P(g(u)lg(t)) is proved to be the Green's function

associated with L. This fact enables us to paraphrase Proposition 5 in

the following form (cf. [6]).

PROPOSITION 5'. For n = 2v + 1 and every /c, the M(t)-process is a

(v + l)-ple Markov Gaussian process in the restricted sense determined by

the stochastic differential equation

( 9 ) LM(t) = wo(t)B(t), 0 < t < T,
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where B(i) is a white noise.

We now give an alternative proof of Proposition 5' using the spectral

representation (4) of M(t) in the following cases:

(a) K = 0 and every v; (b) K = 1 and v = 2.

The calculations for A; = 1 and general v would be so complicated that we

have to content ourselves with treatment only in the particular case v = 2.

It is interesting to note that there are significant differences between the

proofs in (a) and (b) depending on the curvatures of the parameter spaces.

The proof of the equation (9) uses the following formula for the

spherical function Φλ, the proof of which will be given in Appendix.

LEMMA 1. For K = 0 or 1,

(10) ^ φ ( t ) + ^
2{fcλ + v) 2(κλ + p)

(a) The proof of the equation (9) for K — 0.

Applying the formula (10) to the spectral representation (4) of M(t),

we get

A A DυM(t) = (2v - 1)!! Γ {1 - cos λt}Z{dλ)l^ί2 .
Jo

Set

Then we have

ί sin
o

It follows from Theorem 1 that E[W\dλ)] = d ,̂ and making use of the

Parseval identity for the sine transform, it can easily be shown that
/*oo

V2/τr sin λt W(dλ) is a white noise. Hence the proof is completed.
Jo

(b) The proof of the equation (9) for K — 1 and v = 2.
In the same way as in (a), we apply the formula (10) to (4) to obtain

x
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where Zλ = 0 for λ < 0. Set

^ anQ 7?3 = \/jχ -+- Z/1-.o) \λ -t- i ) , / = zm — l .

2 2 2 J

Then we have

LM(t) = 2\l Sπ cos t 2] ^2m_i sin 2mt.
m = l

From Theorem 1 it follows that E[Z2

2m_^\ = 2m(2m + 2), which implies that

the 3JW-! satisfy the following conditions:

ΈfyL-J = 2, #[j?2m--i372m + i] = 1 and E[Ύ]2m_{ηlm+2j_^ = 0

for all 7 > 2. In terms of a mutually independent standard Gaussian

random sequence {?2w-i}m=o> the tym-i c a n be represented in the form

rjim-l = ?2m-l + ?2m-3 , /W = 1, 2, - .

Hence we have

O oo

= wo(t)—7=- 2 ?2m-i sin (2m + 1) ί.

Noting that {(2/VT) sin (2m + l)ί}~=0 is a C.O.N.S. in U ([0, Γ], ώ), it can

be shown that (2/V π) Σm=o f2m-i sin (2m + l)ί is a white noise on (0, T).

The proof is thus completed.

We shall apply the formula (10) to the investigation of the MmJ(t)-

processes for K = 0. Take the C.O.N.S. {hmJ(ξ); 1 £j £ dn, m = 0, 1, •}

in L2(Sn~\ dσ(ξ)), where the hmJ (1 <j < dm) are the spherical harmonics

of degree m. Then,

(11) MmJ(t) = ί (X(tξ) - X(O))hntJ(ξ)dσ(ξ), t>0.

These processes are mutually independent Gaussian processes and M0Λ(t)

for m = 0 coincides with the M(Z)-process. It is known ([25]) that MmJ(t)

with m > 1 has the following representation similar to (4):

(12) Mmtj{t) = Γ Ψτ(t)Zn,,(dλ)lS2 ,
JO

where

ΪΓf(ί) = cm(λt)mΦT+n'%t)
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with some constant cm, and Zm j(dλ) is a Gaussian random measure with

mean 0 and variance T(dλ).

We are ready to prove the following

PROPOSITION 6. For n = 2v + 1 and K = 0, the MmJ(t)-process is a

(v + l)-ple Markov Gaussian process in the restricted sense determined by

the stochastic differential equation

(13) LmMmJ(t) = w0%Jt)Bntί(t), ί > 0,

wέ£/ι α w toe ttoise BmJ(i) and

L = d 1 d d 1

dt wUm(t) dt dt wv+Un(tj '

where {u)Um{t)\ 0 < i < v + 1} are the positive functions given by

Proo/. Noting that Lm = fm-2DmDm + ι . . Dm+J-m, and applying the

formula (10) to (12) to obtain

LmMmJ(t) = cm(2m + 2v - ΐ)(2m + 2v - 3) (2m - ΐ)fm~2

Set

Then we have

E[WUdλ)] = fjftdλ , fm(λ) =

and

with some constant c4. By using the Parseval identity for the Hankel

transform
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it can be shown that VfJΪ) Γ #UTO~lt0(i)Wm Λdλ) is a white noise. We
Jo

denote it by BmJ(t). With this notation we have

LmMmJ(t) = Ct^B^ii)

with some constant c^. Evaluating the variance of MmJ(t), we get c^ =

Λ/(2V)\J2V, which completes the proof.

The canonical representation of Mmj(t) follows immediately from the

equation (13) (cf. [15]):

(14) MmJ(t) = Γ Fn(t, u)wOtn(u)dBntJ(u),
Jo

with the Green's function Fm(t, u) associated with Lm:

(15) Fm(t, u) = wv+hm(t) \l wVtm(yϊ) Γ Γ ι wltm(yv)dyv dyx.
J u J u J u

We now return to the Λf (Z)-process for every K. In view of the relation

dDί = g'(t)D(g'(t)Y' d

at at

the differential operator L in (9) can be rewritten in the form

) - 1L = g\ΐ)DvJ)w • • • D^igit))

dt

This enables us to obtain the following equation for the

(16) LMf(t) = wo(t)B(t), 0 < t < T,

with

dt wι(t) dt dt w(f)

where {w^t); 0 < i < v) are the positive functions given by

o(i) = g(t)wo(i), wt(t) = g\t)g(t) ( l < ί < v -

Xt) = g'(tXg(t))~2v -

We have thus proved the following

PROPOSITION 7. For n = 2v + 1 and every ft, the Mf{t)-process is a v-ple

Markov Gaussian process in the restricted sense determined by the stochastic

differential equation (16).
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The canonical representation of Mf(t) is given by

(17) M\t) = P F(t, u)wo(u)dB(u),
Jo

with the Green's function F(t, u) associated with L:

(18) F(t, u) = wv(t) Γ wv-lyλ) Γ Γ" w£yv-ddyv-, dyγ.
J u J u J u

Now the total positivity for the Gaussian processes M(t), M'(t) and

MmJ(t) follows from Propositions 5', 7 and 6, respectively, if we note the

following simple fact: Let Gaussian processes Y^t) and Y2(t) (Y^O) = F2(0)

= 0) satisfy the relation

Ϊ ° < t < T>ΪXΊΪΓΊΛυ1(t) dt v2(t)

with positive functions vt(t) and v2(t) on [0, T). If Yx(t) is totally positive,

then the same for Y2(t).

THEOREM 2 (the case n — 2v + 1). The following Gaussian processes

are all totally positive:

( i ) M(t) for every tc;

(ii) M'{t) for every κ\

(iii) MntJ(t) for K = 0 (m> 1).

It is noted that M"(t) is not totally positive (n > 5). In fact, it can

easily be proved thar E[M"(f)M"(s)\ < 0 for small t and large s.

For the Gaussian processes in Theorem 2, some specific properties

can be discussed more precisely. We discuss only the ikF(Z)-process, since

the others can be treated similarly.

THEOREM 3. Let n = 2v + 1 and K be arbitrary. For any r, for all

0 < ίj < ί2 < <tr<T such that Pi = max{j; tt = ti^1 = = t^j} < v — 1?

and for all 0 < s1 < s2 < < s r < T sαc/^ ί/̂ αί qt ~ max {;; ŝ  = si^ί —

= -Si.̂ } < v — 1, we have

(19)

and s^ricί positivity holds if and only if

(20) max (*<_„, s^j) < min (^, s^ , £ = P + 1, , r .
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For the proof of Theorem 3 we use the following fact for the kernel

F(t, u) expressed in the form (18).

LRMMA 2 ([18]). For any r, for all 0 < t, < t2 < tr < T such that

Pi < v — 1? and for all 0 < ux < u2 < < ur < T, we have

p/ti, • • ' ί Λ > o ,

\sl9 - 9sr/

and strict positivity holds if and only if

tt_v <Ui<tί9 ί = 1, 2, , r,

where for i < v only the right-hand inequality is relevant.

The Proof of Theorem 3. Noting the basic composition formula (6)

and the fact that

γ(t9 s) = Γ m ( ί ' s ) p(t, u)F(s, u)wl(u)du ,
Jo

the inequality (19) follows from

γ(tu , * Λ r . . f pit,, •• ,tr \pfs» • • ,sr \ ^ m U i ) d U t ,
\SU > ' >,Sr/ J J « l < <Wr \Ul9 ' ' ' , Ur ) \UU , Ur / t=l

which is to be non-negative by Lemma 2. Moreover, we see that strict

positivity holds if and only if the subset U of (0, T)r has strictly positive

Lebesgue measure, where

U = {(ul9 '-,ur)e (0, TY; ux < < ur, U_v <u,< ti9

St-V < ut < si9 i = 1, , r } .

The last statement is equivalent to (20), hence the proof is completed.

As a consequence of Theorem 3 for M'(i), we obtain the following

property of the conditional correlation function

p(A9O\e0)9e0=(\JSti)u( u d 0 < tx < < tr < a < b < T.

PROPOSITION 8. For n = 2v + 1 and every it, and for all 0 < tt <

< tr < a < b < T9 we have

, O\e0) > 0 if U< d(A, O) < t

(i = 0, 1, , r; ί0 = 0, tί+ί = a), and

p(A, O\eQ) = 0 if a< d(A9 O) < T.
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The proof of Proposition 8 was given in [18], so is omitted.

Remark 2. In the even-dimensional case n = 2v, the M(£)-process is

not totally positive. This can be seen from the following consideration.

First the case K = 0. Instead of M(t), consider the stationary Gaussian

process Y(i) = e~tM{eu), — oo < t < oo. The spectral density of Y(t) was

computed by T. Hida [5]. By using the Schoenberg theorem (see [7],

Chapter 7), it can be shown that Y(t) is not totally positive, which implies

the same for M(t).

Next the case K > 0. Suppose that M(i) were totally positive for some

κ0 > 0. Then, for every K > 0, M(t) is totally positive. Since Γn'κ(ty s)

depends upon K continuously, we obtain, as the limit K \ 0, the total posi-

tivity of Γn'°(t, s). This is not the case and we have proved that M(t) is

not totally positive for every K > 0. The same for the case K < 0.

§ 5. Deterministic character of Levy's Brownian motion

This final section will be concerned with a Levy's Brownian motion

X = {X(A); Ae Q} with the infinite-dimensional parameter space Q — Q°°κ.

The set K(e)9 introduced in Section 1, will be investigated. In particular,

with the choice of e = Uf=i Sti for a strictly increasing sequence [tz}f=1

(1 < N < oo), we shall give the exact form of if((Jf=i Sti) (Theorem 4).

This result includes an improvement of the Levy's result ([13]). We shall

finally discuss some developments of Theorem 4.

We begin with the Levy's result which was proved for K = 0 in [13].

His proof can easily be modified for K Φ 0.

PROPOSITION 9 ([13]). For n = oo and every tc, we have K(e) = Q for

any subset e of Q containing an interior point.

We are now in a position to prove our second main result.

THEOREM 4. For n — oo and every K, and for a strictly increasing

sequence {£i}f=1 with 0 < ί ί < T r ( l < i V < oo), we have

Q if
rt\ I ς \

l̂ U bH I —
\ί=l /

N

i = l

where h(t) is the function introduced in Proposition 4.

Proof. First consider the case X]f=ih(t) < oo. Suppose that σ(A\ |Jf=1 St.)
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= 0 were true for some point A e Ui^i Sti. Then, by the isotropic property

of a Levy's Brownian motion X, σ(A; | IJf=1 St.) = 0 must hold for every

A' such that d(A', O) = d(A, O) = t This fact implies that M(t) is

measurable with respect to the σ-field generated by {X(B); Be{J?=1Sti}.

Furthermore, we see again from the isotropic property of X that M(t) is

actually measurable with respect to the σ-field generated by {M(ti)}f=ly

i.e., σM(t\{ti}ξ=1) = 0. Proposition 4, however, tells us that σM(t\{tt}^>09

which is a contradiction. Hence we have σ(A \ Uf=i Sti) > 0 for any

A e UΓ-i Stt, i.e., ί(Uf-i SJ = UΓ-. Stt.

Next consider the case 2]Γ=i h(tt) = oo (N = oo). We shall first show

that σ(O\{JΓ=1St) = 0. From the isotropic property of X it follows that

μ{°\QiSt) = Elχ(°)\M<ti; i = 1,2, .-.] = ^(Oift lr-O.

Hence by Proposition 4, we get

σ(θ\)jS^ = σM(O\{ti}T-S) =0.

Now we take an arbitrarily point A with 0 < d(A, O) = t<tx and

show that σ(A \ ijΓLi Sti) = 0. Take such a motion α on Q that carries

the point A to the origin O and O to Ao = (ao(t), a^t), 0, 0, •) e Q, where

αo(O = f°< cos t -

! cosh t

- 1 ax(t) =

_ i

t

sin t

sinhί

for

for

for

* = 0,

f c = - 1 .

Set Q, = {£ = (ό0, 6j, 62, .) e Q; b, = 0}. Then, we see that

^ n Q, = {B e Qi; a-'B e Sti} = {Be ft; d(B, O) = tt],

where

tf^~t2 for * = 0 ,

ί< = I cos"1 (cos tjcos t) for K = 1.

(cosh"1 (cosh Zjcosh ί) for A; = — 1,

Since we have ΣlΓ-i Λ(ί<) = oo, it follows that σ(OHJΓ=iQrStinQi) = 0. By

using the relation

σ(aA\ae) = σ(A\e) (A e Q, e e Q) ,

we have
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= o.

This proves that K([Jr=1 Stι) 3 \J0^tl St.

Now Proposition 9 leads us to conclude that

κ(ΰ sΛ = κ((ΰ sΛ U
0<t<tι

which completes the proof.

We shall give a simple development of Theorem 4. Set

Qm = {B = (bQ, b» 62, . . •) € Q; 6X = 62 = = 6W = 0} (1 < m < oo).

The following facts were first discovered by P. Levy [10] for tc = 0. We

can now prove the same result for the cases K = 1 and A: = — 1.

PROPOSITION 10. Let n = oo α72cί /c = 0, 1 or — 1 . .For Ao = (aQ(t\

ax(t), 0, 0, •) zi iίλ d(A0, Qm) = te (0, T), we have

and

t/VΎ for K = 0 ,

cos" 1 (cos2 0/2 for K = 1 ,

cosh" 1 (cosh 2 0/2 for K = — 1 .

I n view of Propos i t ion 10 i t is easy t o prove t h e following development

of Theorem 4.

T H E O R E M 4'. F o r n = oo a n d every κ9 and for a strictly increasing

sequence [t^\f=1 with 0 < £ ί < T ( l < i V < oo), we have

Qm if Σ Λ(O - oo ,

if

Appendix. Proof of Lemma 1

The formula (10) which we must prove can easily be shown for v = 1,

so we consider v > 2 in what follows.

(a) K = 0. The spherical function Φ\v+h\t) is expressed in terms of

the Bessel function Jv-ι/2(x) of order v — 1/2:
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By virtue of the formula

d
dx

we have

) \ x { x J ( x
2/L dx

-+"V,-,Λ(*)],_ i ( = (2v - l)Φf-^(t).

(b) K = 1. Making a change of variable y = g(£) = tan t, we have

( s i n θ γ , - l d θ J I

dy

— iy sin 0(1 + f)

Jo \ Vl +
d ί ( y + icosg)(ysinX W I

= (2v - lXsin^Φf^ Xί) + cos ίΦΪΓx' *(«)}.

The spherical function Φ**+1>1(ί) is expressed in term of the ultraspherical

polynomial P^ix) of degree ^ and order v:

Φ\^ \t) = P«(x)/P<"(l), x = cos ί.

We use the formulae ([22] pp. 81-86)

2(v + ^xPίϊl^af) = (̂  + 2)P&1)(x) + (λ + 2v -

to obtain

= (2v -

which completes the proof.
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