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NORMAL HOLOMORPHIC MAPPINGS AND CLASSICAL

THEOREMS OF FUNCTION THEORY

KEN-ICHI FUNAHASHI

§ 0. Introduction

In [7], O. Lehto and K. I. Virtanen introduced the concept of normal
meromorphic functions in connection with the study of boundary behaviour
of meromorphic functions of one complex variable.

In this paper, we generalize the theory of normal meromorphic func-
tions to the case of holomorphic mappings into higher dimensional complex
spaces in connection with the theory of hyperbolic manifolds and
Nevanlinna theory.

The main concern of this paper is the generalizations of the big Picard
theorem and Lindelόf's theorem which appear in the classical function
theory.

§ 1. Definition of normal holomorphic mappings

In this section, we define the concept of normal holomorphic mappings
similar to normal meromorphic functions (cf. [7]).

Let M and N be complex analytic spaces. We denote the set of
holomorphic mappings from M into N by Hoi (M, N). We say a subset
J^ of Hoi (M, N) to be a normal family if SF is relatively compact in
Hoi (M, N) in the sence of compact open topology.

DEFINITION 1. Let I) be a homogeneous bounded domain in C" and
N be a complex analytic space. We say that a holomorphic mapping /:
D —• N is normal if the family

is normal, where Aut D denotes the holomorphic automorphism group of D.

DEFINITION 2. We say that a subset SF of Hoi (D, N) is Aut D-
invariant, if fog e 8F for every fetF and every g e Aut D.
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We study the condition of normality of holomorphic mappings.

PROPOSITION 1. Let ds2

D be the Bergman metric of a homogeneous

bounded domain D in Cn and (TV, ds\) be a compact Hermitian manifold.

If a holomorphic mapping f: D~>N satisfies

f*ds\^ C-dsl

for a finite constant C, then f is a normal holomorphic mapping.

Proof. As ds2

D is Aut D-invariant,

(fog)*ds2

N = g*f*ds2

N £ C.g*ds2

D = C-ds2

D

for every g e Aut D. Hence SF = {/° g; g e Aut D} is equi-continuous. As

N is compact, 8F c Hoi (D, N) is normal according to Ascoli-Arzela

theorem. q.e.d.

THEOREM 1. Let D be a bounded homogeneous domain in Cn and (N,

ds2

N) be a Hermitian complex manifold. If a subset 2F of Hoi (D, N) is an

Aut Ό-invariant normal family, then there exists a constant C such that

f*ds2

N £ C-dsl for every fe^.

Proof Let

C(z)= sup f*ds2

Nlds2

D(z,x)
lMI=i,/ejr

for each z e D, and x e TzC
n, where || || is the length by a flat metric of

Cn. We first prove C(0) < oo for a point 0 6 D.

Suppose that C(0) = oo. Then there exist sequences {fn}n=ι C ^ and

{xn e T0C
n, \\xn\\ — 1} of holomorphic tangent vectors such that

( i ) tfdslφ, xn) > n* ds2

D(0, xn\

where we may assume that {xn} converges to x e TQCn. From (i), we see

(ii) ||/n*xJU >n-a,

where || ||^ is the length measured by ds2

N and a is a positive constant.

Since IF is relatively compact in Hoi (D, N), some subsequence {fnJ^=1 of

{Q exists such that fUk -> /e Hoi (D, N) and fnβ)) ->p e N as jfe -> oo. Con-

sequently fΛk*xn]t ->f*x and \\fnk*Xnk\\N->\\f*x\\N < °° as ^ - > o o . This is

contradictory to (ii) and hence C(0) < oo.

We secondly prove that C(z) is constant on D. From definition of

C(z),

f*ds\(z)^ C(z).ds>D(z)

for every felF. As ds2

D is Aut D-invariant,
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for every g e Aut D. Hence C(g(z)) ^ C(z). Similarly C(z) ^ C(g(z)) and

so C(z) = C(g(,ε)). As -D is homogeneous, C(z) is constant on D and the

theorem is proved. q.e.d.

COROLLARY 1. Let D and N be as above. If f: D -> N is a normal

holomorphίc mapping, then there exists a finite constant C such that f*ds\

^ C ds>D.

§ 2. Examples

In this section, we give some examples of normal holomorphic map-

pings.

Example 1. Let Δ = {\z\ < 1} C C be the unit disc.

( i ) We choose arbitrarily distinct q points pί9 -,pq in the Riemann

sphere Pι. Let 2F be a family of holomorphic mappings from J into Pι

which satisfies the following condition (C).

(C) Every / in 3F takes each value pt e P\i — 1, , q) with multiplicity

^ m̂  or / omits a point pt and {mj?=1 satisfies

where we set m̂  = oo in the case / omits pt.

Then 2F is normal (Montel-Valiron, cf. Theorem 8.3 in H. Fujimoto

[2]). Particularly, if a holomorphic map /: Δ -> P1 satisfies the condition

(C), then / is a normal holomorphic mapping, that is, a normal mero-

morphic function (cf. [7]).

(ii) Let T = C/L be a complex torus and take a point p of T. We

consider the family IF of all holomorphic mappings from Δ into T which

omit a value p e T. Then SF is normal. Particularly, every / in 3F is a

normal holomorphic mapping.

(iii) Let V be a compact Riemann surface of genus >̂ 2. Then

Hol(zί, V) is normal and hence every holomorphic mapping /: Δ->V is

normal.

(iv) Let N be a paracompact connected complex analytic space and

M be a hyperbolically embedded subspace of JV. Then Hoi (J5, M) is rela-

tively compact in Hoi (D, N) (See [5]). Particularly a holomorphic map-

ping from D into N is normal if the image of / is contained in M. For

such examples see M. L. Green [3] and [4].
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EXAMPLE 2. ( i ) Let ds] = dzdz/Q. — \z\2)2 be a Bergman metric of

the unit disc Δ. We take homogeneous coordinates (z0, z^j of P 1 and let

w = ZJZQ for z0 Φ 0. Then Fubini-Study metric of P 1 is given by

ds2

P1 = dwdw .

(i+M2)2

Consequently a meromorphic function /: Δ -> P 1 is normal if and only if

for some finite constant C (cf. [7]).

(ii) Let T= CnjL be an n-dimensional complex torus. Then /:

is normal if and only if a lifting f = (fu , fn) of / to Cn satisfies

W g i

for some finite constant C. A holomorphic function satisfying condition

(*) is classically called a Block function.

§3. The estimate for characteristic functions

In this section, we consider the case that D is the unit ball Bn =

{Σ?=il*iP < 1} <= ̂ n T n e Bergman metric of Bn is given by

dsln ± t J τ[(l

where | ̂  |2 = Σ ^ i l ^ P Let (iV, ds^) be a Hermitian manifold and let ωN,

ωBn be the (1, l)-form associated with ds2

N, ds%n respectively. We calculate

the characteristic function of a normal holomorphic mapping /: Bn —> N.

LEMMA 1. Let f: Bn —> N be a holomorphic mapping such that f*ds2

N

<̂  C ώ^n, where C is a constant. Set φ — \Λ—ϊ/2 Σ?=i dzt Λ c?0j α/zc? .B(r)

= {\z\<r}. Then,

ί
Jί(r)

Λ π-1 *< Π

^N ι\ ψ == ^ * I (Oβn I
B(r) ' J B(r)

Proof. We set

f*WN = ^ΞL±_ gi3dztΛ

α)^ = — _ — £] Λ^d^ Λ
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Then,

Λ f[ -SΞλ.- dzj A dz3

Since a matrix (gt]) — C-(htj) is of negative semi-definite,

ga <: C hii (i = 1, , n) .

Hence,

f /

= C ί ω£« Λ ^ ^ . q.e.d.
J B(r)

LEMMA 2.

A_ ίr d t ( [ ω Λ φ"-1) < — log --1—- + (n - 1) - d

(0 < r < 1) ,

where Cx = 2 log 2.

Proof. Since the area of the boundary d£>(r) of £>(>) is 2πn/(n — !)!•

r2"-1 and

Λ n i 7z!
ω" Λ ^ = - (Γ^ l

J B ( O Jo (1 — ^ 2 ) 2 \ 7i J(n—1)1

Λί , . 2 w - l Λί 7 . 2 κ - l

- 2ττ" -ϋ— du + 2πn(n - 1) ^ -
J 0 ( 1 — ί£ 2 ) 2 Jo I — U2

Using the estimates

J o ( 1 — U2f

and

-± du£?"-1 - du-,
Jo 1 — u2 Jo 1 — ί i 2

we see
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f ωBn A φ"'1 rg πn-^— + (n - l)πn • ?»~1 [log - - 1 — + log (1 + t)]
jB(t) 1 — f L I — t J

Hence,

Jo 1 — f Jo L 1 — t i
d t

where

C, = ί1 Γlog - - 1 - + log (1 + t)]dt = 2 log 2 . q.e.d.
Jo L 1 — ί J

DEFINITION 3. Let 5re, (TV, ds^) be as above and f:Bn-+Nbea. holo-

morphic mapping. We define the characteristic function of / by

PROPOSITION 2. Lei ̂  6e α/2 Aut Bn-inυariant normal family of holo-

morphic mapping from Bn to (N, ds\). Then there exists a constant C(r)

depending only r such that

T(f, r) ^ C(r) (0 £ r < 1)

for every f e 3F%

Proof. Since there exists a constant C such that f*ds2

N <̂  C ds\n for

every /e ̂ , according to Theorem 1, it is clear by Lemma 2. We can take

C(r) = — log λ + (n- 1)0, C. q.e.d.
2 1 — r2

COROLLARY. // a holomorphic mapping f: Bn -> N is normal, then

T(fo g, r) = θ(log - f ^ 7 ) (r — ^ 1)

/or euβrj g e Aut 5n.

Remark 1. The property of the characteristic function for a normal

holomorphic mapping is stronger than the property
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T(f, r) = θ(log ---!-) (r —> 1) .

Remark 2. If N is the projective space Pn, the inverse of the above

proposition holds. This is clear by Theorem 5.10 in H. Fujimoto [2], be-

cause Bn is a homogeneous domain.

§ 4. A generalization of the big Picard theorem

We set Δ = {w e C, \ w\ < 1} and J* = {w e C, 0 < | w\ < 1}. Let π :

Δ —> J* be the universal covering, where 7r(z#) = e(M7+1)/(w"1).

DEFINITION 3. A holomorphic mapping / from J* into a complex

analytic space N is said to be normal if foπ: Δ-> N is a normal holo-

morphic mapping.

THEOREM 2. Lei N be a paracompact complex manifold. If f: zί* —> Λx

is α normal holomorphic mapping, then f can be extended to a holomorphic

mapping from Δ into N.

Proof. First of all, we show that there exists a sequence {zn}n=i C Δ*

converging to the origin 0 such that {f(zn)}n=ί converges to some point pQ

in N. Take a sequence {zn}n=i C J* converging to 0, points {wn} such that

π(α;n) = zn and take ^ κ e Aut Δ such that gn(0) = wn. Consider the family

£F = {/°τro^ = l o By the assumption, ^ is normal. We can take a sub-

sequence {/o7ro£κJ~=1 of {/oτro^J-=1 such that {/°ττo^J-=1 converges to

some h e Hoi (J, iV). Particularly /° TΓ O ^^(0) -> Λ(0) = po We set π o ^njfc(0)

= 0Λ. Then f(zL)-+p0.

Secondary, v̂ e take a hermitian metric ds\ of N. Since /oτr: Δ-> N

is normal, according to Theorem 1 of Section 1

( 1 ) (fo*)*ds]r^C.dsl,

where C is a constant and ds] — dzdzj{l — \z\2)2, (1) implies

( 2 ) f*ds2

N£ C ώJ ,

where

ds2 = — dzd*
J* 4 |

We set rk = \zk\. It may be assumed that {rk}^=1 is a decreasing se-

quence. We denote by dN the distance of N defined by ds\. Then
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( 3 ) dN(f(z), p0) £ dN(f(z), f{zk)) + dN(f{zk\ p0) .

When \z\ — rk, according to (2)

(4) dN(f(z\ f{zk)) = f9- Γ \M < v c
NKnj'n"» 2 J | d | l l / | | ~ logl/rfc

The right hand side converges to 0 as k-+ oo. According to (3) and (4)y

we see that, for every ε-neighbourhood W of p0, when k0 is sufficiently

large, f({\z\ = rk}) is contained in W for k ^ Ao. By the method in the

proof of Theorem 3.1 in S. Kobayashi [6], Chapter VI, we can see that,

for every neighbourhood U of p0, if δ > 0 is sufficiently small, f({z e zf*,

\z\ < δ}) is contained in [7, and so we can define a holomorphic extension

of / to Δ by /(0) = p0. q.e.d.

Remark 3. The above theorem remains valid for a paracompact con-

nected complex analytic space N, because N has a hermitian metric h in

the extended sence, which induces the original topology of N, and the

discussion of Section 1 and the above proof are available for such (N, h)

(see the introduction of P. Kiernan [5]).

Remark 4. Let N be a paracompact connected complex analytic space

and M be hyperbolically embedded subspace of N. Then a holomorphic

mapping /: J* —> N with /(/P) C M is normal. Hence, Theorem 2 is a

generalization of a big Picard theorem given in S. Kobayashi [6], Chapter

V, Theorem 6.1.

§5. Asymptotic values

In this section, we consider a generalization of the Lindelof's theorem

on asymptotic values of bounded holomorphic functions.

DEFINITION 4. Let / be a holomorphic mapping from a simply con-

nected domain G c C into a complex analytic space N. We define an

angle with vertex at zoedG to be a. domain A denned as follows: Taking

a boundary point zx{Φ z0) of G and a positive constant ε, we set

A - {z; ε < ω(z) < 1 - e} ,

where ω(z) is the harmonic measure of the arc between z0 and zx with

respect to G.

We say that / possesses the angular limit p0 at z0 e 3G if for every
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neighbourhood U of p0 and every angle A with vertex at z0, a neighbourhood

V of z0 exists such that f(Vf] A) c C7.

The following theorem is a generalization of Theorem 1 in the Lehto-

Virtanen [7].

THEOREM 3. Let f be a holomorphic mapping from the unit disc Δ into

a complex analytic space N. Suppose that f has an asymptotic value poe N

at a point z0 e dΔ along a Jordan curve Γ lying in Δ and that f does not

possess the angular limit p0 at the point z0. Then, there exists an arbi-

trarily small neighbourhood U of p0 such that, for every ε > 0, there are a

Jordan arc L in Δ with end point at zQ along which f(z) tends to pQ and

a sequence {zn}™=1 in Δ converging to zQ satisfying the condition f(zn)e3U

and dΔ{z, L) < ε, where dΔ is the hyperbolic distance of Δ.

For the proof, we need the following

LEMMA (An extension of the Lindelδf 's theorem). Let r0 be greater

than or equal to 0 and D = {z; \z\ > r0, 0 < arg z < a}. Let f(z) be a bounded

holomorphic function on D which is continuous on D U {r e R, r > r0} and

lim sup I f(r) \ = 0. Then for every d > 0,

lim sup {!/(«)|; 0 ^ axgz £ α - δ, \z\ > p} = 0 .
p-*oo

Proof. This proof is suggested by H. Fujimoto.

We use the theory of harmonic measure (cf. [8], III, § 2). We may

take α — π. As the case r0 = 0 is well known, we may take r0 is greater

than 0. We set 3' = δ/π.

Let ώ(z) be a harmonic measure of {|#| = r0, Imz > 0} with respect to

D = {z; Imz > 0, \z\> r0}. Then, by the well-known theorem on solutions

of Dirichlet problem (cf. [8], II, § 1, p. 22-23) there exists r, > 0 such that

\ώ(z) < i l on D' = {z; ze D, \z\ > r,} .

We define harmonic functions ωu ω2 for all r2 greater than ru rQ as follows.

ωx{z)\ harmonic measure of {z; real, z > r2} with respect to D,

ω2(z): harmonic measure of {z; real, z > r2} with respect to {Im z > 0}.

We see ω2(z) = 1 — arg (z — r2)/π. Then,

2(z) > ^ , \z\ > rλ D{π- δ' π > a r g z > 0, \z\ > r2} .
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Also we see ω2(z) <J ωx(z) + ώ(z) on D by the maximum principle. As ωx{z)

^ ω2(z) - ώ(z).

(z) > !L, \z\ > rή C |ωι(«) > !L\ o n ΰ ' .

Hence,

{π - δ > arg z > 0, \z\ > r2} c ί ω ^ ) > y } on

We define τn(r2), m*(r2) as follows.

ra(r2) = sup {|/(r)|; r is real, r ^ r2} ,

m*(r2) = sup {|/O)|; Γ - δ > arg* ^ 0, \z\ ̂  r2} .

If |/(2;)| ^ M, then by two-constants theorem (cf. [8], III, §2, p. 41-42)

m*(r2) ^mW^M1-'''* .

When r 2 -^oo, from assumption m(r2) -> 0, and then m*(r2) —> 0. q.e.d.

Proof of Theorem 3. (This is essentially due to Lehto-Virtanen [7].)

We may suppose that G — {z; 0 < argz < ττ/2} and z0 = oo, because

the hyperbolic distance is conformally invariant. We may suppose .Γ starts

at z = 0 so that Γ divides G into two distinct parts Gί and G2. Let Gx denote

the part of G bounded by Γ and the imaginary axis. By assumption, /

does not converge uniformly to p0 on some angle A: δ < arg z < ττ/2 — 2d

(d > 0). The same is also true at least in one of the intersections Gx Π A

and G2 Π A. We assume in the following that it is true in Gj Π A. Let

U be a sufficiently small neighbourhood of p0 which is biholomorphic to

a subvariety F i n a bounded domain W in Cm by a map φ and let p0 be

mapped to the origin 0 in Cm.

We map Gι onto the right angle 0 < arg w < ττ/2 and Γ onto positive

real axis R+, keeping 0, oo fixed. The image of G^A lies in the angle

0 < arg w < π/2 — 2δ9 as follows immediately if we apply the maximum

principle to the harmonic measures of the real axis and Γ, respectively

with respect to G and Gλ.

Consider f~\U) and the connected component U; of f~\U) which is

a neighbourhood of ΓΠ{oo > \z\ > R} for a large R and let U" be the

image of GjΠ Uf. The map ψof can be represented as φ°f(w) = (f^w), ,

fm{w)) on f-\U), and each f^w) (i = 1, , m) satisfy |Λ(w;)| < M, where

M i s a constant.
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For some U, it is not possible that the upper part of the boundary

of U"f){\z\ > R} is always above the line {arg w = τr/2 — δ, \w\ > R] for

some R > 0, because otherwise G xn AΠ{|-ε| > R} is contained in f~ι(U)

for large R and / has uniform limit p0 in G} Π A according to the above

lemma and it is a contradiction.

We can introduce a countable family of similar triangles {Tλ}λeΛ defined

as follow: the base of Tλ lies on the positive real axis, the two other sides

are equal and the vertex angle is δ/2, for infinite Af c A, the vertex of

Tλ (λ e Λf) is in {0 < arg w < π/2 - 3} Π dU" and I J ^ Tλ is a simply con-

nected domain which is contained in U". We set D — {Jλe/i Tλ.

Let ω(w, D) be a harmonic measure with respect to D which is equal

to 0 on the real axis and is equal to 1 on the rest of the boundary. Since

f(z) tends to the limit p0 along Γ, ft(w) tends to 0 along the positive real

axis.

We consider the level line L: ω(w, D) = λ (0 < λ < 1). According to

the above lemma, ftiw) tends to 0 along L, that is f(w) tends to p0 along

L as w->oo. By the above construction, we can take a sequence {zj^=i

C 3D and a triangle Tn in {Tλ} with vertex zn such that f(zn)edU. Let

w(w, Tn) be a harmonic measure with respect to Tn which is equal to 0

on the real axis and equal to 1 on the rest of the boundary. Since Tn

is contained in D, ω(w, D) < ω(w, Tn) on Tn by the maximum principle of

harmonic measure. This implies that the level line ω(w, D) = 1 is above

t h e level l ine ω(w, Tn) = λ o n Tn. We set zn = u + i υ. L e t Qx(u + ί υx)

and Q2(u + i v2) be the intersections of the straight line Re w = u and the

level curves ω(w, D) = λy ω(w, Tn) = λ, respectively. Then v2 < vx. Since

Gx cz G, we see dG < c?Gl, where dG, dGl are hyperbolic distance of G, Ĝ

respectively, and

dG(zn, Q2) < rf^X^, QO

2 ^ ^ v 2 s i n ^ J ^ \v\

2 sin 5 LΊ 2 sin δ v2

where v/v2 = A(̂ ) is independent on zn. Since fe(^) -> 1 as λ —• 1, {2n}, L

can be chosen such that

dj(2n, L) < ε for any ε > 0 . q.e.d.

We give a generalization of a result in Lehto-Virtanen [7].
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THEOREM 4. Let f:Δ-+Nbea normal holomorphic mapping and let

f have an asymptotic value p0 e N at a point z0 e dΔ along a Jordan curve

J lying in Δ. Then f possesses the angular limit p0 at the point zQ.

Proof. We repeat the discussion of [7], p. 52 or [9], p. 86-87 for self-

containedness of this paper.

Suppose that / does not possess the angular limit p0 at z0. Then,

by Theorem 3, for a small neighbourhood U of p0 there exists a Jordan

curve L in Δ with end point at z0 on which f(z) tends to p0, and a sequence

[zn}ζ=1 which converges to zQ and f(zn)edU and dΔ(zn,L) < M< oo. By

compactness of dU, we can take {zn}n=1 such that f(zn)->p'edU. Denote

by zf — Sn(z) a function which maps U conformally onto itself and satisfies

the condition Sn(0) = zn. We denote by K the hyperbolic circle with

center at z = 0 and hyperbolic radius M + 1. Since dΔ is invariant by

Sn9 S"1 maps some arcs of L into K. We denote by Cn the unions of such

arcs of L for a number n. Since {/Ό Sn} is a normal family, a subsequence

{foSnk}1°=1 converges to a holomorphic mapping ψ: Δ-> N. As f(Sn(O)) =

/(*») - Pn converges to p' (Φp,\ φφ) = p'. While, C - Π ^ i l ΰ Λ ^

C K possesses a continuum on which φ(z) = p0, and hence φ(z) = p0. We

have thus arrived at a contradiction and the theorem is proved. q.e.d.

COROLLARY. Let N be a paracompact connected complex analytic space

and let M be a hyperbolίcally embedded subspace of N. We consider a holo-

morphic mapping f:Δ-+N with f(Δ) c M. If f has an asymptotic value

poe N at zoe dΔ along a Jordan curve J lying in Δ, then f possesses the

angular limit pQ at zQ.

Therefore we can see that the Lindelof's theorem holds for the fol-

lowing mappings (cf. §2, Example 1, (iv)).

Example 3. ( i ) Let /: Δ-+Pn be a holomorphic mapping which omits

D — {JfLΫ Hu where {Ή^fLX1 are hyperplanes in general position.

(ii) Let /: Δ -> T = Cn\L be a holomorphic mapping which omits D

C T, where D is a hypersurface of T not containing a proper complex

subtorus.

We give an interesting example of the non-normal holomorphic map-

ping.

Example 4. We denote (wQ, wu w2) the homogeneous coordinates of P2.

We define a holomorphic mapping /: Δ -> P2 by



NORMAL HOLOMORPHIC MAPPINGS 101

z i > (2, z + 1, (1 - z)e<1+*»«-»)

and four complex lines £0, £u £29 £z in P2 in general position as follows,

£0: wo = O, £,: wx = 0 ,

£2: wί — w2 = 0 , ^ 3 : w0 — w^ — w2 — 0 .

Then we can easily see that / omits Ό = (JLo £f We remark that

Re (1 + z)l(l - «) = 1 on {z e Δ\ \z - 1/21 = 1/2} and lim^^o (1 - r)e ( 1 + r ) / ( 1" r )

= co. Hence, we see that f(z) has an asymptotic value (1, 1, 0)ePn at

z=l along a curve {z e d, \z — 1/21 = 1/2}, while / has a radial limit (0, 0,1)

e P 2 at z = 1. Therefore / is not a normal holomorphic mapping according

to Theorem 4. But this mapping / is of bounded type (i.e. lim sup T(f, r)
r-»l

< oo).
In fact, let f*d$2

Pl = p(f(z)f dzdz, where dsp2 is the Fubini-Study metric

on P\ then p(f(z)) = 97az9zlog||/0)||2, where

and we have

T(f, r) = 1 Γ A f p(f(z)Tdxdy
π Jo £ J j ( o

= -A- Γ log ||/(re")ll <*? - log ||/(0)|| .
2πr Jo

Using

A_ Γ _Anz!_cw - l (o < r < l),
2ττ Jo |1 - re^|2 V ~

we easily see T(/, r) ^ C, where C is some finite constant.

§ 6. Hyperbolic analysis and generalization of the Lindelδf 's theorem

Let M be a connected complex analytic space, dM be its Kobayashi

pseudo-distance (cf. [6]), and let A(M) be the set of non-hyperbolic points,

i.e.

A(M) = {p € M; there exists a point q e M such that

g =£ p and dM(p, q) = 0} .

We remark that d^Q?, g) is continuous with respect to p and q (cf.
T. J. Barth [1]).
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We give a condition of normality for holomorphic mapping in the

term of hyperbolic analysis.

PROPOSITION 3. Let M be a connected compact complex manifold and

let f: Δ -* M be a holomorphic mapping. We define a global cluster set of

fby

C(f) = {p e M; there exists a sequence {zn}ζ=ι C Δ such that

\zn\ >l,f(zn) >p}.

If C(/) Π A(M) = φ, then f is a normal holomorphic mapping.

Proof. Suppose that / is not normal. We take a hermitian metric

dslf of M. Then there exists some sequence {Gw}~=i C Aut Δ such that

( 1 ) (/o Gn)*ds\lds4$, - | Λ > oo (n > oo)
V dz /

and |Gw(0)| -^ 1 (n -> oo) according to Section 1.

We set gn = /o Gn and let p e M be an accumulated point of the set

{5n(0)}n=i C M. (1) implies

( 2 ) > oo ,

where || ||M is the length measured by ds2

M. Let U be a sufficiently small

coordinate neighbourhood of p. Using the Cauchy estimate, we see that

for any positive integer n and sufficiently large m

where Δ(l/m) is a disc of radius 1/m. That is, there exists a sequence

{xm}Z=ι adU such that xme gn(Δ(llm)). We see

dM(gM, xJ ^ dh, —) > 0 (m > oo) .
\ ml

By continuity of dM(p, q), we see that there exists a point qedU such that

d^(p, g) = 0, that is p e A(M). This is a contradiction and the theorem

is proved. q.e.d.

We give another type of generalizations of the Lindelof's theorem.

THEOREM 5. Let f be a holomorphic mapping from Δ to a connected
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complex analytic space M. Suppose that f has an asymptotic value poe M

at zQ e dΔ along a Jordan curve in Δ and that f does not possess the angular

limit p0 at z0. Then p0 e A(M).

Proof. We remark that dM induces the usual topology on M — A(M)

(cf. Barth [1]). Suppose p0 is not in A(M). Then we can take 2ε-neigh-

bourhood U with respect to dM which is contained in M — A(M). According

to Theorem 3, there exist a Jordan curve L in Δ with end point z0 and

a sequence {zn}n=i which converges to z0 such that / has an asymptotic

value p0 along L and satisfy the condition f(zn) edU and dΔ(zn, L) < ε.

Let un be points of L which satisfy dΔ(zn, un) < ε. Then,

dM(f(zn),pd ϊS dM(f{zn), /(«„)) + dM(f(un), A )

For large n,

dM(f(un), p0) > I s .
Li

On the other hand,

dM(f(zn\ f(un)) ^ d,(zn9 un) .

Hence,

dM(f(zn), Po) < — ε for large n .
L\

As dM(f(zn), p0) — 2ε, this is a contradiction and hence the theorem is

proved. q.e.d.

COROLLARY. Let M be a hyperbolic complex space and f: Δ-+M be a

holomorphic mapping. If f has an asymptotic value p0 e M at a point zQ

e dΔ along a Jordan curve lying in Δ, then f possesses the angular limit

Po at ZQ>
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