THE INVARIANT POLYNOMIAL ALGEBRAS FOR THE GROUPS ISL(n) AND ISp(n)

HITOSHI KANETA

§ 0. Main theorems

This paper is a continuation to the previous one [3]. We shall show that, for the inhomogeneous linear group $\operatorname{ISL}(n+1, R)$ (resp. $\operatorname{ISp}(n, R)$), the coadjoint invariant polynomial algebra is generated by one (resp. n) algebraically independent element. We shall state our results more precisely.
(i) $\operatorname{ISL}(n+1, R),(n \geqq 1)$.

We can consider the following vector space \mathscr{S}_{n} to be a subspace of the dual space realized as in Section 1 of the Lie algebra of $\operatorname{ISL}(n+1, R)$;

$$
\mathfrak{S}_{n}=\left\{\left(\begin{array}{ccccc}
0 & & & 0 & 0 \\
& \ddots & 0 & \vdots & \vdots \\
y_{21} & \ddots & \ddots & \vdots & \vdots \\
0 & \ddots & \ddots & \vdots & 0 \\
& y_{n+1, n} & 0 & y_{n+1}
\end{array}\right)\right\} .
$$

Let $t=\left(\prod_{k=1}^{n} y_{k+1, k}^{k}\right) y_{n+1}^{n+1}$ be a polynomial function on \mathscr{S}_{n}. Denote by \mathscr{I}_{n} the C-algebra of the coadjoint invariant polynomial functions on the dual space of the Lie algebra of $\operatorname{ISL}(n+1, R)$.

Theorem 1. The restriction map of \mathscr{I}_{n} into the set of polynomials on \mathfrak{S}_{n} is an injective algebra-homomorphism, whose image is $C[t]$.
(ii) $\operatorname{ISp}(n, R)(n \geqq 1)$.

In this case we can consider the following vector space \mathfrak{S}_{n} to be a subspace of the dual space realized as in Section 2 of the Lie algebra of $I S p(n, R)$;

Let $s_{i}(0 \leqq i \leqq n-1)$ be the i-th fundamental symmetric polynomial in $y_{2 k, 2 k-1} y_{2 k-1,2 k}(1 \leqq k \leqq n=1)$ and set $t_{i}=s_{i} y_{2 n-1,2 n} y_{2 n}^{2}$. It is not difficult to see that $t_{i}(0 \leqq i \leqq n-1)$ are algebraically independent over C. Denote by \mathscr{I}_{n} the algebra of coadjoint invariant polynomial functions on the dual space of the Lie algebra of $\operatorname{ISp}(n, R)$.

Theorem 2. The restriction map of \mathscr{I}_{n} into the set of the polynomials on \mathfrak{S}_{n} is an injective algebra-homomorphism, whose image is $C\left[t_{0}, \cdots, t_{n-1}\right]$.

The proofs of Theorems 1 and 2 will be given in Section 1 and Section 2 respectively.

§ 1. The group $\operatorname{ISL}(n+1, R)$

Let G_{n} and $I G_{n}$ be the Lie groups $S L(n+1, R)$, and $\operatorname{ISL}(n+1, R)$, respectively. Denote by g_{n} and $I \mathfrak{g}_{n}$ their Lie algebras respectively. To be definite,

$$
I G_{n}=\left\{\left(\begin{array}{cc}
u & a \\
o & 1
\end{array}\right) ; u \in G_{n}, a \in \boldsymbol{R}^{n+1}\right\}, I \mathfrak{g}_{n}=\left\{\left(\begin{array}{cc}
X & x \\
0 & 0
\end{array}\right) ; X \in \mathfrak{g}_{n}, x \in \boldsymbol{R}^{n+1}\right\} . \text { We }
$$ can identify the dual space $I \mathrm{~g}_{n}^{*}$ of $I g_{n}$ with $g_{n} \times \boldsymbol{R}^{n+1}$ via the following bilinear form on $I \mathfrak{g}_{n} \times\left(\mathfrak{g}_{n} \times \boldsymbol{R}^{n+1}\right)$;

$$
\left\langle\left(\begin{array}{cc}
X & x \\
o & 0
\end{array}\right),(Y, y)\right\rangle=\langle X, Y\rangle_{s \ell(n+1)}+\langle x, y\rangle_{n+1}
$$

where $\langle X, Y\rangle_{s \ell(n+1)}=2(n+1) \operatorname{tr}(X Y)$ i.e. the Killing form of the Lie algebra g_{n} [4, p. 390] and $\langle x, y\rangle_{n+1}={ }^{t} x y$. Clearly the following $e_{i}, e_{j k}$ and $f_{\ell}(1 \leqq i \leqq n, 1 \leqq j, k, \ell \leqq n+1, j \neq k)$ form a basis of $I g_{n}$;
and $f_{\ell}={ }^{t}\left(0 \cdots 0 \stackrel{1}{1}_{1}^{(1)} 0 \cdots 0\right)$. The dual basis is given by the following \hat{e}_{i}, $\hat{e}_{j k}$ and \hat{f}_{e};

$$
\hat{e}_{i}=-\frac{1}{2(n+1)^{2}}\left[\begin{array}{cc}
i-(n+1) & \\
\ddots & \\
i-(n+1) \\
& \\
& \\
& \\
& \\
& \\
& \\
& \\
& \text { (i) }, \quad \hat{e}_{j k}=\frac{1}{2(n+1)} e^{-1} e_{k j}
\end{array}\right.
$$

and $\hat{f}_{\varepsilon}=f_{\ell}$. For a $g=\left(\begin{array}{cc}u & a \\ o & 1\end{array}\right) \in I G_{n}$ we have

$$
\left\langle g^{-1}\left(\begin{array}{cc}
X & x \\
0 & 0
\end{array}\right) g,(Y, y)\right\rangle=\left\langle X, u Y u^{-1}\right\rangle_{s t(n+1)}+\left\langle X a+x,{ }^{t} u^{-1} y\right\rangle_{n+1}
$$

Consequently the coadjoint action $\operatorname{CoAd}(g)$ of g is given by

$$
\operatorname{CoAd}(g)(Y, y)=\left(u Y u^{-1}+A,{ }^{t} u^{-1} y\right)
$$

with $A=\sum\left\langle\omega a,{ }^{t} u^{-1} y\right\rangle_{n+1} \hat{\omega}$, where ω ranges the above bases of g_{n} (not of $I \mathfrak{g}_{n}$). In the sequel we shall use the notation $g \cdot(Y, y)$ for $\operatorname{CoAd}(g)(Y, y)$. Moreover, we identify G_{n} and R^{n+1} with the subgroups $\left\{\left(\begin{array}{cc}u & o \\ o & 1\end{array}\right)\right.$;u $\left.u \in G_{n}\right\}$ and $\left\{\left(\begin{array}{cc}I_{n+1} & a \\ 0 & 1\end{array}\right) ; a \in R^{n+1}\right\}$ of $I G_{n}$ respectively. Denote by \mathscr{I}_{n} the algebra of $I G_{n}$-invariant polynomial functions on $I \mathrm{~g}_{n}^{*}$. \mathscr{S}_{n} stands for the same as in Section 0. The Theorem 1 is an easy consequence of the following three lemmas.

Lemma 1.1. The union of the orbits $\left\{g \cdot \mathscr{F}_{n} ; g \in I G_{n}\right\}$ is dense in $I \mathfrak{g}_{n}^{*}=$ $\mathfrak{g}_{n} \times \boldsymbol{R}^{n+1}$. In particular the restriction map $F \rightarrow F \mid \mathfrak{I}_{n}$ of \mathscr{I}_{n} into the set of polynomial functions on \mathfrak{S}_{n} is an injective algebra-homomorphism.

Proof. We can show that almost all $(Y, y) \in I_{\mathfrak{g}_{n}^{*}}^{*}$ is conjugate to some element of \mathfrak{S}_{n}. Indeed, if $y_{n+1} \neq 0$, there exists a $u \in G_{n}$ such that $u \cdot(Y, y)$ $=\left(u Y u^{-1},{ }^{t} u^{-1} y\right)$ with $\left({ }^{t} u^{-1} y\right)={ }^{t}\left(0, \cdots, 0, y_{n+1}\right)$. Taking some $a \in \boldsymbol{R}^{n+1}$, we obtain

$$
a \cdot u \cdot(Y, y)=\left(\begin{array}{ccc}
& 0 & 0 \\
* & \vdots & \vdots \\
& 0 & 0 \\
& 0 & y_{n+1}
\end{array}\right)
$$

To complete the proof, it suffices to reverse the procedure in the proof of the following Lemma 1.3. The details, however, will be omitted.

Lemma 1.2. Let F be a homogeneous element of \mathscr{I}_{n}. Then the restriction $F \mid \mathfrak{S}_{n}$ takes the form $c\left(\left(\prod_{k=1}^{n} y_{k+1, k}^{k}\right) y_{n+1}^{n+1}\right)^{m}$ for some constant c and nonnegative integer m.

Proof. Let d be the degree of F. Then the restriction $F \mid \mathfrak{S}_{n}$ can be written as

$$
\sum_{\alpha_{1}+\cdots+\alpha_{n+1}=d} a_{\alpha_{1}, \cdots, \alpha_{n+1}}\left(\prod_{k=1}^{n} y_{k+1, k}^{\alpha_{k}^{k}}\right) y_{n+1}^{\alpha_{n+1}} .
$$

Since $F \mid \mathscr{S}_{n}$ is invariant under the action of the diagonal matrix $\left[c_{1}, \cdots, c_{n+1}\right]$ $\in G_{n}, F \mid \mathscr{S}_{n}$ must be equal to

$$
\sum_{\alpha_{1}+\cdots+\alpha_{n+1}=d} b_{\alpha_{1}, \cdots, \alpha_{n+1}}\left(\prod_{k=1}^{n} y_{k+1, k}^{\alpha_{k}}\right) y_{n+1}^{\alpha_{n+1}}
$$

with $b_{a_{1}, \ldots, \alpha_{n+1}}=a_{\alpha_{1}, \ldots, \alpha_{n+1}}\left(\prod_{k=1}^{n} c_{k+1}^{\alpha_{1}+\alpha_{k}-\alpha_{k+1}}\right)$. It is now immediate that $\alpha_{a_{1}, \cdots, \alpha_{n+1}}=0$ unless $\alpha_{k}=k \alpha_{1}$ for all k.

Lemma 1.3. There exists one and only one polynomial F in \mathscr{I}_{n} such that the restriction $F \mid \mathfrak{S}_{n}$ takes the form $\left(\prod_{k=1}^{n} y_{k+1, k}^{k}\right) y_{n+1}^{n+1}$.

Proof. Define subspaces \mathscr{Y}_{k} of $I g_{n}^{*}=g_{n} \times \boldsymbol{R}^{n+1}$ and subgroups $G_{n, k}$ of G_{n} as follows $(1 \leqq k \leqq n+1)$.

$$
\begin{aligned}
& \mathscr{Y}_{k}=\left\{\left(\begin{array}{ccccc}
y_{11} \cdots \cdots & y_{1 k} & & & * \\
y_{k 1} \cdots & \cdots & y_{k k} & & \\
\vdots \\
0 & \cdots & 0 & y_{k+1, k} & 0 \\
0 & \ddots & & \vdots & \vdots \\
& & \ddots & y_{n+1, n} & \\
& 0 & y_{n+1}
\end{array}\right\}+\tau\left(\begin{array}{ccc}
-I_{n} & o & o \\
o & n & 0
\end{array}\right) ; \tau \in \boldsymbol{R}\right\} \\
& (1 \leqq k \leqq n) \\
& \mathscr{Y}_{n+1}=\left\{\left(\begin{array}{cc}
Y & 0 \\
& \vdots \\
& y_{n+1}
\end{array}\right]+\tau\left(\begin{array}{ccc}
-I_{n} & o & o \\
o & n & 0
\end{array}\right) ; y_{n+1, n+1}=0, \tau \in \boldsymbol{R}\right\} \\
& G_{n, k}=\left\{\left[\begin{array}{lll}
u & z & 0 \\
0 & c_{0} & \\
0 & & C
\end{array}\right] \in G_{n} ; z \in \boldsymbol{R}^{n-1}, C=\operatorname{diag}\left[c_{1}, \cdots, c_{n-k+1}\right]\right\} \\
& (1 \leqq k \leqq n+1) \text {. }
\end{aligned}
$$

Moreover, set $I G_{n, k}=\left\{\left(\begin{array}{cc}u & a \\ 0 & 1\end{array}\right) ; u \in G_{n, k}, a \in \boldsymbol{R}^{n+1}\right\} \quad(1 \leqq k \leqq n+1)$. Note that $I G_{n, k}$ leaves \mathscr{Y}_{k} invariant $(1 \leqq k \leqq n+1)$. Let $Y_{k}(\tau)$ be a representative of \mathscr{Y}_{k}. Starting with a $G_{n, 1}$-invariant polynomial function

$$
F_{1}\left(Y_{1}(\tau)\right)=\left(\prod_{k=1}^{n} y_{k+1, k}^{k}\right) y_{n+1}^{n+1} \quad\left(Y_{1}(\tau) \in \mathscr{Y}_{1}\right),
$$

we shall define a polynomial function $F \in \mathscr{I}_{n}$ such that $F \mid \mathscr{Y}_{1}=F_{1}$. For $Y_{k}(\tau)=Y_{k}+\tau\left(\begin{array}{ccc}-I_{n} & o & o \\ 0 & n & 0\end{array}\right) \in \mathscr{Y}_{k}(2 \leqq k \leqq n+1)$, put $\left.z_{k}=\left(y_{k, 1}, \cdots, y_{k, k-2}\right)\right)$ $y_{k, k-1}$ and

$$
v_{k}=v\left(Y_{k}(\tau)\right)=\left(\begin{array}{ccccc}
1 & & & 0 \\
\ddots & 0 & \vdots & 0 \\
0 & \ddots & 0 & \\
z_{k} & & 1 & y_{k, k} / y_{k, k-1} \\
0 \cdots & \cdots & 0 & 1 & \\
0 & & & I_{n-k+1}
\end{array}\right)
$$

By simple calculation we obtain

$$
v_{k} \cdot Y_{k}(\tau)=\left(\begin{array}{lllllll}
Z_{k-1} & & & * & * & 0 \\
0 & \cdots & 0 & y_{k, k-1} & 0 & * & \vdots \\
\vdots & \ddots & \ddots & \ddots & \vdots \\
\vdots & & \ddots & \ddots & \ddots & 0 \\
0 & \cdots & \cdots & 0 & y_{n+1, n} & 0 & y_{n+1}
\end{array}\right)+\tau\left(\begin{array}{ccc}
-I_{n} & 0 & o \\
0 & n & 0
\end{array}\right) \in \mathscr{Y}_{k-1}
$$

with

$$
Z_{k-1}=\left(\begin{array}{ccc}
1 & & \\
0 & \ddots & 0 \\
z_{k} & & \\
1
\end{array}\right) \dot{Y}_{k-1}\left(\begin{array}{cccc}
1 & & & \\
0 & \ddots & 0 \\
z_{k} & & & 1
\end{array}\right)^{-1}+y_{k, k}\left(\begin{array}{llll}
0 & & \\
& \ddots & \\
& & 0 & \\
& & & 1
\end{array}\right)
$$

where \dot{Y}_{k-1} denotes the $(k-1) \times(k-1)$-matrix whose (i, j)-component ($1 \leqq i, j \leqq k-1$) is the one of Y_{k}. Define functions F_{k} on \mathscr{Y}_{k} inductively by $F_{k}\left(Y_{k}(\tau)\right)=F_{k-1}\left(v_{k} \cdot Y_{k}(\tau)\right)(2 \leqq k \leqq n+1)$. Note that F_{k} does not depend on $y_{1, j}, \cdots, y_{j-1, j}(j \geqq k)$ nor τ. In particular F_{k} are invariant under the action of $a \in \boldsymbol{R}^{n+1}$. We shall show by induction on k that F_{k} are $G_{n, k}$-invariant polynomials. Elementary calculation reveals that $g^{\prime}=$ $v\left(g \cdot Y_{k}(\tau)\right) g v\left(Y_{k}(\tau)\right)^{-1}$ takes the form

$$
\left(\begin{array}{llll}
u^{\prime} & z^{\prime} & * & \\
0 \cdots 0 & c^{\prime} & 0 & 0 \\
0 \cdots \cdots & 0 & c_{0} & \\
0 & & & C
\end{array}\right) \quad \text { for } g=\left(\begin{array}{llll}
u & z & 0 \\
0 \cdots 0 & c_{0} & \\
0 & & C
\end{array}\right) \in G_{n, k}
$$

We can verify easily that $F_{k-1}\left(g^{\prime} \cdot Y_{k-1}(\tau)\right)=F_{k-1}(\tau)$ even though g^{\prime} does not necessarily belong to $G_{n, k-1}$. Since $v\left(g \cdot Y_{k}(\tau)\right) \cdot\left(g \cdot Y_{k}(\tau)\right)=g^{\prime} \cdot\left(v\left(Y_{k}(\tau)\right) \cdot Y_{k}(\tau)\right)$, we have $F_{k}\left(g \cdot Y_{k}(\tau)\right)=F_{k}\left(Y_{k}(\tau)\right)$. Note now that F_{k} is a polynomial in all variables except possibly for $y_{k, k-1}$. In case $k \geqq 3, F_{k}$ is a polynomial function on \mathscr{Y}_{k}, because $F_{k}\left(g \cdot Y_{k}(\tau)\right)=F_{k}\left(Y_{k}(\tau)\right)$ for

$$
g=\left(\begin{array}{lrrr}
I_{k-3} & & & \\
& 0 & 1 & \\
& -1 & 0 & \\
& & & I_{n-k+2}
\end{array}\right) \in G_{n, k}
$$

In case $k \leqq 2, F_{k}=F_{1}$, which can be verified easily. To sum up, $F_{k}(1 \leqq$ $k \leqq n+1$) is an $I G_{n, k}$-invariant polynomial function on \mathscr{Y}_{k}. Now a function $F \in \mathscr{I}_{n}$ is to be defined. For $(Y, y) \in I \mathfrak{g}_{n}^{*}$, put

$$
v=v(Y, y)=\left(\begin{array}{ccc}
1 & & \\
\ddots & \ddots & 0 \\
0 & \ddots & \\
t \tilde{y} & & 1
\end{array}\right] \in G_{n} \quad\left(t \tilde{y}=\left(y_{1}, \cdots, y_{n}\right) / y_{n+1}\right)
$$

Keeping in mind that $v \cdot(Y, y)=\left(v Y v^{-1},{ }^{t} v^{-1} y\right) \in \mathscr{Y}_{n+1}$, we define F by $F(Y, y)$ $=F_{n+1}(v \cdot(Y, y))$. Then F belongs to \mathscr{I}_{n}. To see this, firstly we shall show F to be G_{n}-invariant. By simple calculation we get for $u \in G_{n}$

$$
v(u \cdot(Y, y)) u v(Y, y)^{-1}=\left(\begin{array}{cc}
* & * \\
0 & y_{n+1} /\left({ }^{t} u^{-1} y\right)_{n+1}
\end{array}\right) \in G_{n, n+1} .
$$

Since F_{n+1} is $G_{n, n+1}$-invariant, it follows that $F(u \cdot(Y, y))=F(Y, y)$. The same argument as for F_{k} yields that F is a polynomial. Secondly, on account of the $I G_{n, n+1}$-invariance of F_{n+1}, we obtain for $a \in R^{n+1}\left(\subset I G_{n}\right)$

$$
\begin{aligned}
F(a \cdot(Y, y)) & =F\left(v a v^{-1} \cdot(v \cdot(Y, y))\right)=F_{n+1}\left(\operatorname{vav}^{-1} \cdot(v \cdot(Y, y))\right) \\
& =F_{n+1}(v \cdot(Y, y))=F(Y, y)
\end{aligned}
$$

since R^{n+1} is a normal subgroup of $I G_{n}$. This completes the proof of Lemma 1.3.

§ 2. The group $\operatorname{ISp}(n, R)$

Let now G_{n} and $I G_{n}$ be the Lie groups $S p(n, R)$ and $I S p(n, R)$ respectively. Namely,

$$
G_{n}=\left\{u \in G L(2 n, R) ;{ }^{t} u J_{n} u=J_{n}\right\} \quad \text { with } J_{n}=\left(\begin{array}{rrrr}
0 & 1 & & \\
-1 & 0 & & \\
& & \ddots & \\
& & 0 & 1 \\
& & -1 & 0
\end{array}\right)
$$

and $I G_{n}=\left\{\left(\begin{array}{cc}u & a \\ 0 & 1\end{array}\right) ; u \in G_{n}, a \in R^{2 n}\right\}$. Denote by g_{n} and $I g_{n}$ their Lie algebras respectively. We may assume $n \geqq 2$, since $G_{1} \cong S L(2, R)$. We can identify the dual space $I \mathfrak{g}_{n}^{*}$ of $I \mathfrak{g}_{n}$ with $\mathfrak{g}_{n} \times R^{2 n}$ via the following bilinear form on $I \mathfrak{g}_{n} \times\left(\mathfrak{g}_{n} \times \boldsymbol{R}^{2 n}\right)$;

$$
\left\langle\left(\begin{array}{ll}
X & x \\
o & 0
\end{array}\right),(Y, y)\right\rangle=\langle X, Y\rangle_{s p(n)}+\langle x, y\rangle_{2 n} .
$$

Here $\langle X, Y\rangle_{s p(n)}=2(n+1) \operatorname{tr}(X Y)$ i.e. the Killing form of g_{n} and $\langle x, y\rangle_{2 n}$ $={ }^{t} x J_{n} y$. In the sequel we consider G_{n} and $R^{2 n}$ to be the subgroups $\left\{\left(\begin{array}{ll}u & 0 \\ o & 1\end{array}\right) ; u \in G_{n}\right\}$ and $\left\{\left(\begin{array}{cc}I_{2 n} & a \\ 0 & 1\end{array}\right) ; a \in R^{2 n}\right\}$ of $I G_{n}$ respectively. It is not difficult to see that the following $e_{i}, e_{2 i-1,2 j}, e_{2 i, 2 i-1}, e_{j, 2 k-1}, e_{J, 2 k}(1 \leqq i \leqq n, 1 \leqq$ $j \leqq 2 k-2,2 \leqq k \leqq n)$ and $f_{\ell}(1 \leqq \ell \leqq 2 n)$ form a basis of $I g_{n}$;

$$
e_{2 i, 2 i-1}={ }^{t} e_{2 i-1,2 i}
$$

$$
e_{j, 2 k-1}=\left(\begin{array}{cccc}
O_{2 k-2} & & 0 & \\
& z_{j} & \vdots & 0 \\
0 \ldots 0 & & 0 & \\
0 \ldots & O_{2} & & \\
{ }^{t}\left(J_{k-1} z_{j}\right) & & & \\
0 & & & O_{2 n-2 k}
\end{array}\right], \quad \text { with } z_{j}=\left(\begin{array}{c}
0 \\
\vdots \\
0 \\
1 \\
0 \\
\vdots \\
0
\end{array}\right] \text { (1) } \in R^{2 k-2} \text {. }
$$

$$
e_{j, 2 k}=\left(\begin{array}{cccc}
O_{2 k-2} & 0 & & \\
& \vdots & z_{j} & 0 \\
-t\left(J_{k-1} z_{j}\right) & 0 & & \\
0 \cdots 0 & O_{2} & \\
0 & & & \\
0 \cdots & \\
& & & O_{2 n-2 k}
\end{array}\right), \quad f_{\ell}=\left(\begin{array}{c}
0 \\
\vdots \\
0 \\
1 \\
0 \\
\vdots \\
0
\end{array}\right) \text { (1). }
$$

Elementary calculation shows that the following $\hat{e}_{i}, \hat{e}_{2 i-1,2 i}, \hat{e}_{2 i, 2 i-1}, \hat{e}_{j, 2 k-1}, \hat{e}_{j, 2 k}$ and \hat{f}_{ℓ} form the dual basis of I_{n}^{*};

$$
\begin{aligned}
& \hat{e}_{i}=e_{i} / 4(n+1), \quad \hat{e}_{2 i-1,2 i}=e_{2 i, 2 i-1} / 2(n+1), \\
& \hat{e}_{2 i, 2 i-1}=e_{2 i-1,2 i} / 2(n+1), \quad \hat{e}_{j, 2 k-1}=e_{j^{\prime}, 2 k} / 2(-1)^{j} \\
& \hat{e}_{j, 2 k}=e_{j^{\prime}, 2 k-1} / 2(-1)^{j}, \quad \hat{f}_{\ell}=-J_{n} f_{\ell} \quad\left(j^{\prime}=j-(-1)^{j}\right) .
\end{aligned}
$$

Since

$$
g^{-1}\left(\begin{array}{cc}
X & x \\
o & 0
\end{array}\right) g=\left(\begin{array}{cc}
u^{-1} X u & u^{-1} X a+u^{-1} x \\
o & 0
\end{array}\right) \quad \text { for } g=\left(\begin{array}{cc}
u & a \\
0 & 1
\end{array}\right) \in I G_{n}
$$

it follows that

$$
\operatorname{CoAd}(g)(Y, y)=\left(u Y u^{-1}+A, u y\right) \quad \text { with } A=\sum\langle\omega a, u y\rangle_{2 n} \hat{\omega}
$$

where ω ranges the elements of the basis of g_{n} (not of $I \mathfrak{g}_{n}$) given above. Simpler notation $g \cdot(Y, y)$ will be used for $\operatorname{CoAd}(g)(Y, y) . \mathscr{S}_{n}$ and \mathscr{I}_{n} stand for the same as in Section 0.

Lemma 2.1. The union of the orbits $\left\{g \cdot \mathscr{S}_{n} ; g \in I G_{n}\right\}$ contains an open set of $I \mathrm{~g}_{n}^{*}=\mathfrak{g}_{n} \times \boldsymbol{R}^{2 n}$. In particular the restriction map $F \rightarrow F \mid \mathfrak{S}_{n}$ of \mathscr{I}_{n} into the set of polynomial functions on \mathfrak{S}_{n} is an injective algebra-homomorphism.

Proof. Denote by $\tilde{\mathfrak{F}}_{n}$ the union $\cup g \cdot \mathscr{S}_{n}\left(g \in I G_{n}\right)$. Note that $\tilde{\mathscr{F}}_{n}$ contains elements of the form

$$
(\dot{Y})=\left[\begin{array}{cccc}
\dot{Y} & & 0 & 0 \\
& 0 & y_{2 n-1,2 n} & 0 \\
0 & 0 & 0 & y_{2 n}
\end{array}\right]\left(\dot{Y} \text { belongs to an open set } \mathcal{O}_{n-1} \text { of } \mathfrak{g}_{n-1}\right)
$$

This follows from the Proposition 1.3.4.1 [5, p. 101] and the simple fact that the set consisting of the following elements ($u \in G_{n-1}, y_{i j} \in \boldsymbol{R}$)

$$
u\left(\begin{array}{cccc}
0 & y_{12} & & \\
y_{21} & 0 & \ddots & \\
\ddots & \ddots & y_{2 n-3,2 n-2} \\
y_{2 n-2,2 n-3} & 0
\end{array}\right) u^{-1}
$$

contains a Cartan subalgebra $\left\{\lambda_{1} e_{1}+\cdots+\lambda_{n-1} e_{n-1} ; \lambda_{i} \in \boldsymbol{R}\right\}$ of g_{n-1}. Using the notation in the proof of Lemma 2.3, we have v_{n+1}. $\left(Y, y, y_{2_{n}}\right) \in \mathscr{Y}_{n}$ for $\left(Y, y, y_{2 n}\right) \in \mathscr{Y}_{n+1}$. In other words, there exists a smooth map of $\mathscr{Y}_{n+1} \backslash\left\{y_{2 n-2} y_{2 n-1,2 n}=0\right\}$ into \mathscr{Y}_{n}, which contains the set $\left\{a \cdot(\dot{Y}) ; \dot{Y} \in \mathcal{O}_{n-1}, a \in \boldsymbol{R}^{2 n}\right\}$ (recall that $R^{2 n}$ is regarded as a subgroup of $I G_{n}$). Thus there exists an open set \mathcal{O}_{n+1} of \mathscr{Y}_{n+1}. Similar argument shows the existence of an open set \mathcal{O} of $I \mathfrak{g}_{n}^{*}$ such that $\mathcal{O} \subset \widetilde{\mathfrak{F}}_{n}$.

Let $s_{i}(0 \leqq i \leqq n-1)$ be the i-th fundamental symmetric polynomial in $y_{2 k, 2 k-1} y_{2 k-1,2 k}(1 \leqq k \leqq n-1)$ and set $t_{i}=s_{i} y_{2 n-1} y_{2 n}^{2}$.

Lemma 2.2. Let F be an element of \mathscr{I}_{n}. The restriction $F \mid \mathfrak{F}_{n}$ takes the form $\sum_{\alpha_{i} \geq 0} a_{\alpha_{0}, \ldots, \alpha_{n-1}} t_{0}^{\alpha_{0}} \cdots t_{n-1}^{\alpha_{n}-1}$.

Proof. Since $F \mid \mathfrak{S}_{n}$ is invariant under the action of the diagonal matrix $\left[1, \cdots, 1, c, c^{-1}\right] \in G_{n}$, it takes the form $\sum_{\beta \geq 0} B_{\beta}\left(y_{2 n-1,2 n} y_{2 n}^{2}\right)^{\beta}$, where B_{β} are polynomials in $y_{2 k, 2 k-1}, y_{2 k-1,2 k}(1 \leqq k \leqq n-1)$. Moreover, $F \mid \mathcal{F}_{n}$ is invariant under any substitution $y_{2 k, 2 k-1}, y_{2 k-1,2 k}$ for $-y_{2 k, 2 k-1},-y_{2 k-1,2 k}$ and the permutations of $y_{2 k, 2 k-1}, y_{2 k-1,2 k}(1 \leqq k \leqq n-1)$. Consequently B_{β} can be written as $\sum_{\alpha_{k} \geqq 0} b_{\alpha_{1}, \ldots, \alpha_{n-1}, \beta}, s_{1}^{\alpha_{1}} \cdots s_{n-1}^{\alpha_{n-1}}$. It remains to prove that $\alpha_{1}+\cdots$ $+\alpha_{n-1} \leqq \beta$. By simple calculation we obtain
for $\sigma=-y / y_{2 n-1,2 n}$. Since the value of F at this point must be represented as a polynomial in y, we conclude that $\alpha_{1}+\cdots+\alpha_{n-1} \leqq \beta$ (note that the value of F at this point does not depend on the omitted components: cf. the proof of Lemma 2.1).

Lemma 2.3. There exists uniquely $F^{(i)} \in \mathscr{I}_{n}$ such that the restriction $F^{(i)} \mid \mathfrak{S}_{n}=t_{i}(0 \leqq i \leqq n-1)$.

Proof. Denote by \mathscr{Y}_{k} (resp. $\left.G_{n, k}\right)(k=n, n+1)$ the following subspaces (resp. subgroups) of $I \mathfrak{g}_{n}^{*}\left(\right.$ resp. G_{n});

$$
\begin{aligned}
& \mathscr{Y}_{n}=\left\{\left(\begin{array}{llll}
\dot{Y} & * & 0 & 0 \\
0 & * & y_{2 n-1,2 n} & \dot{0} \\
* & * & * & y_{2 n}
\end{array}\right]\right\}, \quad \mathscr{Y}_{n+1}=\left\{\left[\begin{array}{ccc}
\dot{Y} & * & 0 \\
-{ }^{t}\left(J_{n-1} y\right) & * & y_{2 n-1,2 n} \\
0 \\
* & * & *
\end{array}\right]\right. \\
& G_{n, n}=\left\{\left(\begin{array}{ccc}
u & 0 & 0 \\
0 & * & 0
\end{array}\right) ; u \in G_{n-1}\right\}, \quad G_{n, n+1}=\left\{\left(\begin{array}{lll}
u & * & 0 \\
0 & * & 0 \\
* & * & *
\end{array}\right] ; u \in G_{n-1}\right\}
\end{aligned}
$$

Set $I G_{n, k}=\left\{\left(\begin{array}{cc}u & a \\ o & 1\end{array}\right) ; u \in G_{n, k}, a \in R^{2 n}\right\}(k=n, n+1)$. We shall define polynomial functions $F_{k}^{(i)}$ on $\mathscr{Y}_{k}(k=n, n+1)$. The values of $F_{n}^{(i)}$ at

$$
\left(\begin{array}{llll}
\dot{Y} & * & o & 0 \\
o & * & y_{2 n-1,2 n} & \dot{0} \\
0 & * & * & y_{2 n}
\end{array}\right)
$$

are defined by requiring that $\sum_{i=1}^{n-1} F_{n}^{(i)} T^{2(n-i-1)}=y_{2 n-1,2 n} y_{2 n}^{2} \times \operatorname{det}(T+\dot{Y})$, where T is an indeterminate. Note that the restriction $F_{n}^{(i)} \mid \mathscr{Y}_{n}$ is equal to t_{i} up to the signature. Keeping in mind that $F_{n}^{(i)}$ does not depend on the omitted components, we can easily verify that $F_{n}^{(i)}$ are $G_{n, n}$-invariant. For

$$
\left(\dot{Y}, y, y_{2 n}\right)=\left(\begin{array}{llll}
\dot{Y} & * & y & 0 \\
-t\left(J_{n-1} y\right) & * & y_{2 n-1,2 n} & \dot{0} \\
* & * & * & y_{2 n}
\end{array}\right) \in \mathscr{Y}_{n+1} \quad\left(y \in R^{2 n}\right),
$$

put

$$
v_{n+1}=v\left(\dot{Y}, y, y_{2 n}\right)=\left(\begin{array}{lllll}
I_{2 n-4} & 0 & -\tilde{y} & 0 & 0 \\
{ }^{t}\left(J_{n-2} \tilde{y}\right) & 1 & -y_{2 n-3} / y_{2 n-2} & 0 & \vdots \\
o & 0 & 1 & \sigma & 0 \\
0 \ldots \ldots \cdots \cdots & 0 & & \\
0 \ldots \ldots \\
\sigma^{t}\left(J_{n-1} y\right) / y_{2 n-2} & &
\end{array}\right] \in G_{n}
$$

where ${ }^{t} \tilde{y}=\left(y_{1}, \cdots, y_{2 n-4}\right) / y_{2 n-2}$ and $\sigma=-y_{2 n-2} / y_{2 n-1,2 n}$. Then we have
where u is the first $(2 n-2) \times(2 n-2)$-block of the matrix v_{n+1}. Secondly, defining function $F_{n+1}^{(i)}$ on \mathscr{Y}_{n+1} by $F_{n+1}^{(i)}\left(\dot{Y}, y, y_{2 n}\right)=F_{n}^{(i)}\left(v_{n+1} \cdot\left(\dot{Y}, y, y_{2 n}\right)\right)$, we shall show that they are $I G_{n, n+1}$-invariant polynomial functions. An element g of $G_{n, n+1}$ can be represented as $g_{1} g_{2}$ for some

$$
g_{1}=\left(\begin{array}{ccc}
u & 0 & \\
& c & 0 \\
0 & b & c^{-1}
\end{array}\right) \in G_{n, n} \quad \text { and } \quad g_{2}=\left(\begin{array}{ccc}
I_{2 n-2} & z & o \\
o & I_{2} \\
t\left(J_{n-1} z\right) &
\end{array}\right) \quad\left(z \in R^{2 n-2}\right) .
$$

Clearly $g_{j} \cdot\left(\dot{Y}, y, y_{2 n}\right)(j=1,2)$ are equal to

$$
\left[\begin{array}{cclc}
u \dot{Y} u^{-1} & * & c^{-1} u y & 0 \\
-c^{t}\left(J_{n-1} y\right) u^{-1} & * & c^{2} y_{2 n-1,2 n} & \vdots \\
* & * & * & c^{-1} y_{2 n}
\end{array}\right]
$$

and

$$
\left[\begin{array}{clll}
\dot{Y}-z^{t}\left(J_{n-1} y\right)-\left(y+y_{2 n-1,2 n} z\right)^{t}\left(J_{n-1} z\right) & * & * & 0 \\
-^{t}\left(J_{n-1} y\right) & * & y_{2 n-1,2 n} & \dot{0} \\
* & * & * & y_{2 n}
\end{array}\right]
$$

respectively. Elementary calculation yields

$$
v\left(g_{j} \cdot\left(\dot{Y}, y, y_{2 n}\right)\right) g_{j} v\left(\dot{Y}, y, y_{2 n}\right)^{-1} \in G_{n, n} \quad(j=1,2) .
$$

On account of $G_{n, n}$-invariance of $F_{n}^{(i)}$, it follows easily that $F_{n+1}^{(i)}$ are $G_{n, n+1}$-invariant. In particular, $F_{n+1}^{(i)}\left(g \cdot\left(\dot{Y}, y, y_{2 n}\right)\right)=F_{n+1}^{(i)}\left(\dot{Y}, y, y_{2 n}\right)$ for

$$
g=\left(\begin{array}{ccc}
I_{2 n-4} & & \\
& J_{1} & \\
& & I_{2}
\end{array}\right) \in G_{n, n+1}
$$

This implies that $F_{n+1}^{(i)}$ are polynomials, since $F_{n+1}^{(i)}$ are polynomials in all variables except possibly for $y_{2 n-2}$. Recalling that $F_{n+1}^{(i)}$ depend only on \dot{Y}, y and $y_{2 n}$, we conclude immediately that $F_{n+1}^{(i)}$ are invariant under the action of $a \in \boldsymbol{R}^{2 n}$. Thus $F_{n+1}^{(i)}$ are $I G_{n, n+1}$-invariant polynomial functions. For $(Y, y) \in I_{\mathfrak{g}_{n}^{*}}=\mathfrak{g}_{n} \times R^{2 n}$, let $v=v(Y, y)$ be the matrix

$$
\left(\begin{array}{ccc}
I_{2 n-2} & 0 & -\tilde{y} \\
{ }^{t}\left(J_{n-1} \tilde{y}\right) & 1 & -y_{2 n-1} / y_{2 n} \\
o & 0 & 1
\end{array}\right) \quad \text { with }{ }^{t} \tilde{y}=\left(y, \cdots, y_{2 n-2}\right) / y_{2 n}
$$

Then $v \cdot(Y, y)=\left(v Y v^{-1}, v y\right)$ belongs to \mathscr{Y}_{n+1}. To complete the proof of Lemma 2.3 we shall define functions $F^{(i)}$ on $I_{g_{n}^{*}}$ by $F^{(i)}(Y, y)=F_{n+1}^{(i)}(v:(Y, y))$ $(0 \leqq i \leqq n-1)$ and show that $F^{(i)}$ are elements of \mathscr{I}_{n}. To being with, $F^{(i)}$ are G_{n}-invariant. Indeed, for $u \in G_{n}$, simple calculation reveals that

$$
v(u \cdot(Y, y)) u v(Y, y)^{-1}=\left(\begin{array}{cccc}
* & * & * & o \\
* & * & * & o \\
o & 1 & 0 \\
* & * & * & *
\end{array}\right) \in G_{n, n+1} .
$$

Since $F_{n+1}^{(i)}$ are $G_{n, n+1}$-invariant, it follows that $F^{(i)}$ are G_{n}-invariant. By the same argument as for $F_{n+1}^{(i)}$, we now conclude that $F^{(i)}$ are polynomials. Using the G_{n}-invariance of $F^{(i)}$ and $G_{n, n+1}$-invariance of $F_{n+1}^{(i)}$, we obtain for $a \in \boldsymbol{R}^{2 n}$

$$
\begin{aligned}
F^{(i)}(a \cdot(Y, y)) & =F^{(i)}\left(v(Y, y) \operatorname{av}(Y, y)^{-1} \cdot(v(Y, y) \cdot(Y, y))\right) \\
& =F_{n+1}^{(i)}\left(v(Y, y) \operatorname{av}(Y, y)^{-1} \cdot(v(Y, y) \cdot(Y, y))\right) \\
& =F_{n+1}^{(i)}(v(Y, y) \cdot(Y, y))=F^{(i)}(Y, y)
\end{aligned}
$$

$I G_{n}$ being generated by G_{n} and $R^{2 n}, F^{(i)}$ are $I G_{n}$-invariant. The proof of Lemma 2.3 is complete.

Theorem 2 follows at once from Lemmas 2.1, 2.2 and 2.3.
Added in proof. After this paper had been accepted for publication, [6] appeared. [2] is now published (Comm. Math. Phy., 90 (1983), 353-372).

References

[1] L. Abellanas and L. Martinez Alonso, A general setting for Casimir invariants, J. Math. Phys., 16 (1975), 1580-1584.
[2] M. Chaichian, A. P. Demichev and N. F. Nelipa, The Casimir operators of inhomogeneous groups, preprint.
[3] H. Kaneta, The invariant polynomial algebras for the groups $I U(n)$ and $I S O(n)$, Nagoya Math. J., 94 (1984), 43-59.
[4] V. S. Varadarajan, Lie groups, Lie algebras and their representations, PrenticeHall, Inc., London 1974.
[5] G. Warner, Harmonic analysis on semi-simple Lie groups I, Springer-Verlag 1972.
[6] M. Perroud, The fundamental invariants of inhomogeneous classical groups, J. Math. Phys., 24 (1983), 1381-1391.

Faculty of Education
Tokushima University
Tokushima 770
Japan

