H. Kaneta Nagoya Math. J. Vol. 94 (1984), 61-73

THE INVARIANT POLYNOMIAL ALGEBRAS FOR THE GROUPS ISL(n) AND ISp(n)

HITOSHI KANETA

§0. Main theorems

This paper is a continuation to the previous one [3]. We shall show that, for the inhomogeneous linear group ISL(n + 1, R) (resp. ISp(n, R)), the coadjoint invariant polynomial algebra is generated by one (resp. n) algebraically independent element. We shall state our results more precisely.

(i) $ISL(n + 1, R), (n \ge 1).$

We can consider the following vector space \mathfrak{F}_n to be a subspace of the dual space realized as in Section 1 of the Lie algebra of ISL(n + 1, R);

((0			0	0))
$\mathfrak{H}_n = \left\{ \begin{array}{c} \\ \end{array} \right.$	۱ · .		0	:	:	
	y_{21}	۰.		:	:	B.
	<u> </u>		•.	:	0	
		\dot{y}_{n+1}	• + 1, n	ò	y_{n+1}	\parallel

Let $t = (\prod_{k=1}^{n} y_{k+1,k}^k) y_{n+1}^{n+1}$ be a polynomial function on \mathfrak{G}_n . Denote by \mathscr{I}_n the *C*-algebra of the coadjoint invariant polynomial functions on the dual space of the Lie algebra of ISL(n + 1, R).

THEOREM 1. The restriction map of \mathscr{I}_n into the set of polynomials on \mathfrak{H}_n is an injective algebra-homomorphism, whose image is C[t].

(ii) $ISp(n, \mathbf{R}) \ (n \ge 1)$.

In this case we can consider the following vector space \mathfrak{F}_n to be a subspace of the dual space realized as in Section 2 of the Lie algebra of ISp(n, R);

Received September 2, 1982.

HITOSHI KANETA

$$\mathfrak{S}_{n} = \left\{ \begin{pmatrix} 0 & y_{12} & & 0 & 0 & 0 \\ y_{21} & 0 & \ddots & 0 & \vdots & \vdots & \vdots \\ 0 & \ddots & 0 & y_{2n-3,2n-2} & \vdots & \vdots & \vdots \\ y_{2n-2,2n-3} & 0 & 0 & 0 & 0 \\ 0 & \cdots & \cdots & 0 & y_{2n-1,2n} & 0 \\ 0 & \cdots & \cdots & 0 & 0 & y_{2n} \end{pmatrix} \right\}$$

Let $s_i(0 \leq i \leq n-1)$ be the *i*-th fundamental symmetric polynomial in $y_{2k,2k-1}y_{2k-1,2k}$ $(1 \leq k \leq n=1)$ and set $t_i = s_i y_{2n-1,2n} y_{2n}^2$. It is not difficult to see that t_i $(0 \leq i \leq n-1)$ are algebraically independent over *C*. Denote by \mathscr{I}_n the algebra of coadjoint invariant polynomial functions on the dual space of the Lie algebra of ISp(n, R).

THEOREM 2. The restriction map of \mathscr{I}_n into the set of the polynomials on \mathfrak{H}_n is an injective algebra-homomorphism, whose image is $C[t_0, \dots, t_{n-1}]$.

The proofs of Theorems 1 and 2 will be given in Section 1 and Section 2 respectively.

§1. The group ISL(n + 1, R)

Let G_n and IG_n be the Lie groups SL(n + 1, R), and ISL(n + 1, R), respectively. Denote by g_n and Ig_n their Lie algebras respectively. To be definite,

 $IG_n = \left\{ \begin{pmatrix} u & a \\ o & 1 \end{pmatrix}; u \in G_n, a \in \mathbb{R}^{n+1} \right\}, Ig_n = \left\{ \begin{pmatrix} X & x \\ o & 0 \end{pmatrix}; X \in g_n, x \in \mathbb{R}^{n+1} \right\}.$ We can identify the dual space Ig_n^* of Ig_n with $g_n \times \mathbb{R}^{n+1}$ via the following bilinear form on $Ig_n \times (g_n \times \mathbb{R}^{n+1})$;

$$\left\langle \begin{pmatrix} X & x \\ o & 0 \end{pmatrix}, (Y, y) \right\rangle = \langle X, Y \rangle_{s\ell(n+1)} + \langle x, y \rangle_{n+1},$$

where $\langle X, Y \rangle_{s\ell(n+1)} = 2(n+1)$ tr (XY) i.e. the Killing form of the Lie algebra \mathfrak{g}_n [4, p. 390] and $\langle x, y \rangle_{n+1} = {}^t xy$. Clearly the following e_i , e_{jk} and f_ℓ $(1 \leq i \leq n, 1 \leq j, k, \ell \leq n+1, j \neq k)$ form a basis of $I\mathfrak{g}_n$;

and $f_{\ell} = {}^{\ell}(0 \cdots 0 \ 1 \ 0 \cdots 0)$. The dual basis is given by the following \hat{e}_i , \hat{e}_{jk} and \hat{f}_{ℓ} ;

$$\hat{e}_i = - rac{1}{2(n+1)^2} egin{pmatrix} i-(n+1)\ \cdot \ \cdot \ i-(n+1)\ i-(n+1)\ \cdot \ i-(n+1)\ \cdot$$

and $\hat{f}_{\iota} = f_{\iota}$. For a $g = \begin{pmatrix} u & a \\ o & 1 \end{pmatrix} \in IG_n$ we have

$$\left\langle g^{-1}\begin{pmatrix} X & x \\ o & 0 \end{pmatrix} g, (Y, y) \right\rangle = \langle X, uYu^{-1} \rangle_{\mathfrak{sl}(n+1)} + \langle Xa + x, {}^{t}u^{-1}y \rangle_{n+1}$$

Consequently the coadjoint action CoAd(g) of g is given by

$$CoAd(g)(Y, y) = (uYu^{-1} + A, {}^{t}u^{-1}y)$$

with $A = \sum \langle \omega a, {}^{\iota} u^{-1} y \rangle_{n+1} \hat{\omega}$, where ω ranges the above bases of \mathfrak{g}_n (not of $I\mathfrak{g}_n$). In the sequel we shall use the notation $g \cdot (Y, y)$ for $\operatorname{CoAd}(g)(Y, y)$. Moreover, we identify G_n and \mathbb{R}^{n+1} with the subgroups $\left\{ \begin{pmatrix} u & o \\ o & 1 \end{pmatrix}; u \in G_n \right\}$ and $\left\{ \begin{pmatrix} I_{n+1} & a \\ o & 1 \end{pmatrix}; a \in \mathbb{R}^{n+1} \right\}$ of IG_n respectively. Denote by \mathscr{I}_n the algebra of IG_n -invariant polynomial functions on $I\mathfrak{g}_n^*$. \mathfrak{H}_n stands for the same as in Section 0. The Theorem 1 is an easy consequence of the following three lemmas.

LEMMA 1.1. The union of the orbits $\{g \cdot \mathfrak{H}_n; g \in IG_n\}$ is dense in $I\mathfrak{g}_n^* = \mathfrak{g}_n \times \mathbb{R}^{n+1}$. In particular the restriction map $F \to F | \mathfrak{H}_n$ of \mathscr{I}_n into the set of polynomial functions on \mathfrak{H}_n is an injective algebra-homomorphism.

Proof. We can show that almost all $(Y, y) \in Ig_n^*$ is conjugate to some element of \mathfrak{H}_n . Indeed, if $y_{n+1} \neq 0$, there exists a $u \in G_n$ such that $u \cdot (Y, y) = (uYu^{-1}, {}^tu^{-1}y)$ with $({}^tu^{-1}y) = {}^t(0, \dots, 0, y_{n+1})$. Taking some $a \in \mathbb{R}^{n+1}$, we obtain

To complete the proof, it suffices to reverse the procedure in the proof of the following Lemma 1.3. The details, however, will be omitted.

LEMMA 1.2. Let F be a homogeneous element of \mathscr{I}_n . Then the restriction $F|\bigotimes_n$ takes the form $c((\prod_{k=1}^n y_{k+1,k}^k)y_{n+1}^{n+1})^m$ for some constant c and nonnegative integer m.

Proof. Let d be the degree of F. Then the restriction $F|S_n$ can be written as

$$\sum_{\alpha_1+\cdots+\alpha_{n+1}=d} a_{\alpha_1,\cdots,\alpha_{n+1}} \left(\prod_{k=1}^n y_{k+1,k}^{\alpha_k}\right) y_{n+1}^{\alpha_{n+1}}.$$

Since $F| \mathfrak{H}_n$ is invariant under the action of the diagonal matrix $[c_1, \dots, c_{n+1}] \in G_n$, $F| \mathfrak{H}_n$ must be equal to

$$\sum_{\alpha_1+\cdots+\alpha_{n+1}=d} b_{\alpha_1,\cdots,\alpha_{n+1}} \left(\prod_{k=1}^n y_{k+1,k}^{\alpha_k}\right) y_{n+1}^{\alpha_{n+1}}$$

with $b_{\alpha_1,\ldots,\alpha_{n+1}} = a_{\alpha_1,\ldots,\alpha_{n+1}} (\prod_{k=1}^n c_{k+1}^{\alpha_1+\alpha_k-\alpha_{k+1}})$. It is now immediate that $a_{\alpha_1,\ldots,\alpha_{n+1}} = 0$ unless $\alpha_k = k\alpha_1$ for all k.

LEMMA 1.3. There exists one and only one polynomial F in \mathscr{I}_n such that the restriction $F|\mathfrak{H}_n$ takes the form $(\prod_{k=1}^n y_{k+1,k}^k)y_{n+1}^{n+1}$.

Proof. Define subspaces \mathscr{Y}_k of $I\mathfrak{g}_n^* = \mathfrak{g}_n \times \mathbb{R}^{n+1}$ and subgroups $G_{n,k}$ of G_n as follows $(1 \leq k \leq n+1)$.

$$\mathscr{Y}_{k} = \left\{ \begin{pmatrix} y_{11} \cdots y_{1k} & * & 0 \\ y_{k1} \cdots y_{kk} & & \vdots \\ 0 \cdots 0 & y_{k+1,k} & 0 & \vdots \\ 0 & \ddots & \ddots & \ddots & 0 \\ 0 & y_{n+1,n} & 0 & y_{n+1} \end{pmatrix} + \tau \begin{pmatrix} -I_{n} & o & o \\ o & n & 0 \end{pmatrix}; \ \tau \in \mathbf{R} \right\}$$

$$(1 \leq k \leq n)$$

$$\mathscr{Y}_{n+1} = \left\{ \begin{pmatrix} Y & 0 \\ \vdots \\ 0 \\ y_{n+1} \end{pmatrix} + \tau \begin{pmatrix} -I_{n} & o & o \\ o & n & 0 \end{pmatrix}; \ y_{n+1,n+1} = 0, \ \tau \in \mathbf{R} \right\}$$

$$G_{n,k} = \left\{ \begin{pmatrix} u & z & 0 \\ 0 & c_{0} \\ 0 & c \end{pmatrix} \in G_{n}; \ z \in \mathbf{R}^{n-1}, \ C = \text{diag} \left[c_{1}, \cdots, c_{n-k+1}\right] \right\}$$

$$(1 \leq k \leq n+1).$$

Moreover, set $IG_{n,k} = \left\{ \begin{pmatrix} u & a \\ o & 1 \end{pmatrix}; \ u \in G_{n,k}, \ a \in \mathbb{R}^{n+1} \right\}$ $(1 \leq k \leq n+1)$. Note that $IG_{n,k}$ leaves \mathscr{Y}_k invariant $(1 \leq k \leq n+1)$. Let $Y_k(\tau)$ be a representative of \mathscr{Y}_k . Starting with a $G_{n,1}$ -invariant polynomial function

$$F_1(Y_1(\tau)) = \left(\prod_{k=1}^n y_{k+1,k}^k\right) y_{n+1}^{n+1} \quad (Y_1(\tau) \in \mathscr{Y}_1),$$

we shall define a polynomial function $F \in \mathscr{I}_n$ such that $F | \mathscr{V}_1 = F_1$. For $Y_k(\tau) = Y_k + \tau \begin{pmatrix} -I_n & o & o \\ o & n & 0 \end{pmatrix} \in \mathscr{V}_k (2 \leq k \leq n+1), \text{ put } z_k = (y_{k,1}, \cdots, y_{k,k-2})/y_{k,k-1}$ and

$$v_k = v(Y_k(au)) = egin{pmatrix} 1 & & 0 & \ & \cdot & 0 & \ & \cdot & 0 & \ 0 & \cdot & 0 & \ & z_k & 1 & y_{k,k}/y_{k,k-1} \ & 0 & \cdots & 0 & 1 & \ & 0 & & I_{n-k+1} \end{bmatrix}.$$

By simple calculation we obtain

$$v_k \cdot Y_k(\tau) = \begin{pmatrix} Z_{k-1} & * & * & 0 \\ 0 \cdots 0 & y_{k,k-1} & 0 & * & \vdots \\ \vdots & \ddots & \ddots & \ddots & \vdots \\ \vdots & \ddots & \ddots & \ddots & 0 \\ 0 \cdots \cdots 0 & y_{n+1,n} & 0 & y_{n+1} \end{pmatrix} + \tau \begin{pmatrix} -I_n & o & o \\ o & n & 0 \end{pmatrix} \in \mathscr{Y}_{k-1}$$

with

$$Z_{k-1} = egin{pmatrix} 1 & & \ & \ddots & 0 \ 0 & & \ddots \ z_k & & 1 \ \end{pmatrix} \dot{Y}_{k-1} egin{pmatrix} 1 & & & \ & \ddots & 0 \ 0 & & \ddots & \ z_k & & 1 \ \end{pmatrix}^{-1} + y_{k,k} egin{pmatrix} 0 & & & \ & \ddots & \ & & 0 & \ & & 1 \ \end{pmatrix},$$

where \dot{Y}_{k-1} denotes the $(k-1) \times (k-1)$ -matrix whose (i, j)-component $(1 \leq i, j \leq k-1)$ is the one of Y_k . Define functions F_k on \mathscr{Y}_k inductively by $F_k(Y_k(\tau)) = F_{k-1}(v_k \cdot Y_k(\tau))$ $(2 \leq k \leq n+1)$. Note that F_k does not depend on $y_{1,j}, \dots, y_{j-1,j}$ $(j \geq k)$ nor τ . In particular F_k are invariant under the action of $a \in \mathbb{R}^{n+1}$. We shall show by induction on k that F_k are $G_{n,k}$ -invariant polynomials. Elementary calculation reveals that $g' = v(g \cdot Y_k(\tau))gv(Y_k(\tau))^{-1}$ takes the form

HITOSHI KANETA

$$egin{pmatrix} u' & z' & * & \ 0 & \cdots & 0 & c' & 0 & 0 \ 0 & \cdots & 0 & c_0 & \ 0 & & & C \ \end{bmatrix} \qquad ext{for } g = egin{pmatrix} u & z & & \ 0 & \cdots & 0 & c_0 & \ 0 & & & C \ \end{bmatrix} \in G_{n,k} \,.$$

We can verify easily that $F_{k-1}(g' \cdot Y_{k-1}(\tau)) = F_{k-1}(\tau)$ even though g' does not necessarily belong to $G_{n,k-1}$. Since $v(g \cdot Y_k(\tau)) \cdot (g \cdot Y_k(\tau)) = g' \cdot (v(Y_k(\tau)) \cdot Y_k(\tau))$, we have $F_k(g \cdot Y_k(\tau)) = F_k(Y_k(\tau))$. Note now that F_k is a polynomial in all variables except possibly for $y_{k,k-1}$. In case $k \geq 3$, F_k is a polynomial function on \mathscr{Y}_k , because $F_k(g \cdot Y_k(\tau)) = F_k(Y_k(\tau))$ for

$$g = egin{pmatrix} I_{{}_{k-3}} & & & & \ & 0 & 1 & & \ & -1 & 0 & & \ & & & I_{n-k+2} \end{bmatrix} \in G_{n,\,k} \, .$$

In case $k \leq 2$, $F_k = F_1$, which can be verified easily. To sum up, $F_k(1 \leq k \leq n+1)$ is an $IG_{n,k}$ -invariant polynomial function on \mathscr{Y}_k . Now a function $F \in \mathscr{I}_n$ is to be defined. For $(Y, y) \in I\mathfrak{g}_n^*$, put

$$v = v(Y, y) = \begin{pmatrix} 1 & & \\ & \ddots & 0 \\ 0 & & \ddots \\ & & \ddots \\ & & & 1 \end{pmatrix} \in G_n \qquad (^t \tilde{y} = (y_1, \cdots, y_n)/y_{n+1}).$$

Keeping in mind that $v \cdot (Y, y) = (vYv^{-1}, {}^{t}v^{-1}y) \in \mathscr{Y}_{n+1}$, we define F by $F(Y, y) = F_{n+1}(v \cdot (Y, y))$. Then F belongs to \mathscr{I}_n . To see this, firstly we shall show F to be G_n -invariant. By simple calculation we get for $u \in G_n$

$$v(u \cdot (Y, y))uv(Y, y)^{-1} = \begin{pmatrix} * & * \\ o & y_{n+1}/({}^{t}u^{-1}y)_{n+1} \end{pmatrix} \in G_{n, n+1}$$

Since F_{n+1} is $G_{n,n+1}$ -invariant, it follows that $F(u \cdot (Y, y)) = F(Y, y)$. The same argument as for F_k yields that F is a polynomial. Secondly, on account of the $IG_{n,n+1}$ -invariance of F_{n+1} , we obtain for $a \in \mathbb{R}^{n+1}(\subset IG_n)$

$$F(a \cdot (Y, y)) = F(vav^{-1} \cdot (v \cdot (Y, y))) = F_{n+1}(vav^{-1} \cdot (v \cdot (Y, y)))$$

= $F_{n+1}(v \cdot (Y, y)) = F(Y, y)$,

since \mathbf{R}^{n+1} is a normal subgroup of IG_n . This completes the proof of Lemma 1.3.

66

§ 2. The group ISp(n, R)

Let now G_n and IG_n be the Lie groups Sp(n, R) and ISp(n, R) respectively. Namely,

$$G_{n} = \{ u \in GL(2n, R); {}^{t}uJ_{n}u = J_{n} \} \text{ with } J_{n} = \begin{bmatrix} 0 & 1 \\ -1 & 0 \\ & \ddots \\ & 0 & 1 \\ & -1 & 0 \end{bmatrix}$$

and $IG_n = \left\{ \begin{pmatrix} u & a \\ o & 1 \end{pmatrix}; u \in G_n, a \in \mathbb{R}^{2n} \right\}$. Denote by \mathfrak{g}_n and $I\mathfrak{g}_n$ their Lie algebras respectively. We may assume $n \geq 2$, since $G_1 \cong SL(2, \mathbb{R})$. We can identify the dual space $I\mathfrak{g}_n^*$ of $I\mathfrak{g}_n$ with $\mathfrak{g}_n \times \mathbb{R}^{2n}$ via the following bilinear form on $I\mathfrak{g}_n \times (\mathfrak{g}_n \times \mathbb{R}^{2n})$;

$$ig\langle ig(egin{array}{cc} X & x \ o & 0 \ \end{array} ig), \ (Y,y) ig
angle = \langle X, \ Y
angle_{sp(n)} + \langle x,y
angle_{2n} \ .$$

Here $\langle X, Y \rangle_{sp(n)} = 2(n + 1)$ tr (XY) i.e. the Killing form of \mathfrak{g}_n and $\langle x, y \rangle_{2n} = {}^{t}xJ_n y$. In the sequel we consider G_n and \mathbb{R}^{2n} to be the subgroups $\left\{ \begin{pmatrix} u & o \\ o & 1 \end{pmatrix}; u \in G_n \right\}$ and $\left\{ \begin{pmatrix} I_{2n} & a \\ o & 1 \end{pmatrix}; a \in \mathbb{R}^{2n} \right\}$ of IG_n respectively. It is not difficult to see that the following e_i , $e_{2i-1,2j}$, $e_{2i,2i-1}$, $e_{j,2k-1}$, $e_{j,2k}(1 \leq i \leq n, 1 \leq j \leq 2k-2, 2 \leq k \leq n)$ and $f_{\ell}(1 \leq \ell \leq 2n)$ form a basis of $I\mathfrak{g}_n$;

$$e_{j,2k}=egin{pmatrix} O_{2k-2}&0&&\ &dots&z_j&0&\ &0&&\ &-{}^{\iota}\!(J_{k-1}z_j)&&&\ &0&&\ &0&&\ &0&&\ &0&&\ &0&&\ &0&&\ &0&&\ &0&&\ &0&&\ &0&&\ &0&&\ &0&&\ &0&&\ &0&&\ &0&&\ &0&&\ &0&$$

Elementary calculation shows that the following \hat{e}_i , $\hat{e}_{2i-1,2i}$, $\hat{e}_{2i,2i-1}$, $\hat{e}_{j,2k-1}$, $\hat{e}_{j,2k}$ and \hat{f}_i form the dual basis of Ig_n^* ;

$$egin{aligned} \hat{e}_i &= e_i/4(n+1), \quad \hat{e}_{2i-1,2i} &= e_{2i,2i-1}/2(n+1), \ \hat{e}_{2i,2i-1} &= e_{2i-1,2i}/2(n+1), \quad \hat{e}_{j,2k-1} &= e_{j',2k}/2(-1)^j, \ \hat{e}_{j,2k} &= e_{j',2k-1}/2(-1)^j, \quad \hat{f}_\ell &= -J_n f_\ell \quad (j'=j-(-1)^j). \end{aligned}$$

Since

$$g^{-1}inom{X}{o} g^{-1}inom{X}{o} g = inom{u^{-1}Xu}{o} u^{-1}Xa + u^{-1}x inom{x}{o}$$
 for $g = inom{u}{o} g^{-1}inom{x}{o}$,

it follows that

$$\operatorname{CoAd} (g)(Y, y) = (uYu^{-1} + A, uy) \quad \text{with } A = \sum \langle \omega a, uy \rangle_{2n} \hat{\omega},$$

where ω ranges the elements of the basis of \mathfrak{g}_n (not of $I\mathfrak{g}_n$) given above. Simpler notation $g \cdot (Y, y)$ will be used for $\operatorname{CoAd}(g)(Y, y)$. \mathfrak{G}_n and \mathscr{I}_n stand for the same as in Section 0.

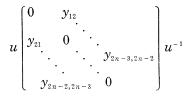
LEMMA 2.1. The union of the orbits $\{g \cdot \mathfrak{F}_n; g \in IG_n\}$ contains an open set of $I\mathfrak{g}_n^* = \mathfrak{g}_n \times \mathbb{R}^{2n}$. In particular the restriction map $F \to F | \mathfrak{F}_n$ of \mathscr{I}_n into the set of polynomial functions on \mathfrak{F}_n is an injective algebra-homomorphism.

Proof. Denote by $\tilde{\mathfrak{G}}_n$ the union $\bigcup g \cdot \mathfrak{G}_n$ $(g \in IG_n)$. Note that $\tilde{\mathfrak{G}}_n$ contains elements of the form

$$(\dot{Y}) = egin{pmatrix} \dot{Y} & 0 & 0 \ & 0 & y_{2n-1,2n} & 0 \ 0 & & & & \ & 0 & 0 & & y_{2n} \end{bmatrix} (\dot{Y} ext{ belongs to an open set } \mathcal{O}_{n-1} ext{ of } \mathfrak{g}_{n-1}).$$

This follows from the Proposition 1.3.4.1 [5, p. 101] and the simple fact that the set consisting of the following elements $(u \in G_{n-1}, y_{ij} \in \mathbf{R})$

68



contains a Cartan subalgebra $\{\lambda_1 e_1 + \cdots + \lambda_{n-1} e_{n-1}; \lambda_i \in \mathbf{R}\}$ of \mathfrak{g}_{n-1} . Using the notation in the proof of Lemma 2.3, we have v_{n+1} . $(Y, y, y_{2n}) \in \mathscr{Y}_n$ for $(Y, y, y_{2n}) \in \mathscr{Y}_{n+1}$. In other words, there exists a smooth map of $\mathscr{Y}_{n+1} \setminus \{y_{2n-2}y_{2n-1,2n} = 0\}$ into \mathscr{Y}_n , which contains the set $\{a \cdot (\dot{Y}); \dot{Y} \in \mathcal{O}_{n-1}, a \in \mathbf{R}^{2n}\}$ (recall that \mathbf{R}^{2n} is regarded as a subgroup of IG_n). Thus there exists an open set \mathcal{O}_{n+1} of \mathscr{Y}_{n+1} . Similar argument shows the existence of an open set \mathcal{O} of $I\mathfrak{g}_n^*$ such that $\mathcal{O} \subset \tilde{\mathfrak{F}}_n$.

Let s_i $(0 \leq i \leq n-1)$ be the *i*-th fundamental symmetric polynomial in $y_{2k,2k-1}y_{2k-1,2k}$ $(1 \leq k \leq n-1)$ and set $t_i = s_i y_{2n-1} y_{2n}^2$.

LEMMA 2.2. Let F be an element of \mathscr{I}_n . The restriction $F|\mathfrak{H}_n$ takes the form $\sum_{\alpha_i \ge 0} a_{\alpha_0, \dots, \alpha_{n-1}} t_0^{\alpha_0} \cdots t_{n-1}^{\alpha_{n-1}}$.

Proof. Since $F|\mathfrak{S}_n$ is invariant under the action of the diagonal matrix $[1, \dots, 1, c, c^{-1}] \in G_n$, it takes the form $\sum_{\beta \geq 0} B_\beta(y_{2n-1,2n}y_{2n}^2)^\beta$, where B_β are polynomials in $y_{2k,2k-1}, y_{2k-1,2k}$ $(1 \leq k \leq n-1)$. Moreover, $F|\mathfrak{S}_n$ is invariant under any substitution $y_{2k,2k-1}, y_{2k-1,2k}$ for $-y_{2k,2k-1}, -y_{2k-1,2k}$ and the permutations of $y_{2k,2k-1}, y_{2k-1,2k}$ $(1 \leq k \leq n-1)$. Consequently B_β can be written as $\sum_{\alpha_k \geq 0} b_{\alpha_1,\dots,\alpha_{n-1},\beta}, s_1^{\alpha_1} \cdots s_{n-1}^{\alpha_{n-1}}$. It remains to prove that $\alpha_1 + \cdots + \alpha_{n-1} \leq \beta$. By simple calculation we obtain

for $\sigma = -y/y_{2n-1,2n}$. Since the value of F at this point must be represented as a polynomial in y, we conclude that $\alpha_1 + \cdots + \alpha_{n-1} \leq \beta$ (note that the value of F at this point does not depend on the omitted components: cf. the proof of Lemma 2.1).

LEMMA 2.3. There exists uniquely $F^{(i)} \in \mathscr{I}_n$ such that the restriction $F^{(i)} | \mathfrak{H}_n = t_i \ (0 \leq i \leq n-1).$

Proof. Denote by \mathscr{Y}_k (resp. $G_{n,k}$) (k = n, n + 1) the following subspaces (resp. subgroups) of Ig_n^* (resp. G_n);

$${\mathscr Y}_n = \left\{ egin{pmatrix} \dot{Y} & * & o & 0 \ o & * & y_{2n-1,2n} & 0 \ * & * & * & y_{2n} \end{bmatrix}
ight\}, \hspace{1cm} {\mathscr Y}_{n+1} = \left\{ egin{pmatrix} \dot{Y} & * & * & 0 \ -t(J_{n-1}y) & * & y_{2n-1,2n} & 0 \ * & * & * & y_{2n} \end{bmatrix}
ight\}, \hspace{1cm} G_{n,n} = \left\{ egin{pmatrix} u & 0 & 0 \ * & * & * & y_{2n} \end{bmatrix}
ight\}, \hspace{1cm} U = G_{n-1} \\ \left\{ egin{matrix} u & 0 & 0 \ * & * & * \end{pmatrix}
ight\}, \hspace{1cm} G_{n,n+1} = \left\{ egin{matrix} u & * & o \ o & * & 0 \ * & * & * \end{pmatrix}
ight\}, \hspace{1cm} u \in G_{n-1} \\ \left\{ egin{matrix} u & * & o \ * & * & * \end{pmatrix}
ight\}, \hspace{1cm} u = S_{n-1} \\ \left\{ egin{matrix} u & * & o \ * & * & * \end{pmatrix}
ight\}, \hspace{1cm} u = S_{n-1} \\ \left\{ egin{matrix} u & * & o \ * & * & * \end{pmatrix}
ight\}, \hspace{1cm} u = S_{n-1} \\ \left\{ egin{matrix} u & * & o \ * & * & * \end{pmatrix}
ight\}, \hspace{1cm} u = S_{n-1} \\ \left\{ egin{matrix} u & * & * & * \\ v & * & * \end{pmatrix}
ight\}, \hspace{1cm} u = S_{n-1} \\ \left\{ egin{matrix} u & * & o \ * & * & * \end{pmatrix}
ight\}, \hspace{1cm} u = S_{n-1} \\ \left\{ egin{matrix} u & * & o \ * & * & * \end{pmatrix}
ight\}, \hspace{1cm} u = S_{n-1} \\ \left\{ egin{matrix} u & * & v \ * & * \end{pmatrix}
ight\}, \hspace{1cm} u = S_{n-1} \\ \left\{ egin{matrix} u & * & v \ * & * \end{pmatrix}
ight\}, \hspace{1cm} u = S_{n-1} \\ \left\{ egin{matrix} u & * & v \ * & * \end{pmatrix}
ight\}, \hspace{1cm} u = S_{n-1} \\ \left\{ egin{matrix} u & * & v \ * & * \end{pmatrix}
ight\}, \hspace{1cm} u = S_{n-1} \\ \left\{ egin{matrix} u & * & v \ * & v \ * & v \end{array}
ight\}, \hspace{1cm} u = S_{n-1} \\ \left\{ egin{matrix} u & * & v \ * & v \end{array}
ight\}, \hspace{1cm} u = S_{n-1} \\ \left\{ egin{matrix} u & * & v \ * & v \end{array}
ight\}, \hspace{1cm} u = S_{n-1} \\ \left\{ egin{matrix} u & * & v \ * & v \end{array}
ight\}, \hspace{1cm} u = S_{n-1} \\ \left\{ egin{matrix} u & * & v \ * & v \end{array}
ight\}, \hspace{1cm} u = S_{n-1} \\ \left\{ egin{matrix} u & * & v \ * & v \end{array}
ight\}, \hspace{1cm} u = S_{n-1} \\ \left\{ egin{matrix} u & * & v \ * & v \end{array}
ight\}, \hspace{1cm} u = S_{n-1} \\ \left\{ egin{matrix} u & * & v \ * & v \end{array}
ight\}, \hspace{1cm} u = S_{n-1} \\ \left\{ egin{matrix} u & * & v \ * & v \end{array}
ight\}, \hspace{1cm} u = S_{n-1} \\ \left\{ egin{matrix} u & * & v \end{array}
ight\}, \hspace{1cm} u = S_{n-1} \\ \left\{ egin{matrix} u & * & v \end{array}
ight\}, \hspace{1cm} u = S_{n-1} \\ \left\{ egin{matrix} u & * & v \end{array}
ight\}, \hspace{1cm} u = S_{n-1} \\ \left\{ egin{matrix} u & * & v \end{array}
ight\},$$

Set $IG_{n,k} = \left\{ \begin{pmatrix} u & a \\ o & 1 \end{pmatrix}; \ u \in G_{n,k}, \ a \in \mathbb{R}^{2n} \right\}$ (k = n, n + 1). We shall define polynomial functions $F_k^{(i)}$ on \mathscr{Y}_k (k = n, n + 1). The values of $F_n^{(i)}$ at

$$\begin{pmatrix} \dot{Y} & * & o & 0 \\ & & & \vdots \\ o & * & y_{2n-1,2n} & 0 \\ 0 & * & * & y_{2n} \end{pmatrix}$$

are defined by requiring that $\sum_{i=1}^{n-1} F_n^{(i)} T^{2(n-i-1)} = y_{2n-1,2n} y_{2n}^2 \times \det(T + \dot{Y})$, where T is an indeterminate. Note that the restriction $F_n^{(i)} | \mathscr{Y}_n$ is equal to t_i up to the signature. Keeping in mind that $F_n^{(i)}$ does not depend on the omitted components, we can easily verify that $F_n^{(i)}$ are $G_{n,n}$ -invariant. For

$$(\dot{Y}, y, y_{2n}) = egin{pmatrix} \dot{Y} & * & y & 0 \ - {}^t(J_{n-1}y) & * & y_{2n-1,2n} & 0 \ * & * & * & y_{2n} \end{bmatrix} \in \mathscr{Y}_{n+1} \quad (y \in R^{2n}),$$

put

$$v_{n+1} = v(\dot{Y}, y, y_{2n}) = egin{pmatrix} I_{2n-4} & o & - ilde{y} & 0 & 0 \ dots & do$$

where ${}^{t}\tilde{y} = (y_{1}, \cdots, y_{2n-4})/y_{2n-2}$ and $\sigma = -y_{2n-2}/y_{2n-1,2n}$. Then we have

$$v_{n+1} \cdot (\dot{Y}, y, y_{2n}) = \begin{pmatrix} \left(u\dot{Y}u^{-1} + \begin{pmatrix} 0 & 0 \\ 0 & 0 \\ 0 & 1 & 0 \end{pmatrix} y_{2n-2}^2 / y_{2n-1,2n} \right) & * & 0 & 0 \\ * & \vdots & \vdots & \vdots \\ * & 0 & \vdots \\ 0 & \cdots & \cdots & \cdots & 0 & 0 & y_{2n-1,2n} & 0 \\ 0 & \cdots & \cdots & \cdots & * & * & 0 & y_{2n} \end{pmatrix}$$

where u is the first $(2n-2) \times (2n-2)$ -block of the matrix v_{n+1} . Secondly, defining function $F_{n+1}^{(i)}$ on \mathscr{Y}_{n+1} by $F_{n+1}^{(i)}(\dot{Y}, y, y_{2n}) = F_n^{(i)}(v_{n+1} \cdot (\dot{Y}, y, y_{2n}))$, we shall show that they are $IG_{n,n+1}$ -invariant polynomial functions. An element g of $G_{n,n+1}$ can be represented as g_1g_2 for some

$$g_{\scriptscriptstyle 1} = egin{pmatrix} u & 0 \ c & 0 \ 0 & b & c^{-1} \end{pmatrix} \in G_{\scriptscriptstyle n,\,n} \quad ext{and} \quad g_{\scriptscriptstyle 2} = egin{pmatrix} I_{\scriptscriptstyle 2n-2} & z & o \ o \ o \ I_{\scriptscriptstyle 2} \ (J_{\scriptscriptstyle n-1}z) & I_{\scriptscriptstyle 2} \end{pmatrix} \quad (z \in R^{\scriptscriptstyle 2n-2}) \,.$$

Clearly $g_j \cdot (\dot{Y}, y, y_{2n})$ (j = 1, 2) are equal to

$$\begin{pmatrix} u\dot{Y}u^{-1} & * & c^{-1}uy & 0 \\ -c^{t}(J_{n-1}y)u^{-1} & * & c^{2}y_{2n-1,2n} & 0 \\ * & * & * & c^{-1}y_{2n} \end{pmatrix}$$

and

respectively. Elementary calculation yields

$$v(g_j \cdot (\dot{Y}, y, y_{2n}))g_j v(\dot{Y}, y, y_{2n})^{-1} \in G_{n,n} \quad (j = 1, 2)$$

On account of $G_{n,n}$ -invariance of $F_n^{(i)}$, it follows easily that $F_{n+1}^{(i)}$ are $G_{n,n+1}$ -invariant. In particular, $F_{n+1}^{(i)}(g \cdot (\dot{Y}, y, y_{2n})) = F_{n+1}^{(i)}(\dot{Y}, y, y_{2n})$ for

HITOSHI KANETA

$$g = egin{pmatrix} I_{2n-4} & & \ & & J_1 & \ & & & I_2 \end{pmatrix} \in G_{n,n+1} \, .$$

This implies that $F_{n+1}^{(i)}$ are polynomials, since $F_{n+1}^{(i)}$ are polynomials in all variables except possibly for y_{2n-2} . Recalling that $F_{n+1}^{(i)}$ depend only on \dot{Y}, y and y_{2n} , we conclude immediately that $F_{n+1}^{(i)}$ are invariant under the action of $a \in \mathbb{R}^{2n}$. Thus $F_{n+1}^{(i)}$ are $IG_{n,n+1}$ -invariant polynomial functions. For $(Y, y) \in Ig_n^* = g_n \times \mathbb{R}^{2n}$, let v = v(Y, y) be the matrix

$$egin{pmatrix} I_{2n-2} & o & - ilde{y} \ {}^t\!(J_{n-1} ilde{y}) & 1 & -y_{2n-1}\!/y_{2n} \ o & 0 & 1 \ \end{pmatrix} \qquad ext{with} \ \ {}^t\! ilde{y} = (y,\,\cdots,\,y_{2n-2})\!/y_{2n}\,.$$

Then $v \cdot (Y, y) = (vYv^{-1}, vy)$ belongs to \mathscr{Y}_{n+1} . To complete the proof of Lemma 2.3 we shall define functions $F^{(i)}$ on $I\mathfrak{g}_n^*$ by $F^{(i)}(Y, y) = F_{n+1}^{(i)}(v \cdot (Y, y))$ $(0 \leq i \leq n-1)$ and show that $F^{(i)}$ are elements of \mathscr{I}_n . To being with, $F^{(i)}$ are G_n -invariant. Indeed, for $u \in G_n$, simple calculation reveals that

$$v(u \cdot (Y, y))uv(Y, y)^{-1} = egin{pmatrix} * & * & * & 0 \ * & * & * & * \ o & 1 & 0 \ * & * & * & * \end{pmatrix} \in G_{n, n+1}.$$

Since $F_{n+1}^{(i)}$ are $G_{n,n+1}$ -invariant, it follows that $F^{(i)}$ are G_n -invariant. By the same argument as for $F_{n+1}^{(i)}$, we now conclude that $F^{(i)}$ are polynomials. Using the G_n -invariance of $F^{(i)}$ and $G_{n,n+1}$ -invariance of $F_{n+1}^{(i)}$, we obtain for $a \in \mathbb{R}^{2n}$

$$\begin{split} F^{(i)}(a \cdot (Y, y)) &= F^{(i)}(v(Y, y)av(Y, y)^{-1} \cdot (v(Y, y) \cdot (Y, y))) \\ &= F^{(i)}_{n+1}(v(Y, y)av(Y, y)^{-1} \cdot (v(Y, y) \cdot (Y, y))) \\ &= F^{(i)}_{n+1}(v(Y, y) \cdot (Y, y)) = F^{(i)}(Y, y) \,. \end{split}$$

 IG_n being generated by G_n and \mathbb{R}^{2n} , $F^{(i)}$ are IG_n -invariant. The proof of Lemma 2.3 is complete.

Theorem 2 follows at once from Lemmas 2.1, 2.2 and 2.3.

Added in proof. After this paper had been accepted for publication, [6] appeared. [2] is now published (Comm. Math. Phy., 90 (1983), 353-372).

72

INVARIANT POLYNOMIAL ALGEBRAS

References

- [1] L. Abellanas and L. Martinez Alonso, A general setting for Casimir invariants, J. Math. Phys., 16 (1975), 1580-1584.
- [2] M. Chaichian, A. P. Demichev and N. F. Nelipa, The Casimir operators of inhomogeneous groups, preprint.
- [3] H. Kaneta, The invariant polynomial algebras for the groups IU(n) and ISO(n), Nagoya Math. J., 94 (1984), 43-59.
- [4] V. S. Varadarajan, Lie groups, Lie algebras and their representations, Prentice-Hall, Inc., London 1974.
- [5] G. Warner, Harmonic analysis on semi-simple Lie groups I, Springer-Verlag 1972.
- [6] M. Perroud, The fundamental invariants of inhomogeneous classical groups, J. Math. Phys., 24 (1983), 1381-1391.

Faculty of Education Tokushima University Tokushima 770 Japan