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ON THE NIWA-SHINTANI THETA-KERNEL LIFTING
OF MODULAR FORMS

BARRY A. CIPRA

Modular forms of half-integral weight are of intrinsic interest: many
of the functions of classical number theory transform under a matrix
group with half-integral weight. The aim of this paper is to refine some
results and techniques which have been introduced to study these func-
tions and the arithmetic information which they contain.

Our results will be most clear if we give a very brief history of the
subject. The general theory of modular forms of half-integral weight is
a fairly recent development. Although Hecke [4] did some work in the
area, in a sense the subject really begins with Shimura's 1973 paper, "On
modular forms of half-integral weight" [11].

Shimura demonstrated an extraordinary 'lifting' property for modular
forms of half-integral weight. By considering Euler products associated
to eigenfunctions of Hecke operators, Shimura constructs a family of maps
taking cusp forms of half-integral weight to holomorphic forms of even,
integral weight, which is where the subject has been most studied and
best understood. This lifting', moreover, takes eigenfunctions to eigen-
functions.

While Shimura proves the lifted functions to be modular forms, he
does not completely determine the level at which they transform. However,
he makes the following conjecture: if the original function transforms at
level 4N, then the lifted form transforms at level 2N.

Shimura also proves that the lifted forms are in fact cusp forms, if
the half-integral weight is > 5/2. The remaining case, weight 3/2 (weight
1/2 does not come under consideration), is more complicated. Certain
forms, namely the 'theta functions', fail to lift to cusp forms. Shimura
here conjectures that everything in the 'orthogonal complement' (with re-
spect to the Petersson inner product) does lift to a cusp form.
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The first conjecture was largely answered by Niwa [8], using important
techniques introduced by Shintani [12], Niwa established that, for weight
> 7/2, Shimura's lifting can be obtained by taking the Petersson inner
product of the original cusp form against a suitably constructed 'theta
kernel' of two variables. Under this construction, the correct transforma-
tion at level 2N is easily seen.

The second conjecture, concerning weight 3/2, has been affirmed by
various researchers, including the author in his Ph.D. dissertation (which
this paper is based upon). The techniques have been different: Flicker
[2] and Gelbart and Piatetski-Shapiro [3] have used the machinery of
representation theory; Kojima [7] gives a proof in the context of Dirichlet
series; this author gives a direct proof. It turns out that the behavior
of a lifted form at cusps is determined by the original cusp form's inner
product against theta functions (Theorems 4.4 and 4.9).

Our goal in this paper is two-fold: to widen the applicability of Niwa's
theta kernel to include the cases of weight 5/2 and 3/2, and then to use
these results to give a direct proof of Shimura's second conjecture. Our
actual results are more general. We find that Niwa's theta kernel applies
(with one exception) to all holomorphic modular forms of all positive,
half-integral weights, including theta functions of weight 1/2. (The ex-
ception is θ{z) itself!) Our proof of Shimura's conjecture actually does
two cases: it prescribes values at cusps for lifts from weight 3/2, and pole-
terms at cusps for lifts from weight 1/2. These values and pole-terms are
equated by explicit formulae to the inner product of the initial form
against appropriate theta functions of its weight.

The structure of the paper is as follows:
In Section 1, we consider a general theory of theta kernels for SL

(2, Z), using Shintani's presentation of the Weil representation. The cri-
tical ideas are that of a function / with two 'spherical' properties, and a
function ω with two 'permutation' properties. We prove some important
growth estimates for theta kernels (Corollary 1.13). We illustrate the
theory with the simple case of a quadratic form in one variable: this gives
rise to the classical theta functions, and to some other technical results
which are needed later.

In Section 2, we introduce the particular theta kernel used by Niwa
to reproduce Shimura's lifting. We also 'invert' this theta kernel, which
makes this formulation of the lifting more direct. We prove four main
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results: 1) The theta kernel is (with one exception) 'rapidly decreasing'
at all cusps, so that its inner product is well-defined against any 'slowly
growing' modular form (Proposition 2.8—this uses the growth estimates
of Section 1). 2) When the second (integral-weight) variable is restricted
to its imaginary axis, the theta kernel can be re-expressed as a Toincare'
series—i.e., as a sum over coset representatives (Theorem 2.11). 3) The
inner-product lifting agrees with Shimura's lifting, at least on the imagi-
nary axis (Theorem 2.12). 4) The inner-product lifting is holomorphic
(and thus agrees with Shimura's lifting everywhere—Theorems 2.16 and
2.17).

The key issue is holomorphy. The definition of the inner product
looks hopelessly non-holomorphic, and indeed the theta-kernel is not holo-
morphic in either variable. Holomorphy of the inner product depends on
three ingredients: a differential equation (2.52) satisfied by the inner pro-
duct, periodicity of the inner product (so that we can begin separating
out solutions of the differential equation into holomorphic and non-holo-
morphic Fourier expansions), and certain growth estimates which the non-
holomorphic piece (were there any!) is certain to violate. In Niwa, simple
estimates suffice for weights > 7/2. These however fail at the lowest
weights. Our proof accounts for all weights by bringing in subtler esti-
mates. These are based on the aforementioned result that, on the imagi-
nary axis, Niwa's inner product reproduces Shimura's lift—for which the
behavior at infinity is clear. (To be precise, we should note a discrepancy
at weight 1/2: The lifts here are not holomorphic; rather they are equal
parts holomorphic and anti-holomorphic.)

Section 3 specifies the liftings of the theta functions of weights 1/2
and 3/2 and derives a formula (Theorem 3.4) for their behavior at cusps.

In Section 4, we prove Shimura's conjecture for weight 3/2 and an
analogous result for weight 1/2. The proof treats both results simultane-
ously, but comes in two parts: a special case (t = 1) and the general case
(arbitrary, square-free t, where the proof amounts to reducing to the special
case). In the beginning of the proof, we also see why these results occur
only for weights 3/2 and 1/2. Essentially what happens is this: as one
approaches a cusp of the lifted form, the theta kernel degenerates into a
linear combination of theta functions. Thus if the original cusp form (of
weight 3/2) is orthogonal to all the appropriate theta functions, then its
lifting will be a cusp form. The converse is easily seen to be true also.
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The main results of the section are contained in Theorems 4.4 and 4.9,
where the value or pole term of the lifted form at a cusp is given explicitly
as an inner product of the original form against a linear combination of
theta functions.

Finally, in Section 5, we give some examples. We derive a classical
formula for the number of representations of a (square-free) number as
the sum of three squares; we identify two modular forms of weight 3/2
and low level; and we derive formulas for the Petersson 'norm' of some
theta functions. These examples have proved useful chiefly for checking
the accuracy of our main formulas.

I would like to thank my advisors Mike Razar and Steve Kudla of
The University of Maryland, for introducing me to this subject and for
their generous donation of time and knowledge. I would also like to
thank Prof. John Benedetto for his timely encouragement.

Notations
We follow the notation established by Shimura, Niwa, and Shintani

[11, 8,12]. As usual, Z, R, and C denote the integers, reals, and complex
numbers. We write q = e(z) = exp (2πiz) where, typically, z — u + ίv e H
= {z I Im z > 0}. We will also need a second complex variable, which we
denote by w = ξ + iη. When we take square roots, we make a cut along
the negative real axis and take the 'positive' square root.

In general, we denote an arbitrary matrix in SL(2, R) by σ = I A,

while T = (a J ) denotes an arbitrary matrix in SL(2, Z). Our most im-\c a]
portant group is Γ0(N) = {ϊ \ c = 0 mod N}, where N is a positive integer.
We also use the subgroup Γ^ = {ϊ\ c = 0}.

If k e Z, a e GL+(2, R), and / is a function on H, define

(/!**)(*) = (det σr\cz + d)-*f(pz) .

When k e Z is odd, and ϊ e Γ0(AN), define

(f\M*)=Kr9z)-f<Tz)
where

j(ΐ, z) = θ(ϊz)lθ(z) =ε^(£λ(cz + d)1'2 .

Here θ(z) = Σ"«> e(n2z), ^ = 1 or i as d = 1 or 3 mod 4, and (c/d) is the
quadratic residue symbol as defined in Shimura [11, p. 442—see also Ap-
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pendix A of this paper]. We define also the 'inversion' operator W(N)

following Serre-Stark [10]:

(N-k/2(-ίz)~kf(-llNz) k = half-integer
f\k(W(N))(z) =

[N ~ k/2z~ kf(—1/Nz) k = even-integer

Let k be an integer or half-integer, and let N be a positive integer,

divisible by 4 if k is a half-integer. Let I be a character mod N. We

say that a function / is a modular form of weight k, level N, and character

X—and write fe Mk(N, X)—if and only if f\j = χ(d)f for all TeΓ0(N).

Since ί ~~^ _ i ) e Γ0(N), we must assume X to be even for k half- or even-

integral, and X odd for k odd—otherwise the space Mk is trivial.

If / e Mh(N, X) is holomorphic on H and has a Fourier expansion at

every cusp (see [11]), we call / a holomorphic modular form and write /

6 Gk(N9 X). If such an / vanishes at every cusp (i.e., the constant term in

every Fourier expansion is zero, so that / is 'rapidly decreasing' at cusps),

we call / a cusp form, and write fe Sk(N, X).

If /, g e Mk(N, X), we define the Petersson inner product

</, g) = ί vkf(z)g(z)dQz
J Γo(Λθ\flΓ

whenever the integral is well-defined (i.e., absolutely convergent). Here

dQz denotes the invariant area element dudvjv2.

Lastly, we shall have occasion to use Hermite polynomials, so let us

define the ones we will use. For 0 < v e Z, define

HXx) = (-ΐ)v exp (x2/2) A - exp (~x2/2) .
dxv

Thus H0(x) = 1, Hx(x) = x, and so forth.

§ 1. General theta kernels

We begin by summarizing Shintani's presentation of the Weil repre-

sentation.

(1) Let Q be a rational symmetric matrix of signature (p, q), p + q

= n. For x,ye Rn, define the inner product

<x, y) = ιxQy .

For matrices σ = (a •, j e SL(2, R) and Schwartz functions feSf(Rn), we

define the Weil representation
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| r [ ^ < , > ] / ( σ x ) if c = 0
(r(σ, Q)f)(x) = \ p r . . . .

| d e t Q | - 1 / 2 | c | - n / 2 eta<x,x>2<x
2c

if c=£0 . (1.1)

Since this is just a mixture of the Fourier transform, scaling, and multipli-

cation by functions of modulus one, there is an extension to functions

feL2(Rn). The Weil representation is a. projective unitary representation

of SL(2, R) in L\R% in that

r(στ, Q) = c(σ, τ)r(σ, Q)r(τ, Q)

with \c(σ, τ)\ = 1. More precisely, defining

J(σ, z) = cz + d
and

we have

where

c(σ,

co(σ,

τ)

T)

o)

= {ε(στ)Kσ)ε(τ)}»-

= V c/((7Γ, Ϊ)JΛ/J{O9

c >

c <

τi)vΌ

0

0

Γ(r, i)

The Weil representation becomes a true (not projective) representation]^

we pass to the two-fold covering of SL(2, R)9 the metaplectic group: Let

SL(2, R) = {(σ, ί ) k € SL(2, R), t = ± 1 ; (σ, ί)(</, O

Then

is a representation of £L(2, R) in L\Rn).

(2) Let L be a lattice in 2Γ such that <x, x> e 2Zfor all x e L . (Thus

for x, y e L, (x, y} = \({x + y, x + y} - (x, x} - (y, y» e Z.) Let L* be
the dual lattice: L* = {x e Rn\ <x, y> e Z for all y e L}. Clearly L c L*,

and L*/L is a finite abelian group. Denote by v(L) the volume of a

fundamental parallelotope of L in Rn:

v(L) = f
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Let fe^(Rn) and define, for &eL*/L,

0(f, h) = Σ /(* + h) .

We quote our first result from Shintani [12, p. 95]:

PROPOSITION 1.1. Let ϊ = (^ fy e SL(2,Z). Then

(i) θ(r(ΐ,Q)fh) = Σ c(h, k\θ(f, k) (1.3)
JceL*/L

where

Γ Λ

|det Q\1/2υ{L)-1 \c\~n/2 Σ e\ — (a < h + r, h + r) -
rei/cl L 2C

(1.4)

(ii) Assume c to be even and nonzero, cL* c L, and c(x, x) to be even

for all xeZΛ Let {λl9 -λn} be a Z-basίs for L, and define D = det«^ i ,

;,». Then

<Ψ)W d>0
J

(1.5)

Remarks. 1. Z) depends only on L (and Q), not on the choice of basis.

2. Since εdε_d = ί, the actual difference between d > 0 and d < 0 in (1.5)

is the presence or absence of the term ( — l/d)n; otherwise both are ε^|(2c/|d|)TC

(D/\d\).

The group generated by those matrices satisfying the hypotheses of

(ii) above clearly form a congruence subgroup of the form Γ0(4N), for

some positive integer N. In our use of it, Γ0(4:N) will always satisfy those

hypotheses.

For ί a 7 j e Γ0(4N), the map k —> dk is (among other things) a perm-

utation of L*/L. Now suppose ω: L*/L->C is a function satisfying

1) ω(k) = 0 if <k, k) £ 2Z

2) ω(dk) = χ(d)ω(A) for r = (jj J ) 6 Γ0(4iV),
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where X is a character mod AN. We say that ω has the 'first permutation

property' for ΓQ(4N) with character X. (It is easy to create such functions:

if v\ L*/L -> C is any function, nonzero only for k such that (k, K) e 2Z,

let

As an immediate consequence, we have

THEOREM 1.2. Suppose ω has the first permutation property for Γ0(AN)

and X. Define

θ(f, ω) = Σ *>(/i)0(/, Λ) =
JιeL*/L

Then, for r = (° J)eΓ0(4iV)

X(d)θ(f,ω) (1.6)

taking the top (bottom) choice as d > 0 (d < 0).

(3) SL(2, 2?) is a locally compact group, so it carries a Haar measure

dg. There are various ways of expressing dg. If g = (°tι *2), we can set

^ - ax2ax,axj\x,\. writing g - yQ α -iJ^ 0 i j ^ _ s i n ψ Cosφ)' w e n a v e

d^ = dadxdφj\a\. If g = ^Q y_1/2 j ^ _ s i n J cosjj^ t h e n d ^ = (dudu/v2)

dφ. This last expression leads us to identify the upper half-plane H =

{u + iυ\v> 0} with SL(2, R)jK, where

by the map
gK->z = gί .

(yl/2 UV~1

o -1/2

goes to w + £Ϊ;; we call this matrix σz.

(7,1/2 z/n-VZX

0 ι;-1/2 ) for z ^ u

ίveH. Define 0(mod2π) by e~ίφ = J(τ, z)l\J(τ, z)\, and let

k(φ) = ( c . o s? s i n ί V Thenκψ' \ — smφ cosφ/
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1) τσz = στzk(Φ)
2) r(τ, Q)r(σz, Q) = r(στ2, Q)r(k(φ), Q)

Proof. As actions on H, both sides of 1) take i to τz. Therefore the
two sides differ only by a 'rotation' matrix. Observe that both sides also
take the cusp at cot φ to the cusp at i oo: for the RHS this is clear, while
for the LHS it follows since, from the definition of θ, cot# = — (cu + d)/v.
Therefore the two sides differ only by ±1. Equality now follows by con-
tinuity and connectedness, since I σz = σIzk(0) is obvious.

Statement 2) now follows by comparing c(σ9 τ) for the matrices on
each side.

COROLLARY 1.4. For τ = (" %\e SL(2, R), and t e R, let τt = (\2

~ \ i ^ r l t)' ^ei ^ ^ be as before. Then

τtσt2Z = σt2(τz)k(φ)

and

r(r t, Q)r(σί22, Q) = r(σtHτz), Q)r(k{φ\ Q) .

Proof. This follows since J{τt, fz)l\J(τt, fz)\ = J(τ, z)/\J(τ, z)\.

(4) Let fe^(Rn) and let tceZ. Assume that for all

UΛ\ ( c o s Φ s ί n Φ\k^ = \-sinφ cosφ)>

r{k(φ\ Q)f = ε{k{φ)y-^eiτ*-f (1.7)

(with ε defined by (1.2)). We say that such a function / has the Έrst
spherical property' for weight κ\2.

Remarks. 1) By comparing both sides of (1.7) for φ — π, it is easy to

see that / is identically zero unless K = n mod 2. 2) The condition (1.7)

is really stating that/be an eigen-f unction for Kχ{±ϊ\, a maximal com-

pact subgroup of SL(2, R), under the Weil representation r0. The char-

acters of this subgroup are of the form Xm((k(φ), t)) = tmVe~ίφ~m, for me Z.

Thus if / has the first spherical property, and re = n mod 2, we have

ro(W), t), Q)f= t*-<ε(k(φ))«-*r(k(φ), Q)f = rVϊ^-f.

Let / have the first spherical property for weight κ/2, and let ω have
the first permutation property for ΓQ(4N) with character X. Define
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θ{z, f, h) = υ-»θ(r(σn Q)f, h) heL*/L (1.8)

and

θ(z,f,ω)= Σ ω{h)θ(z,f,h). (1.9)
heL*/L

THEOREM 1.5. Let T = (* fye SL(2, Z). Then

(cz + d)-"2θ(Tz, /, Λ) = V ί -<*-«•*" Σ <th, k)rθ(z, f9 k) (1.10)
k€L*/L

with c(h, k)r as in Proposition 1.1.

Proof. This follows easily from Propositions 1.1 and 1.3, and the
standard fact that lm(ϊz) = Im(z)l\cz + df.

COROLLARY 1.6. Let ϊ = (® %\ e Γ0(4N). Then

j(r, z)-θ(rz, f, ω) = l'(d)θ(z, f, ω) (1.11)

where m

with the Hilbert symbol (x.y). = { " } ^ J ^ °

COROLLARY 1.7. As special cases of Theorem 1.5 u e

(1) θ(-llz,f,h) = Vϊ-<»-«tf' |detQ|-I'ιυ(L)-1 Σ e(-(k, h})θ(z, f, k)
KeL*/L

(2) ^ + 1, /, A) = β ( l <A, A > ) ^ , /, h). (1.12)

COROLLARY 1.8. Let T e SL(2, Z). ΓAβ/z

ι;(-»)/*(c2; + d)-</2θ(ϊz, f, A)|,.<ββ = VT-(p-ί)Bβn(e)c(A, 0)r/(0) (1.13)

Assume moreover that /(0) = 0. 7%erc ^(^, /, A) is 'rapidly decreasing' at all

cusps. That is, for all ϊ e SL(2, Z), and all m>0, \vm(cz + d)-κ/2θ(ϊz, f, h)\

->0 as u-^oo,

Proof. The first equation is easily seen from Theorem 1.5. We post-

pone the proof of the second assertion to Corollary 1.13, where we give

a sharper version of the result.

(5) Which functions—if any—have the first spherical property? It

suffices to answer the question when Q is a diagonal matrix.
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THEOREM 1.9. Assume (x,y) = m1xίy1 + + mpxpyp — mp+ίxp+ιyp+1

— — mp+qxp+qyp+q, with ntj > 0 for all j . Let v = (vl9- , vp+q) be an

n-tuple of nonnegative integers such that

(p-q) + 2(vγ + + vp - vp + ί - vp+q) = K (1.14)

and define

fv =
 Pf\ H^VTOUJ XJ) exp ( - 7rmjX*) (1.15)

(The Hermite polynomials Hn are defined in the Notations.) Then fv has

the first spherical property for weight κ/2. Conversely, any function with

the first spherical property for weight je/2 is a sum (possibly infinite)

f=ΣcJ» (1.16)

over all n-tuples v satisfying (1.14).

Proof. Modifying Niwa's argument [8, p. 150-151], we define the in-

tegral transform

I(f)(z) = f f(x)k(x, z)dx z = (zlf .. ,zn)eCn

where

k(x, z) = exp (-πΣmj(x) + 2ix5z3 - λz$) .

Following definitions, we see

I(r(k(φ), Q)f){z) = |det QΓ |sin φ\-» f f exp \-π"£mill ± i - ^ k
JRn jRn L j = l W Sill φJ

+ 2i(Zj + yόl'sin φ)x3 — (— z) + ίy) cos 0/sin φ j \ f(y)dydx

= |det Q|1/2 |sin φ\~n/2 f ff Γ exp f- rm/l ± i *^£)x*
Ji2wi=iJ-°o L \ sin φ)

— 2πimj(Zj + ̂ j/sin )̂x^ + 7rmi — z) =F i ^ cos 0/sin ^) rfx^

= |det Q|1/2|sin^|-*/2 f fl
J Λ « .7=1

X exp [-TΓ/n^ + 2iyJe
±t'zj - ^e^

= |det QΓ I sin |̂-*/2 ί fϊ"
jRnj=ι

X exp [-ffin,^ + ttyfi
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The ± convention has been to use the top sign for 1 < j < p and the
bottom sign for p < j < p + q. Since

(detQI = PΠ mj9 we get I(r(k(φ), Q)f)(z) = ε(k(φ)y-«V^p

where e±ίφz = (eίφzί} , e*%9 e~iφzp+u , e~ίφzp+q). Now when
I(f) is holomorphic in Cn, i.e.,

= Σ

Thus

I(f)(e±ίφz) = Σ ce**^"-***-**"—-"***^? zv/+γ .

To ask that / have the first spherical property is thus to ask that I(f)
consist only of terms such that (p — q) + 2{vx + + vp — vp+1 — — vp+q)
= K. To complete the proof requires a simple computation showing that

I(fv)(z) = cυz\x zv/+

+

q< (where cv = Π?i? λ/2/m̂  (— Wπmj)VJ is of no parti-
cular importance to us).

Remarks. 1) When Q is not diagonal, one need only know the matrix
which diagonalizes it. (Indeed, we could have assumed m3 = 1 in the proof
above, but it would not have simplified the proof.) 2) The first spherical
property is not restricted to Schwartz functions. The transform /->!(/)
can be seen to be a unitary map from D(Rn) to a Hubert space of entire
functions on C\ Thus any series of the form (1.16) which is convergent
in L2(Rn), will have the first spherical property. (Reference: Igusa, [6, p.
31-36].)

(6) We have the ingredients now to do a 'simple' example: the theta
functions for a 1 X 1 matrix.

Let n = 1 and *xQy = 2xy, so that

|α | 1 / 2 e(abx2)f(ax) c = 0

7, Q)f(x) H IΎ r fax2 - 2xv + dv2Λ , / Λ . _ . Λ (1-17)

In particular,

(r(σ2,Q)f)(x) = v>»e

According to Theorem 1.9, the only function with the first spherical pro-
perty for weight Λ /2 = v + 1/2, is the Hermite function
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fax) = HX2/2πx) exp (-2πx2) (1.18)

so

For 0 < r e Z, let L = rZ, so that L* = Z/2r and v(L) = r. Then for hr

ke{l/2r, 2/2r, , 2r2/2r} - L*/L, Proposition 1.1 gives

(δh,ake(abhk) c = 0

c(A, *) r = l g e\Σ(a(h + rs)2 - 2£(Λ + rs) + dk2)] c Φ 0 ' ( L 1 9 >

W2cr«=i Yc J

Moreover, cL* c L if and only if 2r21c, and c<x, x) is even for all x e L *

if and only if 4r2 |c. Thus D = 2r2 and Γ0(4iV) - Γ0(4r2). As a function

ω: L*/L —> C with the first permutation property, we choose

ro ifkzz
Q)(k) = <

W \ψ(k) iίkeZ

where ψ is a character mod r. One easily sees that, for any / e ^(R),

<?(/»= Σ Ψ(m)f(m)
m= — oo

(c.f. Theorem 1.2). In our case we get a function of z:

θ{z,U ψ) = v-v+W'θiriσ,, Q)f,, ω) = v"'- f ] f(m)HX2^/2πvm)e(τriίz) (1.20)

Notice that θ(z, fv, ψ) vanishes identically unless ψ(— 1) = (— l)υ As a

consequence of Theorem 1.5 and its corollaries, we have the following:

THEOREM 1.10. (i) Let θ(z, h, r) = Σ m Ξ Λ ( r ) e(m2z). Then

(1) 0(-l/4r2^, Λ, r) = (-2i^)1/2 f ] e(hklr)θ(z, k, r) (1.21)

fl + O(u-1/2) A = 0(2, **D { 4
(ii) Lei <?,,Xz; 1) = υ

(1) 7(r,2)-<"+X.(ra;l) = ( - ^ - y M 2 ; l ) reΓ0(4) (1.22)

(2) <?,„(-1/4*; 1) = i (-2w)'+1/!<?1,,(2; 1) (1.23)
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(iii) Let ψ be a character mod r, with ψ(— 1) = (—l)v,

Recall that ψv(d) = ψ(d)(—l/d)v, an even character. Define

TΛen

(1) j(r,

(2)

Thus

= \ Σ

= Ud)K{z) ΐ € Γ0(4r2)

= 0 or 1.

(1.24)

0 v = 1 .

Gm(4r\ ψ) v = 0

r e SL(2, Z)
(1.25)

(4) // ψ is primitive mod r,

^|( 2 v + 1 ) / 2^(4r 2) - ( - O T - ^ Ψ J Λ , (1.26)

u /iere g(ψ) = 2^=i ^Q^eQijr) {the Gaussian sum).

(5) // T and u are integers, with 0 < T, and ψ is primitive, mod r,

then

m»ξ(m)e(m2zlT) (1.27)

where

= ±Σ Ψ(k)e((gm + Tgk - ug*)ITr) . (1.28)

Proof, (i) follows from Corollary 1.7 and easy estimates, while (ii) fol-

lows directly from Corollaries 1.6 and 1.7. The first two assertions of

(iii) follow from Corollaries 1.6 and 1.8; the third assertion summarizes

the first two. Assertions (4) and (5) are easily derived from Corollary 1.7

and Theorem 1.5, respectively.

Remarks. 1) The first two results, especially (i), are purely technical—

we shall refer to them exactly once later in the paper. 2) Except for the

explicit formula (1.25), the contents of (iii) appear in Shimura [11, p. 457],

with precisely the same notation. In particular, (5) is again a technical

statement which will be used once later in the paper.
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The formula (1.25) provides a characterization of those theta functions

of weight 1/2 which are cusp forms.

COROLLARY 1.11. Let ψ be an even character mod r. Then hΨ e S1/2

(4r2, ψ) if and only if

Σ ψ(h)e(Ah2/δr) = 0

for all A = 1, , r, where δ — 1 wΛen r is odd, and δ = 2 w/z,e7i r is euβn.

Proof The value of 7&Ψ at any cusp is given by (1.25). Since Λψ

transforms under Γ0(4r2), it suffices to consider a finite set of cusps: those

for which c |4r2. Set 4r2 = ac, and consider the cases a = 4/3, a = 2/3 (2,1/3),

and 2/f-αr.

When a = 4/3, we have

= Σ e[βa(h2/r2 + 2sh\r + s2)]
S = l

- e{βah2tr2) Σ e{2βahφ)

s=l

0 if r^2j8a

if 2/3β = Ar '

This, with the observation that 2\A if 2^r, resolves the first case.

When a = 2/3 and 2̂ /3, then 21 c, so 2/fα, and we get

—(Λ + rs)s)2l = Σ β[/3α(/ι2/2r2 + sΛ/r + 52/2)]
J s=i

= Σ e[βa(h2/2r2 + sΛ/r + s/2)] since s2 = s mod 2

= Σ e[βa(h2/2r2 + (2h + r)sj2r)}
l

ΓO if 2rJ(βa(2h + r) - i.e., if 2 | r or

~ l|c|β(A/ι2/2r) if 2 | r and βa = Ar

When\2J(a9 we again have 2|c, so 2^'. Then

—(h + rs)2 = V, e[aa(h2l4r2 + s/ι/2r + s2/4)]

c J fci
|c|/2

= e(aah2/4r2) Σ {β[αrα(2ίΛ/2r + 4ί2/4)] + e[tm(2£ — l)/ι/2r + (
ί = l

lc|/2

= e(aah2/4r2) Σ {e[aath/r] + e[aa(th/r - hj2r)}}
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|e|/2

= e(aah2/4r2) Σ e[aath/r]{l + e[-haa/2r]}
t = l

Ό if r\aa or 2J(h

c\ e(AH2/r) if aa = rA and h = 2H '

Remark, A different characterization of those h^s which are cusp

forms is given in Serre-Stark [10]: h^ is a cusp form if and only if ψ is

not 'totally even'. It is a straightforward, though lengthy, exercise in

Gaussian sums to prove the equivalence of the two characterizations

(directly, that is, without reference to theta functions or cusp forms).

(7) Returning to the general case, let O(Q) be the orthogonal group

of Q: O(Q) = {gVgQg = Q}. Since det Q Φ 0, det g = ± 1 for geO(Q).

Let SO(Q) denote the connected component of the identity in O(Q), con-

sisting of those matrices g with det g = 1.

We define a unitary representation of SO(Q) on U(Rn) by letting

(p(g)f)(x) = fig"1*). By definition of SO(Q), p(g) commutes with the Weil

representation:

P(g)(r(σ, Q)f) = r(σ, Q)(p(g)f) .

We wish to state a sharper version of Corollary 1.8, for which we need

the following lemma:

LEMMA 1.12. Let L be a lattice, fe^(Rn) and geGL(n,R). Define

\\g\\ = min{|/l||Λ an eigenvalue for g}, and (g) = Y\xmin{\X\, 1} (the product

taken over all eigenvalues of g, with multiplicities). Assume that det g = 1,

and let a > 0. Then

oώiLlί{agX)l {O(a-^^\\g\\-™) 1 < \\ag\\

for any m, where O depends only on /, L, and m.

Proof. Since / is 'rapidly decreasing', we have estimates

(0(1) IMI < 1
tθ(iM|-^o l < 11*11'

Thus we need to estimate the number of points of agL lying inside the

unit ball; for the rest, we can estimate the sum by an integral: each term

is bounded by an average over a nearby fundamental parallelotope.

For \\ag\\ < 1, the number of points of agL inside the unit sphere is
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£ > Λ while the rest is 0{a~n [ \\x\\^m + n)dx) = O(a~nl For \\ag\\ > 1,

there are no points of agL inside the unit ball and

Σ \f{agx)\ = θ(a-n [ ||a:||-<—"W) = θ(orn f

COROLLARY 1.13. Let f have the first spherical property for weight κ/2.

Then for any g e SO(Q), and ΐ = (* %\e SL(2, Z),

u('-M)/4(cz + d)-"2θ(rz,p(g)f, h) = VT-^-o^cC/

(O«g-^) VJX^O

+ ^ . (1.30)
\θ(v-m) g fixed

for any m, where O depends on f, L, ϊ and either v (in the first case) or g

and m (in the second). In particular, if f(0) ~ 0, then, for each g, θ is

'rapidly decreasing' at all cusps of SL(2, Z).

Proof. Since p(g) commutes with the Weil representation, p(g)f also

has the first spherical property. Also, p(g)f(0) = /(0). From Theorem 1.5

and definitions, we have

LHS = V 7 - ^ s ^ [ c ( / ι , 0)r/(0) + c(h, 0)rυ-»» Σ {r(σz, Q)p(g)f}(x)
OΦeL

., Q)p(g)f}(x)\)Σ
OΦXGL*

= VT-o>-« «»wc(Λ, 0)r/(0) + O( Σ W2g)\)
OΦXGL*

Let KQ be a maximal compact subgroup of SO(Q), and let φ be a

character of KQ. Given g e 6^(Rn), let

f(x) = f φ(h)(p(k)g)(x)dk (1.31)
J KQ

(where dk is the Haar measure on Ko, normalized so that dk = l).

Then / has the property

p(k)f=φ(k)f9 keKQ. (1.32)
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We say that a function / has the 'second spherical property' with respect

to φ, when / satisfies (1.32). (More precisely, / has the property with

respect to the group KQ and the character φ, but we shall be fixing KQ;

in any event KQ is implicitly defined as the domain of the character φ.)

Let ΓQ be a discrete subgroup of SO(Q) which leaves L invariant.

Then Γo permutes the elements of L*/L. Let Γ$ be the (normal) subgroup

of ΓQ which fixes L*/L; this is obviously of finite index in Γo, since L*\L

is a finite group. Let X be a character of ΓQ which is trivial on Γ$ (i.e.,

a character on ΓQIΓ$), and let ω0: L*IL->C be any function. Then

Φ) = ^[ΓQI Γ$] rerQ/r%

has the property

ω(rk) = X(ϊ)ω(k) TeΓQ, feeL*. (1.33)

We say that function ω satisfying (1.33) has the 'second permutation pro-

perty' for ΓQ with character X. (This definition holds for any character X

on ΓQ, but if X is not trivial on Γ$, then ω = 0.)

§ 2. Niwa's theta kernel

(1) We now specialize to the 3 x 3 matrix considered by Niwa and

Shintani. Let

a matrix with signature (2,1). Clearly, det Q = — 32/2V3. Let

L = 4NZ®NZ®NZ/4 .

Then v(L) = AT3. Also, L* = Z Θ Z/2 ® Z/16, <x, x> e Z/22V for x e £*,*£>,=

det«^^, yί̂ )) = — 32iV3 (see Proposition 1.1), and cL* c L when c = Ô mod

42V, so Γ0(42V) satisfies the hypotheses of Proposition 1.1 (ii).

(2) As a quadratic form, Q is a discriminant, and is given by the

determinant of a matrix:

(q/\X) — XiqfX = ~T7\^2 ^rXjXg,; = — —
/V /V v /9 v

SL(2, i?) imbeds in SO(Q): g(x) — xf is given by
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More explicitly,

WJ2

a b

c d

xί )~g\xj:J2

/ a2 ab b2 \
2ac ad + be 2bd .

\ c2 cd d2 )

(2.1)

In fact, this imbedding is an isomorphism of SO(Q) with SL(2, R)/± 1.

A natural choice for KQ, a maximal compact subgroup of SO(Q), is the

image of K from SL(2, R):

cosφ sinφ\ I c o s ^ c o u s i n φ sin2 φ \
I "^ ~" 2 sin φ cos φ cos2 φ — sin2 φ 2 sin φ cos φ

- s i n φ cos ώj \ . « , . , 2 i ί
ψ ψ/ \ sin2 φ —smφ cos φ cos2 φ /

1 + cos 2φ sin 2φ 1 — cos 2φ
—— - -

— sin 2φ cos 2φ sin 2φ

1 — cos 2φ — sin 2^ 1 + cos 2φ
2 ~ " 2 2

with 0 < ^ < 2τr. Notice, since i?ρ « JBL/±1, the characters on ifρ are of

the form k(φ) —> e-2i7n^ for me Z, Thus, we shall say that a function has

the second spherical property for the weight 2m, rather than for the

character e~
2ίmφ.

(3) We shall identify those functions having both a first and second

spherical property.

THEOREM 2.1. Let m and λ be integers. Then for every positive integer

μ such that \m\ < λ + μ, there is a unique (up to scalar multiplication)

function Lm>λtμ such that

= Lntltμ(xί9 x2, χ^ exp (2.2)

has the first spherical property for weight κ\2 = λ + 1/2, and the second

spherical property for weight 2m. The only functions with both a first and

second spherical property (for weights /c/2 and 2m) are linear combinations

of the form

Σ <*μfm,xΛx)
θ \ \ λ
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The function Lm>λ}fI is defined (up to scalar multiple) by

where Lλ>μ(x) = Hvl(^/SπlN(x1 — xz)HV2(<j8π/N x2) for any choice of vϊ and

such that vλ + v2 — μ = λ. In particular, we may take

Proof. Observe that

In the diagonalized basis, the functions with the first spherical property
are linear combination of functions

\ exp (-π(y\ + y\ + yl)) (2.3)

with, Vj + IΛ, — μ = λ, where y = Tx. Also in this basis, the image of K is

JL - jt\ / cos 20 sin 2ώcos^ sinΛ . Jf Jt
^ ζ 0 < φ < 2π .

-sinφ cos φj \ Q 0

As shown in (1.31), we can produce a function with the second spherical
property for 2m, without losing the first spherical property, by integrating

e

2mί*Hvl{2<Jπ{y1 cos 2φ - y9 sin 2φ))Hv£2Vπ(y1 sin 2φ + y? cos 2φ))dφ .

(2.4)

It is an interesting property of Hermite polynomials, provable from the
recurrence relations, that this integral depends only on m and the sum
vx + IΛJ, up to a scalar multiple which does depend on the choice of vx and
v2 (and may equal 0).

It is clear from inspection that the integral must equal 0 if m is a
half-integer or if \m\ > vx + v2. The main result now follows by changing
back to the original basis for Q, while the particular case follows from
the Hermite identity

(x - iyy = ± (^(-ίYH^μ(x)Ήμ(y) (2.5)

i.e.
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<*, - * - *,)• = ( f )""• Σ (^-iyH,(ψ^,(ψ*, - ,,,). (2.6,

For the rest of this paper, we shall consider a specific function /:

f(x) = (Xl - ίx2 - x3y exp(-^-(2x? + x\ + 2*J)) (2.7)

which has the first spherical property for weight tc/2 = λ + 1/2, and the

second property for weight 2/L If we let L(x) = χ1 — ίx2 — x3, it is easily

seen that

f(x) = L(xy exp ( - J g - L(x)|2 + πQ(x)) (2.8)

and thus

(r(σ,, Q)f)(x) = ^3/4 exp (πi

= vi/2+3/iL(xy exp ( - i ^ | L ( x ) A exp (πίgQ(x)) . (2.9)

(4) We shall now introduce a function ω having the first and second

permutation properties.

PROPOSITION 2.2. Let 1 be an even character mod 4iV, and define Xι

= X(-ll y. Let L' = Z@NZ® NZjA (so that L c L' c L*) and let ΓQ

l / 2 ) Γ ° ( 2 i V ) ( 1 / 2 2 } Define co: L*/L^C by

1) ω(k) = 0 if k € U

2)

Then ω has the first permutation property for Γ0(4N) with character χl9 and

the second permutation property for ΓQ with character %2.

Proof. The first permutation property is obvious, given the simple

calculation that (k, k} e 2Z for k e L'. As for the second permutation

property, it is a matter of observing that

2 \(a 6W1/2 \ (a 46\ / ! f \ Ψ\
I I ) = 1 -> αc/2 αd + be 8bd

Il2j\c d)\ 2} \c/4 d) ^ /

leaves L and L7 invariant, when ΐ = (^ ^\e Γ0(2iV), and that %&%
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4abk2 + 16b%) = XXφχfa) for (ku k2, kz) e U. (Note that, when X has mod-

ulus 4N, X2 has modulus 2N.)

Remarks. 1) The largest group leaving L invariant is ( .. ,o)SL(2, Z)

I ' Λ, which may help explain why we use a conjugate to Γ0(2N),

rather than some subgroup of SL(2, Z). 2) If Γ ρ = ( 2

 1 / 2 ) Γ o(2iV)^ 2 Λ

then Γ | = (2

 1,Λr(2N)(1^ 2)' w h e r e ^ ( 2 Λ Γ ) i s t h e principal congruence

subgroup of level JV.

(5) Let w = ξ + iη be a complex number with η > 0. Recall how the

upper half-plane imbeds in SL(2, R): specifically,

0

(The presence of the '4' is explained below.) Define the theta kernel of

weight κ/2(fc = 2* + 1):

θ(z,w) = (4^)-^"^ Σ Zi(*i){K^, Q M O / K * ) (2.10)

where

L7 = Z Θ iVZφ iVZ/4, and /(x) = (x, - ίx2 - x,Y exp ( - ^ ( 2 x ? + x2

2 + 2**))

THEOREM 2.3. Lei ^ be the theta kernel of weight κ\2 (K — 2λ + 1).

Then 1) (9 e MΛ/2(4iV, χ(2V/ )) as a function of z

2) Be M2λ(2N, f) as a function of w

Proof. In the notation of Corollary 1.6, θ(z, w) = (4η)~xθ(z,p(σ4w)f, ω),

with ω defined in Proposition 2.2. The first transformation thus follows

immediately from the corollary, since D = — 32N3 and q = 1. The trans-

formation in w is based on Corollary 1.4 and definitions. Everything works

because / has the first and second spherical properties, and ω has the first

and second permutation properties. (Corollary 1.4 and the definition of

ΓQ in Proposition 2.2 explain the n4' in σ4l0.)

We can be more explicit as to the transformation in w:

PROPOSITION 2.4. Let Λ{x, w) = (l/^)(l/4 x1 — wx2 + 4z#2x3), and D(x) =

(N/2)Q(x) = *» - 4Λ:1X3. For σ = ( j J ) 6 SL(2, i?), Zeί
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— ac ad + be Sbd

I 16
-cd d2

(2.11)

Then

,Ofe w) = x9 wf e(zD(x)/N)

(2.12)

Proof It is easy to check that Λ(x, w) = (p(σ4JL)(x), where L(x) = x1

— ίx2 — x3, and the identity

2x\ + x\ + 2x1 - 2 |L(x)|2 - D(x) .

Since σ is the image oΐ σ2 = ( i/oVf 2/ ^ n SO(Q) (see Proposition

2.2), and -D(σx) = D(x), the transformation follows from Corollary 1.4 and

a formal computation.

The theta kernel θ(z, w) is essentially the function θ(z, σiw) in Niwa.

(The one difference: we include the factor (4^)"^ with the theta kernel;

Niwa does not.) Actually, θ is not the 'right' kernel. As in Niwa, it is

necessary to invert both variables, z and w.

PROPOSITION 2.5. Let \K/2W(4N) act on the variable z, and \2λW(2N) act

on w. Define

θ* = Θ\K/2W(4N) \2λW(2N) . (2.13)

Then

1) θ* e Mk/2(4N, X) as a function of z

2) θ* e M2λ(2N, X2) as a function of w .

Moreover,

θ*(z, w) = NM9 Q)p(σ2Nw)f}(x) (2.14)

where %{m) = Σ/ί i Ufyeimh/iN), and L% = Z/4 Θ Z/2 Θ Z/4, the dual lat-

tice to LN = NZφNZφNZ. Alternatively,

θ*(z, w) = 2-ίM+I

X exp
4iv2

(2.15)
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where

Λ\x, w) = — (x, - 4Nwx2 + 4N2w2x3) .
V

Proof. Statements 1) and 2) are standard results for modular forms

(see Theorem 2.3). We proceed with the derivation of the formula (2.14)

Θ\κ/2W(4N) = (4N)-κ/X~iz)-κ/2θ(-l/4Nz) w) (definition of W)

= (4N)-K/X-iz)-K/2(47])-x Σ ω(h)θ(-ll4Nz, p(σiw)f9 h) (definition of θ)
L*/L

X Σ «>(h) Σ β(-<Λ, ky)θ{ANz,p{σiw)f, k) (Corollary 1.7)
L*/L L*/L

= (2N)-1'%4Nyi-HK4V)-i Σ ώ(k)θ(4Nz,p(σia)f, k)
L*/L

where
ώ(k) = Σ<»(h)e(-<h,k)).

L*/L

Here ω(h) = χ^h,) for h = (hί9 h2, hz) e U = Z®NZ®NZ/4, and ω(h) = 0

for h £ U. Moreover, - <A, ̂ > = 4hλkzjN mod Z for Λ e L\ k e L*. Thus

ώ(k) = χ(16^3) for jfe e L*. (Recall that ^3 e Z/16.) We have so far derived

Σ

The second inversion is a property of the function /:

using Corollary 1.4., where e"iίS = iϋ/ΰ;. Now the second spherical property

for / implies a continuation:

• I -2\ ( 4\

The matrix! 1 / o I, which imbeds in SO(Q) as —1 , acts on

W* I \l/4 /

the lattice in a simple way, which results in the formula (2.14). Finally,

(2.15) follows from (2.14) and definitions.

Remarks. We have followed Niwa in first defining θ, in part because

the character %j is easier to work with than the Gaussian sum %. However,
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θ* could have been defined directly, in the following way: let

- 2 \

and /4 = (x1 — ix2 — x3)
λ exp (—(π/2)(2xl + x\ + 2xξ)). Since this is just the

original Q and / with N set equal to 4, it is clear that f has the first and

second spherical properties for the weights κ\2 and 2λ. Now let

U = Z@2Z®Z

L* = ZΘZΘZ/4ZV

and define ω: L*/L ^ C by

It is easily checked that the group satisfying the hypotheses of Proposition

1.1 (ii) is Γ0(4N); ω obviously has the first permutation property for Γ0(4N)

with character ΊLU and it is easily checked that ω has the second permuta-

tion property for ΓQ = (^fN ! / y 2 l v ) Γ o ( 2 i V ) ( 1 / Λ / ^ ^2N) w i t h c h a r a c t e r

f. The reader may verify that, up to a constant multiple (depending on

N and λ),

θ*(z, w) « v-»(2Nτj)-> Σ ϊiMiriσ., QM^JM*) •
xeLf

THEOREM 2.6. Let K = 2λ + 1 > 3, and let r, f e SL(2, Z). Then

(cz + d)-^(c'm + druθ{rz, r'w) = m' 2m 2 ^
y (2.16)

for any m, where O is independent of z and w. The same estimates hold

for θ*. When K = 1 and X is not the principal character, the estimates (2.16)

again hold for θ and θ*. When K = 1 and 1 is the principal character (mod

AN), then the same estimates (2.16) hold for all ϊ 0 L ~~ jΓ0(4iV). (I.e.,

θ is 'rapidly decreasing9 at all cusps not Γ\(AN)-equiυalent to 0, θ* is "rapidly

decreasing' at all cusps not Γ0(4N)-equίvalent to zoo.) For ϊ e L )Γ0(4i\Γ),

the estimate is
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(cz + d)^θ(rz, T'w) = v^φ(4N)(S2Nri/2 + \°Jfm 2m̂

 V</ . (2.17)
[O(vί/2-myfm) yf < υ

Proof. The first part of the theorem follows from Lemma 1.12 and
Corollary 1.13, on noting that

IIOI = IkiΊI =

with O depending only on τ e SL(2, R). When K = 1, Corollary 1.13 gives

V 7 , 0)r^ ) ( \ Σ
L'lL

where

c(A, 0)y = (32iV 3)- ] / 2 |c]- s/ 2 Σ βf-^- <Λ + r,h
ei/i L 2C

= (32iV3)-1/2ic]-3/2 Σ e f ^ - ( r i - 4 ( ^ + ^
rê /cz, Live

l c ! Γ — π 1

Σ e — ^ - ( A , + 4iVS l)s3 .

Since %i(/&i) = 0 when (Λj, 4iV) > 1, we need only evaluate c(h, 0)r foi

(hί9 4N) = 1. In this case

4NS l)s3] =
J

c| if (c, 4N) = 1

0 if (c, 4iV) > 1

But up to Γo(4iV)-equivalence, there is only one cusp for which (c, 4N) — 1,

the cusp at 0, corresponding to ϊ = ί - ""1Y We have c(Λ, 0)r = (32iV3)~1/2

for r = ( χ - 1 ) , and thus i - ^ - ^ - l / z , u;)Utββ= VT-^iV8)"^ Σ

The last sum is either 0 or φ(4N), proving the theorem.
(6) The utility of the theta kernel is that it allows us to pass bet-

ween forms of half-integral weight and forms of integral weight, via the
Petersson inner product.

PROPOSITION 2.7. Let G e MK/2(4N, X) and assume that

Φ(w) = f v^G(z)θ^w)doz (2.18)
J Γo(iN)\H

is well defined (i.e., assume that it is absolutely convergent). Then Φ e

M2λ(2N, X2), where tc = 2λ + 1. Conversely, if Φ e M2λ(2Ny I
2) and
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G(z) = f rfxΦ(w)θ*(z, w)dow (2.19)
J Γo(2N)\H

is an absolutely convergent integral, then G e MK/2(4N, X).

Proof. This is immediate from Proposition 2.5.

Remark. We are not asserting that θ* gives any kind of isomorphism

-i.e.,

and

k(z9 z') = ί ηuθ*(z, w)θ*(z\ w)dow
J Γ0UN)\II

'(w, wf) = f ιf'2θ*(z, w)θHz^uf)dQz
J Γo(4.V)\//

are not, in general, self-reproducing kernels. (The first integral is not

even absolutely convergent.)

The question is: When do these integrals converge, and what are the

growth properties of the resulting functions? In order to answer this,

we introduce some notation. For a discrete subgroup Γ c SL(2, Z), of

finite index, with character ω, and for a weight k, let

pm = p ? ( Γ ? ω) = {Q e M^p^ ω)\(G\j)(z) = OiV1*) V -> CO,

Let also for all ϊ e SL(2, Z), uniformly in u}

(Thus forms in a P-space show polynomial growth—or decay—at all cusps,

while forms in the space £f are 'rapidly decreasing'—essentially, they are

cusp forms.)

PROPOSITION 2.8. Let K = 2λ + 1 > 3. Then (2.18) is absolutely con-

vergent for all G e PK/2(4N, X), and (2.19) is absolutely convergent for all

Φ e P2"/-(2iV, X2). We have

θ*: P%2(4N, X) -> p™*^Λ-v(2N, X2) via (2.18)

θ*: P2T(2iY, X2) -> P^2(4iV, X) for m< -λ via (2.19)

Proof This follows easily from Theorem 2.6 and the location of the

standard fundamental domain for SL(2, Z). Let G e P?/2(4N, X). Then

J Γo(iN)\H

γ£SL{2tZ)\ΓQ{±N)
f v"\G U

N) J SL(2,Z)\H
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= oίΓ υκ/2vmv{1-κ)μηι-λ dvjv2 + Γ ιf'2υmυ-<'-*)/4-hyfh-*dυlιA

v{X-1)/2+m-1dv + η2h-χ Γ vλ/2+m-h-ίdv)

__ 1) _ tfh-X 2

= 0(V

2

Likewise, if Φ e P2l(2ΛΓ, χ2), then

(G\κ/2r)(z) = f τf*Φ(w)(θ*\φr)(z9 w)dow
J Γo(2N)\H

fΣ f

(but we must have λ + m < 0 for the second integral to converge)

= 0(υm/2 — υ-aι-1)/i+h) + vm/2) = 0(vm/2)

since h may be taken arbitrarily large.
The case K = 1 is complicated by the fact that /(0) ψ 0. The reader

may convince himself of the following:

PROPOSITION 2.9. Let tc = 1. If X is not the principal character mod
42V, then the conclusions of Proposition 2.8 hold in this case also. If X is the
principal character, then the conclusions still hold, provided we place one
restriction on the functions G:

v/v < C

for some constant C (depending on G, and not on u).
(7) As a simple example of a lifting via the theta kernel 0*, we con-

sider an Eisenstein series in the case that Xt is a primitive character
mod 42V.

PROPOSITION 2.10. Let K = 2λ + 1 > 3, and define

Eκ/2(z, s) = Eκ/2(z, s, AN, X) = Σ %(d)M@L e PK/1(AN, X) (2.20)
reΓoo\r0(4i\r> j(T, Z)κl
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= Σ f(d) l m ( ΐ z )

Γ eP2i(2N,X2). (2.21)

Assume that lx = X(—l/ )x is primitive mod 4iV. Then

φ{z, s)θ*(z, w)doz = C(s)E2λ(w, 2s) (2.22)
Γo(4N)\H

where

C(s) = 2- 4 ^W-^ 2 + 3 / 4 >(^-)" ( " + S ) Γα + β)g<*i)i# + 2s, X l)

ΣUh)e(hl4N) and L(t, ω) = ±-

Proof. We shall go as far as we can before assuming Xλ to be primi-

tive. Using the expression (2.15) for θ* and the usual unfolding trick

with Eisenstein series, we have

f
J Γ

φ v { Σ
o(4N)\H JO JO Z®'Z®Z

X exp [l^R-\A'(x, w)ήe(-z(x\ - x

with Cλ = 2-vλ+ί)N-(X/2+3/i)(-i)λ. The integral over u picks up only those

terms for which x\ — xλxz = 0. We continue

= £(49)-'ΓV Σ U-*dΛ\x, wY exp (-^M'(x, w)f)dvjv
Jo xi=χlXz \ AN2 /

4- s)

When x\ — xxxZ) and not all three are zero, we may write xx = μm2, x2 =

—μmn, xz = μn2, with μ square-free, and (m, n) Φ (0, 0). The correspondence

(m, n, μ) -> (xl9 x2, x3) is 2-1, so that, formally,

1
Σ' = — Σ Σ'

^ ^ i ^ s 2 /< = Πfreem,w

Now
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Λ'(x,rw) = — fo - 4Nwx2 + 4N2w%)

= JL(^m

2 + ANwμmn + 4N2w2μn2)

The equality continues as

Σ'' 2 \£h fiββ έ i (Ctι/5)(m + 2NnwYY

= C Y 1 yy ^(-/i/n2) / y Vs

λo<μ^πtree μλ+2s ύ?n {TΠ + 2Nnw)n\\m + 2Nnwf)

with C'λ = CχiπHNPyv+Ή-Ψiλ + s). We assume now that Zj is primitive.
Then χλ = g(XΪ)lι, and the double sum separates:

^ i (m + 2Nnw)2λ\\m + 2Nnw\2

X
7

f(d)lm(TwYs

mλ + 2s rer^roVN) (ciϋ + d)2λ

= C(s)E2λ(w, 2s, 2N, Z2), as desired.

(8) In this section we prove two key results: First, that, on the
imaginary axis in w, Θ* can be written as a Toincare' series, i.e., as a
sum over coset representatives of Γ^ in Γύ(4N). This leads to the second
result, which is a direct calculation of the Mellin transform of a lifted
form. This calculation shows that, at least on the imaginary axis, the
theta kernel reproduces the Shimura lift (up to an explicit, multiplicative
constant). In the next section we show that, for tc > 3, the theta-kernel
lifting of a holomorphic form is holomorphic, so that the identification
with the Shimura lift is complete. For K = 1, there is no Shimura lift,
and the theta kernel lifting is not holomorphic. Instead, it is 'equal parts'
holomorphic and anti-holomorphic, i.e., of the form Φ(w) + Φ(—ϊϋ).
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THEOREM 2.11.

X Σ Um)mι-'-HχU^Έϊrzή)exp(2ιdnιrz- -^^-) (2.23)

with C(-iy2-uNi/2+1/i.

Proof. The spherical function / 'evolved' out of the Hermite poly-

nomials via (2.6). It is straightforward to verify that

θ(z, ίη) = (4J?)-{-?7-)"V2 Σ ( λ
 \-Ϊ)%MΘ,Λ-XZ, Aη) (2.24)

where

2) exp (2πίNzxf) (2.25)

θt.Xz, 4η) = v^-^ f] tixd

X exp \-2πiuxλxz - πυ0^- - iπNvγxύ . (2.26)
L 4Nτf J

(The notation here is identical with that in Niwa.) Using Theorem 1.10,

we have an inversion

θuX-ll4Nz) = N^θuX-l/4z; 1) - ίi-2ίz)-1/2N^θuXz; 1) (2.27)

where

θltAz;ΐ) = υ-»'2 Σ HA2χ/2πvx2)exp(2πίzxl) (2.28)

is just 1̂)V(2:) for N — 1. In particular, quoting Theorem 1.10,

0M(z; 1) = ( - 1 )Ί(r, z)-^θUrz\ 1), T e Γ0(4). (2.29)

As for #2)J,, Poisson summation on x3 gives

θ2Xz, Arj) = (-.??.
\ iV

X exp (—^--1 x^ + x3 f) . (2.30)

It is straightforward to verify the inversion
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X Σ ti*X*i + 4Nx#Y- exp (-^L.-\Xl + Wxszή . (2.31)

Now

u~1+' Σ Xi(*>X*i + 4Λfr,2)J- exp (• ~ * |

= Σ Σ Umd)(mCZ + mdY " exp (—?H*-\cz + dΛ
(c,d)=l m=-oo \ i) J \1L6N2Ϊ]2V I

c>0 '
CΞθ(4iV)

= 2 Xl(d)(^L±AY~v f; χ1(m)mί-"exp(— ~πm2 ) . (2.32)

Since

^Jjir, zF'-» (im re)-*

equation (2.29) gives

Ay '> )-«(im rzy-varz; 1). (2.33)

The upshot of all this is a rather long formula:

X 2V> (4?)-ί+-« Σ X(d)i(r, z)-Qm rzy-%,.{Tz; 1)
reΓoo\r0(4iV)

X Σ fc(m)m*-veiφ(--πm2ll6N27fΊmrz) . (2.34)
m = - >2

Thus

i?) = (4N)-«/4(-ίz)-κ/2θ(-ll4:Nz, iη)

= 21-1N'M+t/i> Σ(λ V27r)^/2Λr^)-2A+1'-1 Σ (as above) .
\ ^ /

Finally, the statement of the theorem is derived by applying, in straight-

forward fashion, the inversion operator \2iW(2N), and writing out θίtV(Tz; 1)

via its definition, (2.28).

We won't use it, but it is interesting to note that the Hermite
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polynomials disappear if one 'inverts' the theta function 2 χί(m)mχ-v

'exp(-πm2/16N2η2Imrz). The result is as follows:

COROLLARY.

θ\φW(AN){z, iη) =

X 2 %(m){τ)m — 2m)' exp (2πin2ϊz - π Im r ^ 2 m 2 ) (2.35)

THEOREM 2.12. Lei G(-ε) = 2]^ = 0 a(ή)e(nz) e GK/2(4N, X), with the stipula-

tion that a(0) — 0 when K = 1 αzzd X is £Λe principal character. Define

φ(w) = f v*/2G(z)θ*(z, w)doz .
J Γo(42V)W

(̂  > 1) (2.36)
m=l

lϋiίΛ C0(λ) = iJ2-2W<3/Z);!-(3/4^-;r(^). PFΛen A = 0,

J(ioo) = 42VMO) Σ - ^ - (2.37)

In βίί/ier case,

Γ ί - W i ? ) - Φ(ioo))dη = Cm2π)-Γ(β)Uβ - λ + 1, X,) £ - a M (2.38)

with

J 2 ^ = ° (2.39)

T/ius, /or G e SK/2(4N, %), Φ is identical with a constant multiple (C^λ)) of

the Shimura lifting of G, on the imaginary axis.

Proof: Using the result of Theorem 2.11, we have

= f υ"2G(z)θ*(z, iη)doz
J ΓQ(4N)\H

Σ

exp f-2«rel - ^ - W
\ 4v J
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= CΣ( )(—) V1" ^~1 > / 2 Σ a(n2)HX2V2πvn)

X exp (—Aπn2ϋ) 2 y^{ni)mx~v exp (—πrfm2/4v)dvlv
ra=-oo

= C ' έ ( ί )(2 )̂-» Γ \a(0)HX0) + Σ a(n*)HXyn) exp ( -
» = 0 \ V / JO L n̂ O

X (ηlyY- Σ %1(m)m^-'exp(-2π2m2()7/y)2)Φ/3' (2.40)
ra= —o<

with C = 2C(8τr)1/2 = (-iy2-"+WV 2 + 1 / 4(2π )1/2. It is easy to see that, as η ->

oo, the only non-negligible term is that one involving α(0):

Φ(ioo) = 0(0)0" Σ ί ^ )(2π)-fl-,(0) Γ y - Σ ^ ( m ) ^ -
v = 0 \ V / JO m=-oo

X exp ( - 2π2my)dyly . (2.41)

For ^ > 0, we 'invert' the theta function (Poisson summation):

~v Σ Um)mλ'v exp ( -

(2πiy(2π)y g

Thus

(2.42)

= α(0)C" Σ ( λ )i'HM Γy->
v-o \ υ / Jo 4iVy/

X exp ( - m2l32Ny)dyly (2.43)

with C" = C(2ffi)"1(2ff)-I/i(4iV)-1 = i^- 'W" 2 -^- ' . We can now actually

sum over v.

so

= α(0)C"

α(0)C* Γ Σ $MLy*e-*dyly (2.44)
Jo m-X m

with C* = C"(8Ny = ^- 'W'W-i 1 ' ^- ' . The integral gives Γ(λ), and

= C0(X), as desired.
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For λ = 0, we can dispense with the inversion, and evaluate directly

from (2.41):

Φ(ioo) = α(0)C Γ y Σ *(m) exp (-2π2my)dy/y
Jo

= a(ϋ)C'2-'/2π-χΓ{ll2) Σ ^

= 4iV1/4α(0) Σ - ^ - (2.45)

since /χi/2) = ττ1/2. Note that the sum must be taken in the 'principal

value' sense, ΣZ=i = lim^*, Σm=u and diverges when 1 is the principal

character. That stands to reason: we have already explained that we

must assume α(0) = 0 when X is principal. We now have

Φ(iv) - Φ(ίoo) = σ±(λ )(2π)-v Γ Σ a(n*)HXyn) exp (-n
υ = 0 \ \) / JO «=£0

X Σ XiinCim1- exp (-2π2m2(vlyy)dyly . (2.46)

Now

Γ '?S-I(W3')1-" Σ Zί ίw)^- exp (-2π>mXηlyγ)dη
Jo

1 Jo

= y°(2πψ-°-ι»*L(s -λ + 1, χ 1 ) r ( i - ± - | ^ ^ ) . (2.47)

Thus

Γ ^s-'(Φ(ί)?) - Φ(ioo))dη = C'L(s -2 + l,Xι)
Jo v

X Γ ( S + ί ~ V ) Γ ^S Σ αίnWίyn) exp (-ny/2)dyly . (2.48)
\ 2 / J o ŵ O

Now

Γ 3̂ s Σ a(rf)Hv(yn) exp ( - nV/2)dyly
Jθ w=?tθ

^l nδ / J o

Ό if v is odd

y ( ) ^ ) ^ if v i s

ns ) J d /
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— 1) -(s — v),
\\ i n° /

Thus

s-\Φ(iη) - Φ(ioo))dη = C'L(s - λ + 1, xMf] -
1 n J v even

V " V + ' - D -(S - , ) . (2.50)

Using the identity Γ(t/2)Γ((t + l)/2) = 2I-ίπI/T(ί), we get

-\Φiiη) - ^(ico))^ = C"L{S -λ + l, XdίΣ 4&) Σ
\ 1 nS ) v eve

X r(s-v)(s-l) ..(s-v) (

with C7/ = 2C'(2π)-ί/2 = (-iγ2~u+3Nλ/2+1/\ From Γ(s - v)(s - 1) .(s -

and Σ [I) = 2""'X{2 A = 0' w e g e t t h e r e s u l t

Remark. The constant C^ )̂, which equates Niwa's lifting with Shi-
mura's (at least on the imaginary axis), is different from the constant given
in Niwa and quoted in Kojima. The error in Niwa results from the omis-
sion of iv in his version of (2.27).

(9) In this section we consider the holomorphy of the Niwa lifting.
Our proof of holomorphy (for k > 3) is similar to Niwa's in being based
on a partial differential equation for Φ, but different in that Theorem 2.12
provides us with stronger, exponential, growth estimates, which eliminate
the non-holomorphic solution to the PDE.

Shintani showed that, if fe 5?{Rn\ then F(σ, g) = r(σ, Q)p(g)f satisfied
a partial differential equation.

where C, and C2 are Casimir operators for σ and g, respectively. A nor-
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malization is specified indirectly, and must be worked out. In the present

case, if we parametrize the variables by a — σzk{θ) and g = σwk(φ), then

C, = 4 U
L \9u2 dif) dudθ

The following is an easy consequence:

PROPOSITION 2.13. Assume that fe^(Rz) has the first spherical pro-

perty for weight Λ /2, and the second for 2m. Let L be a set of points such

that NL(r), the number of points in L with norm < r, is polynomially bounded

in r (NL(r) = O(rM), for some M), and let P(x) be any function of at most

polynomial growth. Define

Θ(z, w) = r«υ-» Σ P(x){r(σz, Q)p(σw)f}(x) .
xeL

Then

du dvJ 4 \ 4

THEOREM 2.14. Suppose G e Pc/ΐ(4N, X) is holomorphic on H.

Let

Φ(w) = f
J Γ

Then Φ satisfies the PDE

( J ) J L O. (2.52)λi)
ow /ow

Proof. First we note that

Φ(w) = f
J SL(2,Z)\H aeΓ0(iN)\SL(2,Z)

where fa(z) = (cz + d)~κ/2f(az). Observe that Ga is still holomorphic on H,

and that θf still satisfies the conditions of Proposition 2.13, with m = λ,

K = 2λ + 1. That proposition translates to
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(V—?!— - λiηJΔφ = ί V* Σ GΛ(Z)
V dwdW dW I JSL(2,Z)\H a6Γoi4N)\SM2,Z)

X

= f u"*-1 Σ σ j 4 ϋ - ? — + fg-g-Ίgg^Λcfe # ( 2 5 3 )

Now fix the usual fundamental domain: SL(2, Z)\H = D = {z\\z\ > 1, \Έ.ez\

< 1/2}. We use Stokes' Theorem in the form

r fmdzψ_= f
JD —2ι J D

where Δ = 4(d2/dzdz), 3/dn is differentiation along the inward-directed nor-

mal, and d£ is arc length. Thus

f
—2ί

Since G is holomorphic,

3z dz \ \ 2i

so

Jo V 929^7 -2£ J B 9S - 2 Ϊ

JdD\ dn 3n

Plugging this into (2.53) we get

f ±.{*»-
JD dz

+ f U
JdD\ dn dn

dD\ dn dn
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= Σ [-4- f v^Gjsΐίds + l^

+ ί v*(GmW--θ*°°*)ds\. (2.54)
UD \ dn dn I J

We break the boundary dD into the usual four segments. The integrals

along the vertical segments are esaily seen to cancel, since

aβ Γo(iN)\SL(2,Z) αS Γ0(4N)\SL(2,Z)

and since dv/dn = 0 on vertical lines. For the circular segments we have

^l- = -G -^?-
°" d

G G
dn °" dn

and

dn dn

.. ^J. Thus the second integral in (2.54) vanishes by

cancellation. We are left with

— L f v^2-1 Σ GM(du + *Ldt) (2.55)
2 JdDc a \ dn I

over the circular segment dDc, We parametrize this arc by u = cos £,

i; = sin t, and note that di /dλi = sin t, dί = eft. But then dw + (dv/dή)d£

= 0.

Remark. To apply Stokes' Theorem, we need Σ« u"/2 Gα#ί to vanish

at v = oo. In Shintani and Niwa, this is guaranteed by taking G to be

a cusp form. But in fact it is guaranteed by the fact (Theorem 2.6) that

θ* is a ?cusp form' (with the usual proviso when K = 1 and X is principal).

PROPOSITION 2.15. Let Φ be given as in Theorem 2.14. Then Φ has a

Fourier expansion

φ(w) = f; bn(v)e(nw)

bn(η) = Bn + Cn J ' r " exp



88 BARRY A. CIPRA

for some constants Bn and Cn.

Proof. From proposition 2.7, we know Φ is a modular form, so in

particular Φ(w + 1) = Φ(w). Thus Φ has a Fourier series of the form given,

for some functions bn{η). Since dη/dw = —ί/2 and dηjdw = ί/2, we see

so

Thus

=r ~ ̂ i-~V = Σ (3rK - *nηK + \b'λe(nw) = 0
iί; dw) \ 4 2 /

by Theorem 2.14. We therefore have

which has the general solution given by the proposition.

Our next objective is to show that, in the proposition above, Cn — 0

for all n, and Bn = 0 for n < 0. There is one exception, of course: when

X — 0 (weight 1/2), Cn can be non-zero for n < 0.

THEOREM 2.16. Lei Φ be given as in Theorem 2.14. Then

Φ(w) =

Σ B«β(niι;) Λ > 0
71 = 0

(2.56)

for some coefficients Bn. In particular, for λ > 0, Φ is holomorphic.

Proof. By Proposition 2.15, Φ(w) = Σ-°° aJjftφiξ)* with

an(v) = Bn exp (—2πnη) + Cn exp (—2πnη) t~2X exp (4πnt)dt.

By the Parseval relation,

Γ |Φ(w)|2d? = Σ \a>n(v)\2 (2.57)
J O - o o
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By Proposition 2.8, Φ is of (at most) polynomial growth in η. Therefore,

from (2.57), each an{η) must be at most polynomial in η.

In the case λ — 0, we have

a ( ) = P ° + CoV n = °
\B'n exp (—2πnrj) + C'n exp (2πnη) n Φ 0 '

Thus, for an to be polynomial in η, we must have B'n — 0 for n < 0 and

C£ = 0 for n > 0. Thus

Φ(w) = BQ+ Coη + Σ (B'ne(nw) + C'_Λ - mE))
n = l

However, in view of the definition of θ* for Λ = 0, we have Φ(w) = Φ(—w),

while from Theorem 2.12 we see that Co = 0 (i.e., there is no 'pole' at ίoo.)

The result follows.

In the case λ > 0, observe that

exp (—2πnη) | t~2λ exp (4πnt)dt = O(exp (2τr [̂ [ 37)) . (2.58)

Thus Cn = 0 for n > 0, and for τι < 0

Bn= -Cn Γ Γ u exp (4πnt)dt ,

so

α.^O?) = — C_π exp (2πnη) t~2λ exp (—4πnt)dt.

Restricting to the imaginary axis, we have

φ(iy) = Σ [ S« e x P (-2πnη) - C_n exp (2ττ^) Γ t~u exp (-4πλiί)dίl. (2.59)
n = 0 L J 7 J

However, from Theorem 2.12, we know

Φ(ίy) = Σ>bn exp (-2πnη) .
71 = 0

The theorem now rests on the following lemma:

LEMMA. Let {m^ be a sequence of real numbers, increasing without

bound. Then, for λ > 0,

2 βt exp ( — 2πmίr/) — at exp (2nm^) t~u exp ( — 4πmi£)<ft I = 0
i = l L J7 J
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holds if and only if βt = at = 0 for all i.

Proof. Let I be the first integer where β = βi and a — aτ are not

both 0, and let M = nij. Multiplying by exp (2πMη) gives

0 = β - a exp (AπMη) Π *-" exp (~4τrAβ)ώ + O(e~")

where 7 is some positive constant. Now simple estimates show

C<η-2X < exp {AπMη) Γ ί"M exp (-4πMt)dt < C2η-2X (η -> oo) .

The inequality on the right gives

0 = j8 - aθ(η-u) + O(e-") 9 -> 00

which proves β = 0. The inequality on the left then shows α = 0.

Theorems 2.12 and 2.16 imply that the lifting via the theta kernel is

essentially (up to C^λ)) identical with the Shimura lift. We shall state

the relationship exactly, but to do so warrants some notation.

Let t be a square-free, positive integer. For G(z) = 2^ = 0 a(ri)e(nz) e

GK/2(4N, X), with fc = 2λ + 1 ^ 3, define the 'Shimura lift'

St(G)(w) = Σ At(n)e(nw)
n = 0

by

Σ At(n)n" = L(s - I + 1, Xt) Σ a{trf)n.-s (2.60)
l \

where lt = χ(—1/ )̂ (ί/ ) (and Af(0) is the unique value which makes St(G)

into a modular form of weight 2λ).

Define θf(z, w) by replacing in θ*(z, w) every occurrence of N by Nt,

and Xj by %,. Define the 'Niwa lift'

Nt{G){w) = f υ^G(tzWtWw)doz (2.61)
J Γo(4Nt)\H

(It is easily checked that this is well-defined.)

THEOREM 2.17. Let the notation be as above. Then

1) Nt(G)(w) = Ct(λ)St(G)(tw) with Ct(X) = (-l)x2'sx+2(tNY/2+1/4 (2.62)

2) α(0)Γ(ί) Σ χt{m)m-χ = ?2- i+2(M)- i+VAe(0) (2.63)
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Proof. For t = 1 this is just a restatement of Theorem 2.12 in light

of the fact that the Niwa lifting is holomorphic. For general t, we use

the reduction Nt(G)(w) = N^GXw) and St(G)(tw) = S1(Gt)(w)9 where Gt(z)

= G(tz). The correct constants come as before. (Keep in mind that the

Niwa lifting depends on the level and character assigned to the form being

lifted—which for Gt is 4M and Xt.)

Remarks. 1) Niwa showed that St(G) e G2λ(2N, Z2), the key question

being the level 2N. The proof is as follows: we know Nt(G) transforms

under the group Γ0(2Nt) (Proposition 2.7), so St(G)(w) = Nt(G)(w/t) trans-

forms under the group Γ0(2N, t) = {(** %)\c = 0(2N), b = 0(t)\. But, by

construction, St(G) transforms under Γ^, and between them Γ0(2N, t) and

ΓTO generate ΓQ(2N).

2) Interestingly, a 'direct' proof doesn't work. That is, one might

expect θf(z, wjt) to transform at level 2N in w. It doesn't:

θf(z, w/t) = const. vίβη-λ Σ χ£x)A'(x, w)x

•^—-{Λ'ix, w)\2\e(z(x\ — XjXg))

with Λ'(x, w) — Vη{Xι — 4Nwx2 + 4N2w2x3)y is not, for general t, invariant

even for w —> w + 1, unless t \ 4iV. It is only when this kernel is integrated

against old forms—G(tz)—in Γύ{ANt) that the transformation for w —> w + 1

appears.

3) Equation (2.63) can be considerably simplified, using functional

equations for the L-series. One derives

At(0) - aψ^L{l - λ, Xt) (2.64)

which was conjectured by Cohen [13, p. 194].

§ 3. The lifts of theta functions

In this section, we use Theorem 2.12 to calculate explicitly the lifts

of the theta functions of weights 1/2 and 3/2. We find that the theta

functions of weight 3/2 lift to Eisenstein series of weight 2, while theta

functions of weight 1/2 lift to integrals of Eisenstein series of weight 2.

In some cases these liftings may be identified also with functions of the

form log 1371, where η is the Dedekind eta function. We then use our knowl-
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edge of Eisenstein series to compute behavior at various cusps. In the
last section we shall return to these examples to derive explicit formulae
for the inner products of theta functions.

We recall our notation: ψ is a primitive character modr and λ — 0
or 1, satisfying ψ(—1) = (— l)a. We have

hf(z) = — Σ Ψ(m)mλe(m2z).

PROPOSITION 3.1 Let G(z) = h^(tu2z) = ΣrT=o a(ή)e(nz), where t is a
square-free positive integer. Then

1) GeGi+i/2(4N, 1) if 4tu2r2\4N and X(m) =

fO if nΦ tu2m2

2) a(ή) = \
[ψ(m)mλ if n —

)
m I \ m

for (m, AN) = 1.

tu2m2 for some m .
3) Xt(m) = ψ(m) for (m, 4N) = 1.

4) Σ At(ή)n-S = L(s - λ + 1, Xt) Σ a(tn2)n~s

)- (3.1)

where σ{m) =

5) St(G)(w) = \

Σ μ(d)ψ(d) Σ ψ(m)σ(m)e(udmw) λ =
d\4N m=l

+ Γ ) (3.2)
J/

X ( Σ ψ(m)σ(m)e(udmω)dω) λ = 0 .
\m=l /

Proof. 1) follows from Theorem 1.10 and standard facts for modular
forms. 2) follows from definitions, as does 3). We derive 4) by noting
that

L(s — λ + 1, Xt) = Σ ψ(m)m~{s~λ+1) = Σ μ(d)ψ(d) Σ Ψ(m)(dm)~(s~λ+1) .
(m,4JV)=l d\iN m=l

Thus

ΣAt(n)n~s= Σ μ(d)Ψ(d) Σ Ψ(mή)(dm)-{s-χ+1)nλ(un)-s

= Σ μ(d)ψ(d)dλ-1 Σ Ψ(mn){mή)λm-\udmn)-s

d\4N m,τι=l
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which easily gives the result. As for 5), the case λ = 1 is obvious from

4). For λ = 0, it is a kind of cheat, since there is no Shimura lift at this

weight. We are hereby defining St for weight 1/2 by an extension of

Theorem 2.17 to that weight:

Nt(G)(w) = Nt(G)(ίoo) + Ct(0)St(G)(tw) with Ct(0) = 8(tNy4 . (3.3)

(Note. There is an extra factor of 2 in the case λ = 0; see Theorem 2.12).

Now 5) follows from Theorem 2.16 (and by verifying the integration).

Finally, 6) is obvious from 2).

COROLLARY 3.2. Let

E(w) = Σ μ(d)ψ(d) Σi ψ(m)σ(m)e(udmw), (3.4)
d\4N m = l

with other notations as before. Then, for (Q jΛeSL{2,Z),

« ( s ( G >l.(c 5 ) > » > =
2>
We shall now evaluate the RHS in Corollary 3.2 at various cusps. We

begin by identifying the function E as a linear combination of Eisenstein

series.

PROPOSITION 3.3. Let E be as above, and, following Hecke [5], define

the Eisenstein series

G2(z, au α2, r) = lim £ ' - — - A _. . (3.5)
s-0 mi=αi(r) (mi + ZΊΎI9) \TΠΛ + M ,

m 2 Ξ α 2 ( r ) N ύ/ ' " '

(7%e indices au α2 are integers (mod r), azzd 2:6 JGΓ; ί/ie i ϊ i ϊS defines an

analytic function for Re (s) > 0, which continues to the entire s-plane.)

Then

W Σ VΣ WdG2(w, rudau a2, r
2ud)

l l

(4πi)(4N)(w - w)

(where φ is the Euler φ-function.).
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Proof. Hecke derived the Fourier expansion

G2(w, aί9 a2, r) =•

r\w - w)
Λ_2

[] I m I e(a2rn\r)e(mmλw\r) (3.7)
/"*" mmi>0

where

^(X) = 1 x

U xeZ.
When r = 1, the result (3.6) can be easily verified from (3.7). We

assume now that r > 1, so that ψ is nontrivial. If we take a character
sum

Όy au α2, r)

it is clear that the first two terms on the RHS of (3.7) disappear; as for
the third, we note that, since ψ is primitive,

We thus find

r 4-7Γ2

Σ Ψ(aί)ψ(a2)G(w9 aί9 a2, r) = -
,0.2 =

ψ(mm1)me(mm1wlr)

Thus

- r 2

Σ tfflύtffiύGJrudw, α,, α2, r) . (3.8)
, α 2 = l

To complete the result, we need the following early verified identity: if
R is a positive integer, then

R

G2(Rz, au α2, r) = Σ ^2(2, α Λ «2 + Ar, Rr) . (3.9)
A l

We now have
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z, rudau a2 + kr, r2ud)

and this sum rearranges to give the stated result.

To establish the behavior of E(w) at the cusps of Γ0(2JV), it suffices

to examine E at a set of jΠ0(2iV)-inequivalent cusps. We observe

that every cusp pjq is Γ0(2iV)-equivalent to a cusp of the form l/C.

(1 0\Therefore we examine E

THEOREM 3.4. Let Ce Z, and define a, β e Z by Cjru = a/β with (a, β)

= 1. Then

E c v =
if (a, AN) =

lθ otherwise .

particular, E vanishes at any cusp l/C where rJ(C.

Proof We use two straightforward results for Eisenstein series:

(3.10)

and

AC D

G2(ίoo, al9 α2, r) =

if α2 ξέ 0(r)

Σ'
(3.12)

(The first is derived from (3.5), the second from (3.7).) From (3.6) we get

X Σ
r r^ud

Σ
Cα2, α2? r

2 (3.13)

Now by (3.12), only those terms with rudax + Ca2 = 0(r2ud) will contribute,

each giving Σmsαa(r2Md) l/^ 2 To select those terms we use the standard ruse

Ca.)klr2ud] = °
With this extra factor in (3.13), the sum over ax is just
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= g(ψ)ψ(k)

and so the sum over k is just

r^ud

Σ "•
k=l h=l k=l

ψ(k)e(Ca.2klr2ud) = Σ Σ f(k)e(Ca2(rh + k)lr2ud)

= Σ ψ(k)e(Ca2klrzud) Σ e(Ca2hjrud)
fcl h\

using the convention ψ(a/b) — 0 if b\a. Putting this back together gives

E Σ ' l/ro' (3.14)

The statement of the theorem follows by a straightforward sequence of

calculations. (But that E vanishes when rJ(C is clear already from the

term ψ(α2)ψ(Cα2/rwcί).)

Remarks. We have seen earlier that the Niwa lifting is not defined

for λ = 0, X = 1, if α(0) =£ 0, because the integral is not absolutely con-

vergent. Hewever, the lifting defined by Proposition 4.1 is perfectly re-

spectable even in this case. One sees that θ(z) = Σ-~ e(n2z) 'lifts' to

where φv) = e{wj2A) Π»=i(l — e(nw)) is the Dedekind eta function.

It is easy to see that this lifting transforms at level 2N. On differences

of theta functions, everything agrees:

- θ(u2z))(w) = CMSjlβiz) - θ(u2z)){w)

= 82v /4 y, &£L log S^^L if u21N.
d\iN V(dz)

§4, Behavior at the cusps

In this section we consider the behavior of lifted forms at the cusps.

We let G e St/,(4N, X) for K > 3, or G e GU2(4N, 1), and let

φ(w) = Γ ι/'2G(z)θ*(z, w)doz.
J Γo(iN)\H
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We shall show the following:

If K > 5, Φ is a cusp form. (Shimura's result)

If K — 3, the value of Φ at a cusp is given as the inner product of G

against a linear combination of theta functions of weight 3/2. From this

will follow Shimura's conjecture, that the orthogonal complement to the

space of theta functions always lifts to cusp forms.

If K = 1, the 'pole term' of Φ at a cusp is given as the inner product

of G against a linear combination of theta functions of weight 1/2.

1. We being by stating a precise formulation of Shimura's conjecture.

Let f, ge SK/2(4N, X). We say that / and g axe orthogonal when
J Γo(4N)\H

υκ/2f(z)g{z)doZ = 0. If U is a subspace of SK/2(4N, X), we say that / is ortho-

gonal to U if f is orthogonal to every ge U. We write "J_" for "ortho-

gonal".

Let ί be a square-free positive integer, and define Ut as the subspace

of S3/2(4iV, X) spanned by functions of the form h+(td2z), with d an integer.

That is,

Ut = \h^{td2z) I 4ίdV| 4N, X = ψ(—-)} (4.1)

(See Section 3).

Recall that St(G) = J^=l At(ή)e(nw), where Σn=i At(ή)n~s = L(s, Xt)

X Σ~=1a(tn2)/ns with X, = %(—£/ ). Then Shimura's conjecture asserts

St(G) is a cusp form if and only if G _j_ Ut.

In view of the relation St(G)(w) = S^G^w) (Gt(z) = G{tz)\ it is not hard

to show that Shimura's conjecture is true for all t if and only if it is true

for t = 1. However, since we are after explicit formulae, it will be neces-

sary to do the general case.

2. Because a character is easier to deal with than a Gaussian sum,

we shall consider the behavior at cusps of the function

ψ(w) = φ\2λW(2N) = ί vκ/2F(zjθ(z;w)d0z (4.2)
J Γ0(4N)\IΪ

where F= G\g/2W(4N). We shall study l i m ^ (Ψ\2λa-λ)(iη) for λ > 0, and

\imη^oo(lliη(W\Qa-1)(iη)) for λ = 0, for enough matrices aeSL(2, Z) to esta-

blish the behavior of ψ (and thus Φ) at all cusps of Γ0(2N)\H. The fol-

lowing lemma will prove useful:
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LEMMA 4.1. Suppose c contains every prime factor of 2N. Then, for

(c, d) = 1, the cusp — d/c is Γ\(2N)-equίvalent to 1/c' for some & which

also contains every prime factor of 2N.

Proof Since (c, d) ' = 1, let a, β solve — da + cβ = 1. Since c contains

all prime factors of 2N, (a, 2Nβ) = 1. Let r, δ solve αrd - 2ΛΓΓ/3 = 1. The

Nϊ δ) 6 ^ 2 ^ d o e s t h e t r i c k :

= ^ , where C = c* - 2iVrd.
d

matrix

- d ^ +
2N7(~dlc)

Remark, d contains precisely the same factor of 2N as c.

From Proposition 2.4, we have the following:

(Ψ\ua-')(«;) = f
J .

where

Γo(iN)\H

exp

Jtz; uήd.z (4.3)

(4.4)

with

Λ(x, w) = — ( — x, —
77 \ 4

3 ) ,

/

= D(x) = x\ —

L7 = Z@NZ@NZjA , and x -

where

α2 4α6 1662

— ac ad + 6c 86c?

16
-cd

when - - C 2 )

The cusp in question here is the rational point —d/c. We shall study

l im,^ θa(z, iη) for ^ > 0 and lim^^ (—l/iηθa(z, iη)) for λ = 0. Of course

arguments must be made for bringing the limit inside the integral. (A

lot depends on F being a cusp form for k > 3; for instance, although

lim^oo 0β(2, î ) = 0 for all a when λ > 1, we have already seen that

Eisenstein series lift to Eisenstein series, which are not cusp forms.) These



MODULAR FORMS 99

arguments—which are largely tedious estimates—are isolated in Appendix
B.

It will be convenient to have an 'inversion' formula for inner products
against theta functions.

PROPOSITION 4.2. Let N = r2pq, and let Xx mod 4N be induced by the

primitive character ψ mod r. Let G e GK/2{4N, X) and let F = G\κ/2W(4N).

Then

ί v"2F(z)h,(pz)d0z = i^ϊf^g(ψ) f v^G{z)ΈMz)d,z. (4.5)
J Γo(4N)\H NK/ J Γo(4N)\H

Proof, This is a straightforward application of Theorem 1.10 (iii),
part (4).

3. We begin with the case t = 1.
From (4.4) it is easy to see that

z, iη) =

X exp I—-

Because of the η2x\ in the exponential, one expects those terms with x3

Φ 0 to contribute negligibly to the sum. The analysis of Appendix B
shows this to be the case. We have

β (? Ί-nS (άrΎi\-hiχl2 V v (x n v 7v I Pirn I r2\p(?r2IN} 4- P (A fί)

*e^ \4η / L 4Λ7^>72 J
£3=o ' '

where ε = ε(z, rj) is such that

Γ f o(l) λ > 0
υ«Ψ(z)e(z, V)dQz = P ;

J Γo(*N)\H [0(1) λ = 0

The same analysis shows that, for non-negligibility, the sum may have
at most one power of η in the denominator of its polynomial term. (The
inversion which brings the η2 to the numerator of the exponential takes
up exactly one power of 27; anything more will cause the sum to vanish
as η-* co.) Thus we see immediately that ¥ is a cusp form as soon as
λ > 1—i.e., for K > 5:

THEOREM 4.3. For K > 5, and any square-free t, St(G) e S2λ(2N, X2).
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Proof. For t = 1, we have just proved it. For other t9 we cite the

relation St(G)(tw) = S^G^u)), where Gt(z) = G(te) e Sκ/2(4Nt9 Xt).

In the remainder of this section and the next, we continue only with

the cases λ = 0, 1 (weights 1/2 and 3/2). Since we want the pole term

for λ = 0, and the constant term for λ = 1. we study

lim [(iηY-%(z, 17])} .

For this function, the term (Ij4η)xλ in (4.6) is seen to be negligible for the

same reasons as above, so that

z, iη) = ( - exp ( -
4Nτf ε . (4.7)

The condition x3 = 0 has important consequences which we now ex-

plore.

By definition, x3 = 0 if and only if c2xί + 4cdx2 + 16d2x3 = 0. Let x2

= Ny2, x3 = NyJ4, so that y2, ys e Z. Then x3 = 0 if and only if c2x1 + 4Ncdy2

+ 4Nd2yz = 0. Now if 4N)(c\ then (x1? 4iV) > 1, in which case X^x,) = 0,

so that (iηγ-ιθa(z, iη) = ε. That is, for Λ = 1 (λ = 0),

?Γ vanishes (has no pole) at any cusp — d/c (c, d) = 1, where 4NJ(c2.

Assume now that 4iV|c2. Writing 4N — 4μ2τ with τ square-free, we

must have c = 2μτcί for some c19 and thus, by Lemma 4.1, we may assume

d = — 1. We see immediately

x3 = 0 if and only if τc\x^ — 2μτcίy2 + y3 = 0.

Clearly the RHS has a solution ys for any choice of xί9 y2. As a conven-

ience, let us also write xt = dyx = —yx. Now

d2 -4bd 16b2 -

— — cd ad + be —8ab

16
-c2 -iαc

4

Hence, when x3 = 0, we have

fχ1

> χ 2
= 1 1 cd ad + 6c
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In the present case (d = —1) this inverts to give

*, = ( ( * - bc)yi - 4Nby2

x2 = μτcιyι + /̂ 2ry2 .

We see immediately that χί(x1) = Xii—yd = ( — ΐ)%(a — bc)χλ{xΐ). Let us factor
μ — mn so that cx = mc2 with (c2, zz) = 1. This is clearly unique, given cΛ;
also, conversely, given a factorization μ — mn, there is (more than one)
cx such that cx = mc2 with (c2, τι) = 1. Then

x2 = m2nτ(c2y1 + τẑ 2) y1? y2eZ.

Fix Jj, 52 as a solution to c ^ + ny2 = 1, and set

g r= (α - 6c)^ - 4iV&5/2 . (4.9)

Let xx{k) — kg for ke Z. Now Xj(̂ ) is a value taken on by xx when Jc2

takes the value m2nτk. If x((/e) is another such value for χu a simple
argument shows that x[(k) = f X/J) + pτi for some integer p. Furthermore,
each integer p gives such a value. Thus when x2 = nfnτk, χx runs over
all integers congruent to kg modulo n. We may now write

(-iηy-%(z, iη) = ( - i ) ' . ^ ( - i ) ^ ( α - 6c)

X Σ Σ X

e(z(m2nτk)2/N) + ε

Zl(α - 6c) Σ ( U " Σ &(

X kxe(m2τk2z) + ε . (4.10)

Consider for the moment the inner sum

>; h~kg{n)

,,1/2 4ra2m

= — Σ Z.(A» + nq) Σ e(hHv/8Nf)
η q = l h = kg + nq(4N)

,,1/2 4iV

= — Σ X.(fe + «ί) Σ e(hHvl8Nrf).

Now concentrate on the sum
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— Σ e(hHvl8Nη2) (K = kg + nq)
n hsKum

Σ e(-h2/4(4N)2Z) (Z = iv

2/8Nu)
h=K(AN)

, # , AN)
AN

= (4iV)~1/2 Σ e(HKIAN)θ(Z, H, 4N)

using the theta series of Theorem 1.10 (i). From the estimates of that

theorem, we see this equals

(4iV)"1/2 + O(v1/2lη) .

The error again disappears with ^->oo, when integrated against a form

F which is bounded at the cusps. Thus

X
(AN \

Σ (Σh(kg + qnψWmhz) + e . (4.11)

Now g = (a — bc)y1 — 4Nby2 with 1 = c2yt + nyz Therefore %i(kg + nq) =

Xi(k(a — bc)y1 + nq). Since (a — be, N) = 1, we may factor χ^α — 6c) out

of the character sum. This leaves

(-ίVy-%(z, irj) = -^^(n^Λ" f; ( £ ^(kyx + nq))Ve(k2m2τz) + ε
n(4N)1/2 \ 4 / * - - o o \ β = i /

where a{ljc) = ioo, c = 2m2nτc2, and c ^ + 7iy2 = 1. Thus, at the cusp 1/c

with c = 2m2nτc2, (c2, ̂ ) = 1, the constant (pole) term of Ψ is

f ιf>°-F(z)Hjϊn^d,z (4.13)
n{4Ny

where

oo / AN \

Hλ(z)= Σ ( Σ &(*?. +?Λ))#<*#*), ^ , Ξ l ( n ) . (4.14)

Now suppose %! mod 4iV is induced by the primitive character ψ mod

r. If rj(n, then i?(,ε) = 0, because, as is shown in Appendix A, the inside

character sum is zero. In particular, if r2J(N, then Ψ is a cusp form (is

bounded at all cusps).
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On the other hand, if r\n, then (VQ)J^lili(k + qn) is a character

mod n, induced by ψ, where Q — ΣJΐi %i(l + Qw). We have

Hλ(z) = 2Qψ(c2) g μ(d)ψ(d)d%Ψ(d2z) (4.15)

where hΨ(z) = 1/2 X̂ =_oo ψ(k)kxe(k2z). The constant (pole) term of ψ at 1/c

is thus

s *«+<** L
n=rdδ

X f if*G(z)h+(iP~z)d& (4.16)
J Γo(4iV)W

using the inversion formula (4.5). This can be simplified to equal

. (4.17)

We summarize these results in the following theorem:

THEOREM 4.4. Let N = m2n2τ be some factorization of N, with τ square-

free, and let c = 2m2nτc2 with (c2, ή) = 1. Suppose lx mod 4N is induced

by the primitive character ψ mod r, and let Q = X ^ χ^l + qn). Then,

for λ =: 1 (λ = 0),

(1) F* automatically vanishes (has no pole) at all cusps not of the form

— d/c with c as above

(2) Every cusp —die' with d as above is Γ0(2N)-equivalent to a cusp

of the form lie with c as above. Ψ has similar behavior at equivalent cusps.

(3) At the cusp 1/c, the constant (pole) term of Ψ is

) T^ni

n(4N)1

with

Hλ{z) = Σ

)1 ί v^F(z)H7(m2τzjd0z

(4) If r\n, then ¥ vanishes (has no pole) at 1/c. In particular, if

r2J(N, then ¥ is a cusp form (is bounded).

(5) If r\n, then the constant (pole) term of ¥ at 1/c is
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4 Γ
Vd f

COROLLARY 4.5. Lei G e S3/2(4iV, %). 77ιeτι SX(G) is α cusp form if and

only if G± Ux.

Proof. One direction is clear from the theorem. It remains to prove

the converse: if Ψ is a cusp form, then G{z) is orthogonal to all hf(δ2z)

with δ2r21N. To show this, assume δ2r21N and let n = dr. At the cusp

l/2m2nτ, we have, by (4.17)

0 = Σ μ(d)ψ(d)d'2 ί vz/2G(z)h^d/2z)d0z .
dd' = δ J ΓQ(4iV)\H

Since ψ(l) = μ(l) = 1, we have

ί υz/2G(z)hJ$^)d«z = "- 1 Σ μ(d)ψ(d)d/2 f υz/2G(z)hΨ{d'2z)d0z .
J Γo(4iV)\ίΓ ^ 2 ^ ' = 5 J Γo(4N)\H

d>l

Now every d7 on the RHS is smaller than 5. By induction the RHS van-

ishes, the initial case δ = 1 obviously vanishing. Hence the LHS is zero.

4. Let now ί be a square-free positive integer. Recall the notation

of Theorem 2.17:

Nt(G)(w) = f υ"2G(tz)θf(z^v)doZ, (4.18)
J Γo(iNt)\H

where θf is formed from θ* by replacing every N by Nt, and Zj by %f =

XM ). Recall that Nt(G)(w) = Ct(λ)St(G)(tw\ where Ct(ί) = (-iy2~u+2

.(Nt)2/2+1/4 for >ί > 0 and Ct(0) = 8(M)1/4. We now define

) . (4.19)

On the one hand, Ψt(w) = Ct(X)t-λSt(G)\2λW(2N)(w), while on the other hand,

t(w) = f
J Γ(,

ψt() f
= Γ v-'Xt-^FizWizM^z (4.20)

J Γo(4^ί)\-ff

where F = G|,/217(42^) is as before, and 0* is 0 with every 2V replaced by Nt,

and %i replaced by Xt:

θ'{z, w) = (47)-V^ Σ ZXXMΛ, ^ ) λ exp (~^πV-\Λ(x, w)\2)e(zD(x)INt) (4.21)
z t \ Nt I
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with Xt = Xx(tj ), Lt = Z®NtZ®NtZ/4, and Λ and D as before. Since βι

is a purely formal change from θ, we may use directly the results of the

previous section:

P R O P O S I T I O N 4.6. Let Nt = m2n2τ be some factorization of Nt, with τ

square-free, and let c — 2m2n2τc2 with (c2, n) = 1. Suppose Xt mod 4Nt is

induced by the primitive character ψ mod r. Then forλ — l(λ = 0),

(1) Ψt vanishes (is bounded) at all cusps not of the form —die with

c as above.

(2) Every cusp — d/c/ with d as above is Γ0(2Nt)-equίvalent (and there-

fore Γ0(2N)-equivalent) to a cusp of the form 1/c with c as above. Ψ has

similar behavior at equivalent cusps.

(3) At the cusp 1/2 m2nτc2, (c2, n) — 1, the constant (pole) term of Ψt is

with

i Uky1 + qn))k>e(#z),
= l /

(4) // rj(n, then Ψ vanishes (has no pole) at 1/c. In particular, if

r2J(Nt, then Ψt is a cusp form (is bounded).

Now the last statement really says something new, because if t con-

tains a prime not already in 42V, then r also contains that prime, since

r is the conductor of Xt9 which consists in part of the Legendre symbol

(pi ) for any p \ t. In that event, since t is square-free r2J(Nt, and Wt is

a cusp form (bounded form) by the proposition. Also, if 2JfN but 2|ί,

then 81 r and r2J(Nt, so that Ψt is again a cusp (bounded) form. We have

proved:

THEOREM 4.7. Let G e S3/2(4iV, X). If tJ(N, then St(G) is a cusp form.

COROLLARY 4.8. Let G e Sm(4N, X). Suppose t\N. Then St(G) is a

cusp form if and only if G _[_ Ut.

Proof. Ut is empty.

Remark. Similar statements can be made for St(G) being bounded,

when G e G1/2(42V, X).

In the remainder, we shall assume that t \ N and r \ n. Let Q = ΣJΐ i
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χ^l + qn). Then 1/Q 2U«-i lt(k + gn) is a character mod n, induced by the

primitive character ψ mod r. Then

2) Σ μ(d)ψ(d)d%(d*z) . (4.22)

The constant (pole) term of Ψt at 1/c is thus

* f *»mτ&&aR>d*. (4.23)4

Our immediate goal is to "unfold" Γ0(4Nt)\H back to Γ0(4N)\H. Towards

this we use the disjoint coset decomposition

ro(4iV) = u ro(4M)r, r, = ( * ° ) .

(This relies on our assumption t\N.) Thus

ί υ^Ψ(z)Tφι2τd2z)d0z = Σ f (Im 73zy»F{r3z)h£^Yp)d0.
J Γo(4Nt)\H j = l J Γo(4N)\H

(4.24)

Now ( I m r ^ 2 = υκ/2l\4Njz + If, and F ( ? » = (4iVjvε + 1)Λ/2F(^). The hard

work comes in reducing /ι̂ :

h^mhd'TjZ) = hΨ(m2rd2zl4Njz + 1)

= hφ(tm2τdz(z/t)/4m2r2dΨτj(zlt) + 1)

writing JVί == τn2λi2r with n =• rd<5

= Jif(tZl4rΨjZ + 1 ) Z = m2τd2z/t. (4.25)

Since £ is square-free, we may write t = totl9 with ^ | δ and (ί0, 5) = 1. Let

δ = ί^j, and continue the equality:

δlJZo +1)

using Theorem 1.10 (iii) part (5), where

ξj(k) = Σ Σ Φ(hW(gk + Ugh - rtxδ\jg2)ltQr) .

Altogether we have

f
J ΓΓo(4Nt)\ff

= -fS- f y*/2F(2) Σ ( t ξjiφ^^ZM^z . (4.26)
2rίn J Γo(4N)\H k=-^\j = l /
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We now consider the sum over j :

ΣΣ Σέ UQ = Σ Σ Σ Ψ(h)e((gk + tΰgh - ug°),%r) (u = rtβlj)

= Σ Σ Ψ(h)e((gk +
Λ l l

Since (t0, δ) = 1, the last sum is nonzero only when tQ\g2. Since £ is square-

free, this is equivalent to tQ\g, in which case the sum gives a factor of t:

Σ

(4.27)

using g(ψ>)g(ψ) — {—V)λr. We now have

f v^F(z)hJnf^z)doz = ψ(θ4 f ^^(^Λi-^ήdo^ . (4.28)
J Γo(*Nt)\H % J Γo(4N)\H \ tQ J

= 0, and we needn't bother with the integral. Assume

now (Zo, r) = 1. Then, since (t0, δ) = 1 also, the factor m2τd2/t2

0 is an integer,

and we have a factorization

m2n2τ m2r2d2δ2t (m2τd2\( δH^ \ 2 (m2τd2\

The inversion formula (4.5) now shows the integral above equals

/ \~ιr)8\Ψ) \ψ(£o)__i__ vκ/2G(z)hf(tδlz)d0z. (4.29)

We have arrived at the following theorem:

THEOREM 4.9. Let Nt = m2n2τ be a factorization of Nt, with τ square-

free, and let c = 2m2nτc2 with (c2, n) = 1. Suppose Xt mod ANt is induced

by the primitive character ψ mod r, and let Q = Σ?ΐi XtO- + Qn)- Assume

11N, and r \ n. Then the constant (pole) term of ¥t at 1/c is

hΨ(tδ2z)d0z (4.30)

where the sum is taken over all triples of positive integers (d, δ, t0) such that

t011, (t0, δ) = 1, and n = rtdδ/t0.
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Proof. This is a simple calculation based on (4.22) and (4.29).

COROLLARY 4.10 (Shimura's Conjecture). Let G e S3/2(4ΛΓ, X). Then St(G)

is a cusp form if and only if G _]_ Ut.

Proof. Recall that Ut is spanned by all hΨ(tδ2z) such that ψ is a primi-

tive character, mod r, inducing Xt, and tδ2r21N. In (4.30) above, note that,

if tδ2r2J(N, then (t0, r) > 1, so that ψ(t0) = 0. Thus the only inner products

appearing on the RHS of (4.30) are exactly those h+s spanning Ut.

So G _]_ Ut implies St(G) is a cusp form. The converse also holds, by

an induction argument identical to the case t — 1.

COROLLARY 4.11 (weight 1/2 analogue). Let Ge G'1/2(4N, X). (G'1/2 means

α(0) = 0 if X is principal). Then St(G) is bounded on H if and only if

G J_ Ut. (Here Ut = {hΨ(td2z)\ 4td2r2\4N, X = ψ(ί/ )}.)

§ 5. Examples

One important property of the Shimura lift St is that it commutes

with the action of Hecke operators. We shall state this precisely.

Let

G(z) = Σ a(ή)e(nz) e Gκ/2(4N, X) and Φ(w) = Σ A(n)e(nw) e Gk(N, φ).
n=Q τι = 0

Let p be a prime. Define

T(p2)G=T%(p2)G = ±b(ή)e(nz) and T(p)Φ = T»φ(p)Φ = £ B(ή)e(nw)
n=0 n=0

by
a(np2)

a(nPη + p^Xn(p)a(n) + p"-ψ(p)a(nlp*) if pJ(4N

(A(np) if PIN

\A(np) + φ(p)p"-Ά(nlp) if pJfN.

(Here A(x) = a(x) = 0 if x e Z.)

PROPOSITION 5.1. St(T(p2)G) = T(p)St(G), for all primes p and all

square-free t.

Proof. A straightforward verification based on the result

At(n) = Σ Ud)d'-ιa(t(nldy).
d\n

Even more significant is the result of Shimura:
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THEOREM 5.2. Suppose G = Σn=o a(ή)e(nz) e GΛ/2(4iV, 1) is an eίgenform

for all Hecke operators T(p2). Then for any square-free positive integers t>

T, we have a(t)S£G) = a(τ)St(G).

EXAMPLE 1). The space G3/2(4,l) is 1-dimensional, spanned by

θ\z) = Σ rs(ή)qn - 1 + 6g + 12g2 + 8g3 + 6q* + .
w = 0

Being the only function in the space, θ* is necessarily a common Hecke

eigenform. The Shimura lifting sends

The latter is also one-dimensional, spanned by G2(z, 0, 0, 2) — G2(z, 0, 1, 2)

(see Section 4; alternatively, the lift of 03 can be identified as (1/4) T(2)0\)

We find Aj(0) = 1/4. Since r3(l) = 6, Theorem 5.2 gives us, for square-

free t,

°) = 24At(0) .

Now Theorem 2.17 shows, for λ = 1

ΔίK~l m = l

where lt — (—1\ ). It is not difficult to prove that

(At)1/2if]Xt(m)lms ί Ξ 1, 2(4)
χt(m)!ms =

(5.1)

(5.2)

(5.3)

Putting together the last three equations, we derive the well-known result

* " /j.W/2 V

m
0

24_(ty β — Mm

t = 7(8) (ί square-free) (5.4)

t = 3(8) .

Alternatively, we may use (2.64) and derive rz(t) = 12L(0, Xt).

EXAMPLE 2). Dimensions for spaces of modular forms have been

calculated by Cohen and Oesterle [1]. For weight 3/2, the first cusp forms

appear at level 28:
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dim S3/2(28,1) = dim S3/2^28, (lλ\ = 1 .

Clearly, there are no theta functions in these spaces. (The first theta

function appears in iS3/2(36, (3/ )).) Thus, by Corollary 4.10 (Shimura's

conjecture), these functions lift to cusp forms:

S3/2(28, *) - ^ > S2(14,1)

On the other hand, multiplication by Θ{z) (resp. θ(7z)) sends S3/2(28,1) (resp.

S3/2(28, (7/ ))) to S2(28,1): Now S3(14,1) is 1-dimensional, spanned by

φ(z) = (Δ(z)Δ(2z)Δ(7z)Δ(Uz))ί/24 = q - q2 - 2q3 + q4 + •-• (5.5)

where

Δ(z) = q Π (1 - qT (q = e(z));
71 = 1

S2(28,1) is 2-dimensional, spanned by φ(z) and φ(2z).

Suppose now G(z) = a(ί)q + a(2)q2 + € S3/2(28,1).

Then S^G) = a(ί)q + a(4)q2 + = a(ΐ)φ(z), (5.6)

and

G(z)θ(z) = a(l)q + (α(2) + 2a(l))q2 + (α(3) + 2a(2))q> + (α(4) + 2a(Z))q' .

= aφ(z) + βφ(2z) (5.7)

for some a and β. We claim first of all that α(l) Φ 0. For suppose α(l)

= 0; then G(z)θ(z) = βφ(2z), so that α(2) = j9, α(3) = —2̂ 8, and α(4) = 3^, from

which we conclude that S^G) = 3βq2 + , ^ 0 , which contradicts (5.6).

We may therefore assume α(l) = 1. Then (5.6) shows that α(4) = — 1.

Plugging these values into (5.7) and equating coefficients of q, q2, q\ q\

gives four equations in four unknowns (α(2), α(3), or, 9̂); the unique solution

is a = 1, β = 2, α(2) = - 1 , α(3) = 0. Thus

y g ^ ^ + S p a ns S3/2(28,
θ{z)

A similar analysis shows

G(z) = £z)-2ft2z) = g _ 3(?2 _ 2 ρ 3 _ q* + .. . s p a n g S

EXAMPLE 3). Our last example is to compute the Petersson inner

product
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f
J Γ

for theta functions of weight 1/2 and 3/2, using Theorems 4.4 and 3.4.

We shall need the following result, which we state without proof.

PROPOSITION 5.3. Let Ψ = Φ\2λW(2N) be modular forms of weight 2λ

and level 2N. Then

(5 8)

Now let Φ(w) = M(Λ+) be the Niwa lift of Λψ(z). Taking c = 2r,

Proposition 5.3 above and Theorem 4.4 (5) combine to give

H - f
J Γo(4r

f v
J Γ0(4r2)VίΓ

)\Jϊ

(5.9)

where

1 if r is even

2 if r is odd ( 4r2

this since Q = 2 ψi(l + qr) =
9 = 1

On the other hand, by Corollary 3.2 and Theorem 3.4,

2A —r A — r

24 p\4r*

Finally, by Theorem 2.17 (and Equation (3.3)),

with
8r1/2 λ = Oϊ

; - l / 2 r 3 / 2 ;l = 1 j = < - 1 > ' r 2 + 1 / " 2 8 "

(This form for CΊ(Λ) holds only for λ = 0, 1!) Putting all this together gives

L.,,
O p |4)2

δ r 2 π i
2 4 Pl4r2

(5.10)
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As a special case, let ψ(m) = (jnjp) for an odd prime p. Then

f v^h+(z)h<,(z)doz =
J Γ0(4p2)\H

. (5.11)

These formulae are in agreement with the results of Petersson [9]. The

derivation of course is different.

Appendix A. Characters and character sums

We present here some results concerning characters which are used

elsewhere in the paper. The results are elementary, but worth writing

down.

1) The quadratic residue symbol

We wish to define precisely our use of the "quadratic residue symbol"

(eld). We follow Shimura's definition.

m n

Let c = Π Pi and d = Π Qj, where p0, qQ e {—1, 0, 1}

and all other ph qj are positive primes. Define, multiplicatively,

\ α / *=o y=o \ g^ /

where

(1) ( £ ) = 0 if (p, g) > 1

(2) (

(4) if q e {-1,0, 1,2}

/p\ ( 1 ifx2Ξ/? mod q has 2 solutions

\q / [ — 1 ifx2Ξj9 mod g has 0 solutions

(5) (̂ ?-Λ = 0 if p = - 1 mod 4
\ 2g /

(6) (-P-) = (—R—) if p Ξ 1 mod 4W \2q) \p + 2qJ

for p e {p< I ί = 0, 1, , m} and q e {q^, | j = 0, 1, , n}.
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This definition has the advantage of presenting (c/d) as an obviously

well-defined symbol. However, it obscures the character qualities of the

object. Let us state what these are:

(1) If 0 < d is odd, then X(c) = (c/d) is a character mod d.

(2) If τ is square-free, then X(d) = (τ/d) is a character mod t, where

t = \τ\ if δ\τ implies δ = 1 mod 4

t = 4|τ | otherwise

(3) If τ is the square-free part of c, then X(d) = (c/d) is the character

induced by (τ/d). That is, (c/d) = (τ/d) whenever (d, c) = 1.

Note that in our use of the quadratic residue symbol, (c/2) = 0 when-

ever c contains a prime factor congruent to — 1 mod 4.

2) Primitive and induced characters

A character ψ mod r induces the character X mod M when r is a proper

divisor of M and ψ(m) = %(m) for (m, M) = 1. The character ψ mod r is

primitive if it is induced by no other character. (In this paper, ψ nearly

always refers to a primitive character mod r.)

If X mod Λf is induced by ψ mod r, and / is any function on Z, then,

formally at least,

Σ %(m)/(m) = Σ μ(d)Ψ(d) Σ Ψ(m)f(dm)
m=l d\M m=l

where μ is the Mδbius function. (This formula is generally true—ψ need

not be primitive.)

3) A character sum

PROPOSITION A. 1. Let X be a character mod M, induced by the primitive

character ψ mod r. Let n \ M, and define

S(k) = ΣX(k + qή) .

Then

(1) If rj(n, S(k) = 0 for all k;

(2) If r\n, S(k) is, up to a nonzero multiplicative constant, the char-

acter mod n induced by ψ. That constant is Q = Σf=i %0- + Qn)

Proof. Since n\M and X is mod M9 S(k) is defined modulo n, and

the sum may be taken over any complete residue system mod M. Now

(k, ή)>l implies X(k + qn) = 0 for all q, hence S(k) = 0 for (k, n) > 1.

Assume (A, π) = 1. Then there is some k\ k' = k mod n, with (kf, M) = 1.
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(By Dirichlet's Theorem, h! may be a large prime.) We have

q mod M q mod M

= *(V) Σ *(1 + qn) .

When r | τι, %(1 + qn) takes only the two values 1 and 0, and is 1 at least

once (at q = 0), so Q = Σ χ0- + Qn) Φ 0, establishing (2). Conversely, if

Q Φ 0, then up to this nonzero multiplicative constant, S{k) is a character

mod n, inducing 1 and therefore induced by ψ. Thus r\n, establishing (1).

Appendix B. Error Est imates

We wish to present in detail the estimates showing that only x3 = 0

contributes in the limit η -> oo in Section 4 and that the other errors

incurred in that section also are negligible.

We first show that the integral over ΓQ(4N)\H may be approximated

by an integral over a certain compact region.

PROPOSITION B. 1. Let SF = {z\ \z\ > 1, |Re z\ < 1/2} be the usual fun-

damental domain for SL(2, Z), and let ^ η = ^ Γ) {z\lmz <C tf} Let

Γ0(4N)\H ~D=

and let

Suppose Fe Gtn(4N, χ(N/ )) (with F\ W(4N)(ioo) = 0 if K = 1 and X = 1).

Then

(BΛ)

Proof See the proof of Proposition 2.8. Generally, if F e P?n then

the error estimate is O(η2m).

Remark. The error 0(1) for F e Gm becomes an error o(l) when we

divide by η to get the pole term.

PROPOSITION B. 2. Consider the decomposition

= Σ
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(Equation (4.4) makes clear the notation on the right) Then

2 = O(e-β t > 'V1 / 2) v e D v ( B 2)

/or some positive constant a.

Proof. Observe the general estimate

Xexp[—^-3]. (B.3)

Now

When x3 Φ 0, we have

\Λ(x, iη)\ < cv\x3\(i + -L|*2 | + - ^

where C depends only on the lattice fU. For "large" 27 (such as η > 1/4),

we have

Ml < CtψlXzWl + ^ | x 2 r + V \χi\) (B. 4)

From (B. 3) and (B. 4), we get the estimate

Z J < ίiv Σiλ Iz-io 2Lto + v Σio IJX + y XJX-IJO] (B. 5)
^ 3 ^ 0 xz XI X2 XI X2 XX X2

where

Σ i = Σl^aPexpf—^^fa 2)
is ia^O \ N /

= O(e~α/^2) u e ΰ , . (B. 6)

(One may take <x to be 64π/N times the smallest value of jcj, and α' to be

half of a.)

v = Σ IΛil" exp ( - - ^ - Λ ί ) = 0(1 + (^2)- ( v + 1 ) / 2) (B. 7)
xx \ 4Nη /

Σ
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Σ . = Σ I*2I" exP i-^%) = 0(1 + ιr ( M ) " ) . (B. 8)

Combining (B. 6, 7, 8) in (B. 5) gives an estimate

= O\e-a"^ψ-χ'2\ for i; e

PROPOSITION B. 3.

fJ
\o(v)

Proof. We use the estimate (B. 2). For cusp forms the result is obvi-

ous: small values of v may be ignored, and the exponential factor e~aVη2

takes care of the rest. In the second case, we must concern ourselves

with small values of v, say in the range η~x > υ > η~2. In this range

2] i 3 9 t 0 = O(ηv~1/2). But since O(v1/2) is the estimate for modular forms of

weight 1/2, we have

ί v'/2F(z)O(v-1/2)dQz = 0(1) .
JD

Therefore, the integral over a vanishingly small piece of D will be o(l).

The inclusion of η into the estimate 0(v~1/2) gives the desired result.

Remark. Again, the lower estimate in (B. 9) becomes o(l) upon divi-

sion by η.

PROPOSITION B. 4. The discrepancy between (4.10) and (4.11) is 0{η~x),

and

Proof. The derivation between (4.10) and (4.11) notes an error O(v1/2/η).

This occurs within the theta function (4.10), which is easily seen to have no

constant term. (When k = 0, χ^h) = 0). Without the expression in paren-

theses, (4.10) has the estimates O(e~aΌ(l + ιr1/2)), for some positive a; with

the estimate O(vί/2/η) we get an overall estimate Oiy'^-^iv1'2 + 1)). This
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clearly weakens to O(τ)~ι). As for the estimate (B. 12), it holds since the

integral is absolutely convergent even when Dv is replaced by Z).

PROPOSITION B. 5. Let Hλ(z) be as in (4.14). Then

ί vκ/Ψ(z)ΉJm2τz)d0z = f υ"/Ψ(z)Hjτnίτz)doz + o(l) .
J D J Dη

Proof. The integral at left is absolutely convergent.
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