ON THE BASE FIELD CHANGE OF P-RINGS AND P-2 RINGS

HIROSHI TANIMOTO

One finds the following example in [3, (34, B)]:

Let k be a field of characteristic p and $\underline{X} = \{X_1, \dots, X_n\}$ be n-variables over k. Then if p>0 and $[k:k^p]=\infty$, $k^p[[\underline{X}]][k]$ is an n-dimensional regular local ring but not a Nagata ring. In particular it is not an excellent ring.

On the other hand, according to [1, Corollary 4.3], k[[X]][l] is an excellent ring if l is a separably algebraic field extension of k.

In Section 1 we study when a property such as being excellent ascends by a base field extension.

Conversely in Section 2 we study when such a property as in Section 1 descends by a base field reduction.

§ 1. Notation and definitions

We use the following notation and definitions, following [6]:

Let P be a property meaningful for a noetherian ring and satisfying the following four axioms:

Axioms: 1. If A is regular, then A has P.

- 2. P is a local property.
- 3. If A is a complete local ring, then P(A) = P-locus of A is Zariski open.
- 4. Let $(A, \mathfrak{m}) \rightarrow (B, \mathfrak{n})$ be a faithfully flat local homomorphism. Then P descends from B to A; if both A and $B/\mathfrak{m}B$ have P, then P ascends from A to B.

We say that a noetherian ring is a **P**-ring if its formal fibers are geometrically **P**. Then we have:

Lemma 1. ([6, n. 3, Lemma]). A noetherian local ring A is a P-ring iff, for any finite A-algebra B which is a domain, and for any prime ideal Q of \hat{B} with $Q \cap B = (0)$, the local ring \hat{B}_Q is P.

Received October 26, 1981.

Moreover, imitating the proof of [3, Theorem 77], we have the following theorem (cf. [2, Theorem (7.4.4)]):

Theorem 2. Let A be a P-ring and B an A-algebra of finite type. Then B is a P-ring.

We define P-i (i = 0, 1, 2) as follows:

DEFINITION 1. A ring A is P-0 iff P(A) contains a non-empty open set.

- 2. A is P-1 iff P(A) is an open set (maybe empty).
- 3. A is P-2 iff every A-algebra of finite type is P-1.

Next we define NC:

DEFINITION. A property P satisfying four axioms above has NC iff the following property holds for P; a noetherian ring A is P-1 if, for every $\mathfrak{p} \in \operatorname{Spec}(A)$, A/\mathfrak{p} is P-0.

Remark. If P = regular, CI, Gorenstein or CM, then P has the four axioms and NC. ([6, n.2, Remark 1])

Then we have the following proposition:

PROPOSITION 3 ([6, n.2, Proposition 1]). Let P satisfy NC. Then, for a noetherian ring A, the following are equivalent:

- 1. A is P-2;
- 2. any finite A-algebra is P-1:
- 3. for any $\mathfrak{p} \in \operatorname{Spec}(A)$, and for any finite radical extension L of the fraction field of A/\mathfrak{p} there is a finite A-algebra B, containing A/\mathfrak{p} and having L as fraction field, such that B is P-0.

Besides the above, we freely use the notation and the definitions of [3].

§ 2. Base field extension

In this section we fix the notation as follows: A, k and l are noetherian rings, and A and l are k-algebras. We assume that there is a multiplicatively closed subset S of $A \otimes_k l$ such that $S^{-1}(A \otimes_k l)$ is a noetherian ring.

Our first result is about *P*-rings:

PROPOSITION 4. If A is a P-ring, and k and l are fields such that l is separably generated over k, then $S^{-1}(A \otimes_k l)$ is a P-ring.

Proof. Let B be an essentially finite $S^{-1}(A \otimes_k l)$ -algebra which is a local domain. By Lemma 1, we have only to show that, for any $Q \in \operatorname{Spec}(\hat{B})$ such that $Q \cap B = (0)$, the local ring \hat{B}_Q is P.

We can put $B = (S^{-1}(A \otimes_k l)[\underline{X}])_M/\mathfrak{p}$, where $\underline{X} = \{X_1, \dots, X_n\}$ are n-variables over $S^{-1}(A \otimes_k l)$ and $M \in \operatorname{Spec}(S^{-1}(A \otimes_k l)[\underline{X}])$, $\mathfrak{p} \in \operatorname{Spec}((S^{-1}(A \otimes_k l)[\underline{X}])_M)$. Since \mathfrak{p} is finitely generated, there is an intermediate field K between k and l which satisfies the following three conditions:

- (a) K is finitely generated over k;
- (b) l is separably generated over K;
- (c) if we put $\mathfrak{m} = M \cap (A \otimes_{k} K)[\underline{X}]$, $((A \otimes_{k} K)[\underline{X}])_{\mathfrak{m}}$ contains a certain system of generators of \mathfrak{p} .

Put $\mathfrak{q} = \mathfrak{p} \cap ((A \otimes_{k} K)[\underline{X}])_{\mathfrak{m}}$ and $C = ((A \otimes_{k} K)[\underline{X}])_{\mathfrak{m}}/\mathfrak{q}$, then we have the following commutative diagram:

$$\begin{array}{ccc}
\hat{C} & \xrightarrow{\psi} & \hat{B} \\
\uparrow & & \uparrow \\
C & \xrightarrow{\varphi} & B
\end{array}$$

where ψ is induced by φ . By (b) and (c), φ is formally smooth, hence so is ψ . Since \hat{C} is excellent, ψ is regular by André's Theorem. Put $Q \cap \hat{C} = P$, then $P \cap C = (Q \cap B) \cap C = (0)$. Now C is an essentially finite type over A, therefore C is a P-ring by Theorem 2. Therefore \hat{C}_P is P. Since ψ is regular, \hat{B}_{φ} is P.

Now if P = regular, we have a stronger result as follows:

Proposition 5. Let A be a G-ring, and k and l be noetherian rings such that l is smooth over k. Then $S^{-1}(A \otimes_k l)$ is a G-ring.

This proposition is a special case of the following theorem:

Theorem ([7, Theorem 17] or [1]). Let $u: A \to B$ and $v: B \to C$ be formally smooth homomorphisms of noetherian local rings. Suppose that A is a G-ring and $\Omega_{B/A} \otimes_B (C/Q)$ is a separated C/Q-module for any $Q \in Spec(C)$. Then v is regular.

In fact, let $P \in \operatorname{Spec}(S^{-1}(A \otimes_k l))$ and $P \cap A = \mathfrak{p}$. We put $A = A_{\mathfrak{p}}$, $B = S^{-1}(A \otimes_k l)_P$ and $C = \hat{B}$. Then, by our assumption, A is a G-ring, and $A \to B$ and $B \to C$ are formally smooth homomorphisms. Moreover $A \to B$ is smooth, so $\Omega_{B/A}$ is a projective B-module. Therefore $\Omega_{B/A} \otimes_B (C/Q)$ is a separated C/Q-module for any $Q \in \operatorname{Spec}(C)$. Thus the assumption of the

above theorem is fulfilled. So $B \to C$ is regular, and $S^{-1}(A \otimes_k l)$ is a G-ring.

Remark. By Proposition 5, we have [1, Corollary 4.3]. We will generalize this result later.

Next proposition is about P-2:

PROPOSITION 6. Let P have NC. Then if A is P-2 and k and l are fields such that l is separably generated over k, $S^{-1}(A \otimes_k l)$ is P-2.

Proof. Let B be a separating basis of l over k and $S^{-1}(A \otimes_k l)[\underline{X}]/\mathfrak{p}$ be a finite extension domain over $S^{-1}(A \otimes_k l)$, where $\underline{X} = \{X_1, \dots, X_n\}$ are n-variables over $S^{-1}(A \otimes_k l)$ and $\mathfrak{p} \in \operatorname{Spec}(S^{-1}(A \otimes_k l)[\underline{X}])$. By Proposition 3, it is enough to prove that $S^{-1}(A \otimes_k l)[\underline{X}]/\mathfrak{p}$ is P-0.

Since \mathfrak{p} is finitely generated, there is an intermediate field K between k and l which satisfies the following three conditions:

- (a) K is finitely generated over k;
- (b) l is separably generated over K;
- (c) $(A \otimes_k K)[\underline{X}]$ contains a system of generators of \mathfrak{p} . Then $S^{-1}(A \otimes_k l)[\underline{X}]$ is smooth over $(A \otimes_k K)[\underline{X}]$. Put $\mathfrak{q} = \mathfrak{p} \cap (A \otimes_k K)[\underline{X}]$. Then from the definition of the field K, $\mathfrak{p} = \mathfrak{q}(S^{-1}(A \otimes_k l))[\underline{X}]$. So $S^{-1}(A \otimes_k l)[\underline{X}]/\mathfrak{p}$ is smooth over $(A \otimes_k K)[\underline{X}]/\mathfrak{q}$. Now since A is P-2 and K is finitely generated over k, $(A \otimes_k K)[\underline{X}]/\mathfrak{q}$ is P-2. Therefore $U = P((A \otimes_k K)[\underline{X}]/\mathfrak{q})$ is a non-empty open set in Spec $((A \otimes_k K)[\underline{X}]/\mathfrak{q})$. So the inverse image of U in Spec $(S^{-1}(A \otimes_k l)[\underline{X}]/\mathfrak{p})$ is a non-empty open set contained in $P(S^{-1}(A \otimes_k l)[\underline{X}]/\mathfrak{p})$. Thus $S^{-1}(A \otimes_k l)$ is P-2. Q.E.D.

Remark. We have not yet succeeded in proving the proposition under the weaker assumption that l is separable over k.

Proposition 7. If A is a universally catenary noetherian ring and l and k are fields, then $S^{-1}(A \otimes_k l)$ is universally catenary.

Proof. Similar to the proof of [2, Lemma (18.7.5.1)].

Summing up, if we assume that P = regular in particular, we get the following theorem:

Theorem 8. If A is a (quasi-)excellent ring and k and l are fields such that l is separably generated over k, then $S^{-1}(A \otimes_k l)$ is a (resp. quasi-) excellent ring.

Next, we make examples which satisfy the assumptions of the above Theorem.

LEMMA 9. Let A be a noetherian ring, k be a field contained in A, and l be a (not necessarily finite) algebraic field extension of k. Then if $A \otimes_k l$ is noetherian, $A[[\underline{X}]] \otimes_k l$ is noetherian where $\underline{X} = \{X_1, \dots, X_n\}$ is n-variables over A.

Proof. Similar to that of [4, (E3.1)].

PROPOSITION 10. Let A be a noetherian ring, k be a field contained in A, and l be a field extension of k satisfying $\operatorname{tr.deg}_k l < \infty$. Let B be a transcendence base of l over k. Then if $A \otimes_k l$ is noetherian, so is $S^{-1}(A[[\underline{X}]] \otimes_k l)$, where $\underline{X} = \{X_1, \dots, X_n\}$ is n-variables and $S = 1 + \underline{X}(A[[\underline{X}]] \otimes_k k(B))$.

Proof. Since $S^{-1}(A[[\underline{X}]] \otimes_k k(B))$ is a Zariski ring in the (\underline{X}) -adic topology by the definition of S, and $(A \otimes_k k(B))[[\underline{X}]]$ is the (\underline{X}) -adic completion of $S^{-1}(A[[\underline{X}]] \otimes_k k(B))$, the ring $(A \otimes_k k(B))[[\underline{X}]]$ is faithfully flat over $S^{-1}(A[[\underline{X}]] \otimes_k k(B))$. Therefore $(A \otimes_k k(B))[[\underline{X}]] \otimes_{k(B)} l$ is faithfully flat over $S^{-1}(A[[\underline{X}]] \otimes_k k(B)) \otimes_{k(B)} l \cong S^{-1}(A[[\underline{X}]] \otimes_k l)$.

Now since $A \otimes_k l$ is noetherian and l is algebraic over k(B), by Lemma 9, $(A \otimes_k k(B))[[\underline{X}]] \otimes_{k(B)} l$ is noetherian. Therefore $S^{-1}(A[[\underline{X}]] \otimes_k l)$ is noetherian. Q.E.D.

Remark. If $B = \phi$, each element of S is unit in $A[[\underline{X}]] \otimes_k l$. So $S^{-1}(A[[\underline{X}]] \otimes_k l) = A[[\underline{X}]] \otimes_k l$. This is the case of Lemma 9.

COROLLARY 11. Let k be a field and l be a field separably generated over k such that $\operatorname{tr.deg}_k l < \infty$. Denote a transcendence base of l over k by B. Put $S = 1 + \underline{Y}(k[\underline{X}][[\underline{Y}]] \otimes_k k(B))$ where $\underline{X} = \{X_1, \dots, X_m\}$ $(\underline{Y} = \{Y_1, \dots, Y_n\})$ are m-(resp. n-)variables over k. Then $S^{-1}(k[\underline{X}][[\underline{Y}]] \otimes_k l)$ is an excellent ring.

Proof. By Proposition 6, $S^{-1}(k[\underline{X}][[\underline{Y}]] \otimes_k l)$ is noetherian. By [5], $k[\underline{X}][[\underline{Y}]]$ is an excellent ring. Thus by Theorem 8, $S^{-1}(k[\underline{X}][[\underline{Y}]] \otimes_k l)$ is an excellent ring. Q.E.D.

Remark. This is the generalization of [1, Corollary 4.3].

§ 3. Base field reduction

In this section we consider a base field reduction.

PROPOSITION 12. Let A be a noetherian ring containing a field k, and l be a field separable over k. We assume that P satisfies the four axioms (but not NC). Then if $A \otimes_k l$ is a P-ring, so is A.

Proof. Let \mathfrak{m} be a maximal ideal of A. Since $A \otimes_k l$ is faithfully flat over A, there is a prime ideal M of $A \otimes_k l$ such that $M \cap A = \mathfrak{m}$. Then we have the following commutative diagram:

$$\widehat{A}_{\mathfrak{m}} \xrightarrow{\psi} (\widehat{A \otimes_{k}} l)_{M} \\
\varphi \uparrow \qquad \uparrow v \\
A_{\mathfrak{m}} \xrightarrow{u} (A \otimes_{k} l)_{M}$$

where u is the natural map and v, φ and ψ are induced by completions. Then since l is separable over k, u is regular. By the assumption, v is a P-homomorphism. Therefore $v \circ u = \psi \circ \varphi$ is a P-homomorphism. Now ψ is faithfully flat. Thus φ is a P-homomorphism by [6, n.1, Remark 3]. Q.E.D.

PROPOSITION 13. Let A be a noetherian ring containing a field k and l be a field extension of k. We assume that P satisfies NC. Then if $A \otimes_k l$ is P-2, so is A.

Proof. By Proposition 3, we assume that A is a domain, and we have only to show that P(A) contains a non-empty open set.

Let $\mathfrak p$ be an element of $\mathrm{Ass}(A\otimes_k l)$. Then $\mathfrak p\cap A=(0)$. Now $A\otimes_k l/\mathfrak p$ is P-2 by the assumption, so there is an element $t\in A\otimes_k l$ such that $P(A\otimes_k l/\mathfrak p)\supseteq D(t) = \phi$. Since $\mathfrak p$ is finitely generated, there is an intermediate field K between k and l such that K is finitely generated over k and $A\otimes_k K$ contains the element t and a system of generators of $\mathfrak p$. Put $\mathfrak q=\mathfrak p\cap (A\otimes_k K)$. Then $A\otimes_k K/\mathfrak q\to A\otimes_k l/\mathfrak p$ is faithfully flat, therefore $P(A\otimes_k K/\mathfrak q)\supseteq D(t)=\phi$.

Now we denote a transcendence base of K over k by $\underline{X} = \{X_1, \dots, X_n\}$. Since A is a domain, so is $A \otimes_k k(\underline{X})$. Hence $\mathfrak{q} \cap A \otimes_k k(\underline{X}) = (0)$, and $A \otimes_k k(\underline{X}) \to A \otimes_k K/\mathfrak{q}$ is a finite injective homomorphism. Therefore, by the generic flatness and the fact that a flat morphism of finite type is an open map, there is an element $s \in A \otimes_k k[\underline{X}]$ such that $P(A \otimes_k k(\underline{X})) \supseteq D(s) = \emptyset$. We put $B = A \otimes_k k[\underline{X}] \cong A[\underline{X}]$ and $C = A \otimes_k k(\underline{X})$.

Now for any $P \in D(s) \subseteq \operatorname{Spec}(B)$, put $Q = P \cap A$. Then $QC \in \operatorname{Spec}(C)$. Since $QC \cap B = QB \subseteq P$, the prime ideal $QC \in D(s) \subseteq \operatorname{Spec}(C)$. So C_{QC} is

P. Therefore A_Q is **P**, because $A \to C$ is flat and $QC \cap A = Q$. Since $A_Q \to A_Q[\underline{X}]$ is regular, $A_Q[\underline{X}]$ is **P**. So its localization $B_P \cong (A_Q[\underline{X}])_{PA_Q[\underline{X}]}$ is also **P**. Thus we have $P(B) \supseteq D(s) \neq \phi$. Now $\operatorname{Spec}(B) \to \operatorname{Spec}(A)$ is an open map, therefore P(A) contains a non-empty open set. This is what we want. Q.E.D.

REFERENCES

- [1] A. Brezuleanu and N. Radu, Excellent rings and good separation of the module of differentials, Rev. Roumaine Math. Pures Appl., 23 (1978), 1455-1470.
- [2] A. Grothendieck and J. Dieudonné, Éléments de Géométrie Algébrique, Ch. IV, Première Partie, Publ. IHES, No. 24 (1965), No. 32 (1967).
- [3] H. Matsumura, Commutative Algebra, Benjamin, New York (1970).
- [4] M. Nagata, Local Rings, Interscience, New York (1962).
- [5] P. Valabrega, On the excellent property for power series rings over polynomial rings, J. Math. Kyoto Univ., 15 (1975), 387-395.
- [6] —, Formal fibers and openness of loci, ibid., 18 (1978), 199-208.
- [7] N. Radu, Sur les algèbres dont le module des différentielles est plat, Rev. Roumaine Math. Pures Appl., 21 (1976), 933-939.

Department of Mathematics Nagoya University Nagoya 464, Japan