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ON AMPLE DIVISORS

LUCIAN BADESCU

Introduction

In this paper we are dealing with the following problem: determine
all normal (or smooth) projective varieties X over an algebraically closed
field k supporting a given variety Y as an ample Cartier divisor. In § 1
we assume Y = Pn~ι with n > 3 and show that such a normal variety X
is isomorphic to the projective cone over vs(Y), where s > 0 is the integer
determined by the equality

OY= O(s) and vs:P
n~ι -—> PN~1(N = (n + s " X

is the sth Veronese embedding oί Pn~\ A similar result is valid for Y =
Ps X Pι with s, t > 2. In the second section we prove the following
generalization of a result of Sommese ([13]). If Y = H(d) is a hypersur-
face of prime degree d in Pn+ί such that either n > 3, or else char (β) = 0
and H(d) is a generic surface in P 3 with d > 5, then Y can be contained
in a smooth projective variety X as an ample divisor only in one of the
following two cases: i) X is Pn+ί and the inclusion F c l i s just the
inclusion H(d) c Pn+\ or ii) X is a smooth hypersurface of degree d in
P π + 1 and Y is the intersection of X with a hyperplane. In the last sec-
tion we determine all smooth projective threefolds X with P2 (resp. P1 X P1)
as an ample divisor. Note that if char (k) = 0 the proofs are not so com-
plicated (in the case of Y = P2 the result being (well known and) contained
in § 1) because one applies the result of [2]. However, by the method of
lifting to characteristic zero we show that in our situation we can apply
[2] in positive characteristic as well.

The proofs of these results require Lefschetz type theorems in
Grothendieck's form ([7], [8], [2]). Throughout this paper k will be an
algebraically closed field of arbitrary characteristic and the notations and
terminology will be standard, unless otherwise specified.

Received April 25, 1980.

155



156 LUCIAN BADESCU

§ 1 . Normal projective varieties containing P n l (n > 3) or Ps X Pι

(s, t > 2) as an ample Cartier divisor

Let Y be an arbitrary connected smooth projective variety over k

and choose a projectively normal embedding i: Ycr—> Pm of Y (by a the-

orem of Serre such an embedding always exists). Denote by C(Y, i) the

projective cone in Pm+1 over i(Y). Then C(Y, ί) is a normal projective

variety containing i(Y) as an ample Cartier divisor.

EXAMPLES. 1) Take Y = Pnί with n > 2 and for every s > 0 consider

the s th Veronese embedding

vs:P
nl^—>PN-1 with i V = (

\ n — 1

Then ι;, is projectively normal and hence Pnί is an ample Cartier divisor

in the normal variety JSQ* = C(Pn~\ vs) such that the normal sheaf Npn-i)Xn

is O(s).= OP»-i(s). Moreover, Xf = P π .

2) Take Y = Ps X P* with s > 2 and £ > 2 and for every α > 0, 6 > 0

consider the Segre-Veronese embedding

χ
w i t h jy = /s + a\/t + b\ ̂

Then iafb is projectively normal and hence Y is an ample Cartier divisor

on the cone C(PS X P£, ία,δ) = Xfy such that the respective normal sheaf

if O(a,b)=pf{Ops{a))®pi{Opt{b))ip1 and p2 being the canonical projec-

tions of Ps X P\

THEOREM 1. Assume that n > 4 αwd ίftαί Y = P n - 1 is an ample Cartier

divisor on the normal projective variety X. Then if the normal sheaf NYtX

is isomorphic to O(s) (necessarily s > 0), X is isomorphic to X? and Y is

contained in X as in example 1 above. If n = 3 the same conclusion holds

provided that char (k) = 0. In particular, X is smooth if and only if s = 1,

i.e. X = P\

Proof. Let Sing (X) be the singular locus of X and set U = X —

Sing (X). Since Y is a smooth Cartier divisor on X, Y C U, and since Y

is ample, dim (Sing (X)) < 0, i.e. Sing (X) consists of at most a finite set

of closed points {xu , xh}.

By [7], expose X, Example 2.2 the pair (X, Y) satisfies the effective

Lefschetz condition, Leff(Z, Y). Since this condition is local along Ywe
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have also Leff (U, Y). If n > 4 we have H\0x{-mY)j0x{-(m + 1)Y)) =
H^Oi—ms)) = 0 for i — 1,2 and for every ra > 0. Hence by [7], expose
XI, theoreme 3.12 the natural map of restriction a: Pic (U)-> Pic (Y) = Z
is an isomorphism. If instead n = 3 and char (&) = 0 we have

IΓ(0z(-mY)l0A-(m + ί)Y)) = H\0(-ms)) = 0

for every zn > 0, and then apply the theorem of [2] (in a slightly modified
form) to deduce that a is injective and Coker (a) is torsion-free. Since
Pic (U) Φ 0 (OX(Y)/U £ Ou) and Pic (Y) = Z this yields that a is also an
isomorphism.

Therefore in both cases there is an invertible O -̂module L such that
L0OY= 0(1). For every m e Z put F ( m ) - ;*(LΘm), where : C7-^> X is
the canonical open immersion. The following statements hold:

a) F(m) is a coherent Ox-module and depth^ ((F(m))^) > 2 for every
meZ.

Indeed, the coherence of F{m) comes from [7], expose VIII, Corollary
VIΠ-Π-3. On the other hand, the canonical map F(m) ->jJ*(Fw) is (by
the very definition of F(m)) an isomorphism, and the second affirmation
follows from the exact sequence

0 > 0 mχ(F^)Xi) > Fw >jJ*(F^) > 0 HU(F^)Xi) > 0 .
ί=l i=l

b) F(ms) ^ Ox(mY) for every meZ.
Indeed, L®ms ̂  Ox{mY)jU because Ox(mY) ® Oγ = O(τns) and the map

a is injective. Applying y* to this isomorphism and taking into account
that depth (Ox.) > 2 (O <̂ is normal of dimension > 2) we get the conclusion.

c) H\F{m)) = 0 for every m < 0.
First choose t big enough so that Ox(tY) is very ample and consider

the embedding i:X<=—>P= P(Γ(X, Ox(tY)) such that i*OP(ϊ) = Ox(tY).

CLAIM. For every coherent 0^-module G such that depth^ (Gx) > 2
for every closed point xe X, H\G (x) Ox(qY)) = 0 for every q < 0.

Proof of the claim. Set G' = ^(G). For every closed point yeP —
i(X) we have clearly Hl(G'y) = 0. If y e i(X) is a closed point, by [5],
Corollary 5.6 we have Hl(Gy) = Ήl{Gy), and recalling the hypothesis the
last group is zero. Thus we may apply [7], expose XII, Corollary 1.3 and
deduce that H\X, G ® Ox(qftY)) = H\P, Gf ® <W)) = 0 for every qr < 0.
Also, denoting by Gr = G ® Ox(rY), r = 0,1, , t - 1 (Go = G), then
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Hι(X, Gr ® Ox{q'tY)) = 0 for q' < 0 (because for every closed point x e X

depth {(Gr)χ) > 2). Now let q be arbitrary and divide q = q't + r, with

0 < r < * - 1. The equality G®Ox(qY) = Gr ® Oz(tftY) and the above

discussion proves the claim.

Now in order to prove c) write m = qs + r, with 0 < r < s — 1. Since

OX(Y) is invertible on X, b) and projection formula yield

® L®«') = j*(L^ ® j*(Oz(qY))) = i

The statement of c) follows applying the claim to G — F(r\ r =

0,1, , s — 1 and taking into account a).

d) Let σ e Γ{X, F^) ^ Γ(X, OX{Y)) be such that divx (σ) = Y. Then

for every meZ there is the exact sequence on X

where the first map is multiplication by σ.

Indeed, the exact sequence

tensorized by F ( m ) yields the exact sequence

Since F(m) is invertible on U the map σ/U is injective, and since a(xt)

Φ 0 for every i = 1, , h, σ is injective everywhere.

Now (1) yields the exact sequence of cohomology (m e Z)

0 —-> Γ(Z, 2?<—>) - % Γ(Z, 2?<-0 —-> Γ(Y, O(m))

— • IΓ(X, F(m-S>) - ^ H'(X, F™) — • H\Y, O(m)) = 0 .

Thus for every meZ the map ψm is surjective. Thus from c) and

induction on m it follows that H\X, F(m)) = 0 for every meZ. Thus for

every m one gets the exact sequence

(2) 0 • Γ(X, F ( m- ! )) - % Γ(X, F(M)) • Γ(Y, O(m)) > 0 .

Set S=®Z=oΓ(XyFw) = ®2=Qr(U,L®«1). Then S is a graded *-

algebra, <7eSs and (2) yields the isomorphism of graded ^-algebras
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S/σS ^ 0 Γ(Y, O(m)) ^ k[Tu , Tn] (polynomial ring in n variables) .
m=0

Set S' = S ( s ), where S't = Sst for every t e Z. Then σ e S/ and

Choose tt e St such that tt modo S = 7^ and set σiu...,in = tl1 #n e Ss

= S[, where ix + + ίn = s and im > 0. Then σiu...tin satisfy the well

known Veronese equations

where im + Jm = em + /m, m = 1, , w.

Furthermore the images of {^....ίj in S'/σS' generate the graded k-

algebra S'/σS', and since σ e S(, it follows that σ and {σiu...iin} generate

S' as a graded ^-algebra.

In particular, S' = Θ~=o Γ(X, Ox(mY)) is generated by its part of degree

one. Since Y is ample on X, OZ(Y) results then very ample. Thus the

canonical map φr: X-+ P(Γ(X, OZ(Y))) (such that p?(O(l)) = OZ(Y)) is a

closed immersion. If in (2) we take m = s we get dim Γ(X, OZ{Y)) =

dim Γ(X, Ox) + dim Γ(Y, O(s)) = N + 1, where

Thus φγ(X) c P ^ and £>F restricted to Y is precisely the Veronese embed-

ding vs. In particular, Y is the intersection of X with the hyperplane

PN~\ It remains to be proved that φγ(X) is isomorphic to the cone Xf.

Set S" = k[Tu " ,TnY
s\ grade the polynomial ^-algebra S"[T] so

that if α e S7/ is an arbitrary homogeneous element then deg (aTm) =

deg(α) + m, and define the homomorphism of graded ^-algebras ψ : S"[T]

-> S' by ψ(Γ) = a and ψίϊ ϊ 1 Tt) = ̂ x,...,^, where iTO > 0 and i, +

+ in = s. The equations (3) ensure us that this definition is correct.

Since σiu...tin and σ generate S' as a ^-algebra, ψ is surjective. Also, the

dimension of S"[T] and S; are the same (namely n + 1) and these graded

algebras are integral domains. Therefore ψ is an isomorphism, which

proves that φγ(X) ^ X,n. Q.E.D.

Exactly in the same way one can prove the following theorem.

THEOREM 2. Assume that Y = Ps X Pι (with s > 2 cmd έ > 2) is α^
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ample divisor on the normal projective variety X. Then if the normal

sheaf NYfX is ίsomorphίc to O(a, b) (necessarily a > 0 and b > 0), X is

isomorphic to the cone Xfy (from Example 2 above). In particular, Ps X

P* cannot be contained in a smooth projective variety as an ample divisor.

Remark. The assumption about the normality of X in Theorem 1 or

Theorem 2 cannot be dropped. Indeed, consider the Veronese embedding

v2:P
2<=—>P5 and take the generic projection Y' of v2(P2) into P \ i.e. the

Veronese surface in P 4 . Then Yf is isomorphic to P 2, Yf is an ample

Cartier divisor on the cone C(Yf) c P 5 over Y', but since Y' is the pro-

jection of v2(P2) into P 4 , the vertex of C(Y') is not a normal point. Thus

C(Yf) cannot be isomorphic to any XI.

COROLLARY 1. i) Assume that Y= Pnl is an effective Cartier divisor

on the normal complete variety X such that Nγ>x = O(s) with s > 0, and

assume moreover that either n > 4, or else n = 3 and char (h) = 0. Then

there is a bίrational morphίsm f:X-+ X? such that f is an isomorphism in

a neighbourhood of Y and f(Y) = vs(Pn~ι).

ii) Assume that Y = Ps X Pι (s > 2, Z > 2) is arc effective Cartier

divisor on the normal complete variety X such that NYiX = O(a, b) with

a > 0 and b > 0. T&βλi ZΛere is a birational morphism f:X-^>XZιl such

that f is an isomorphism in a neighbourhood of Y and f(Y) = ia,b(Ps X PO

Proof Let us prove for example i). By [8], chapter III, Theorem 4.2

there is a birational morphism /: X-> X' such that / is an isomorphism

in a neighbourhood of Y and Y; = f(Y) is an ample Cartier divisor on X\

Since X is normal, we may assume that Xf is also normal. Then by

Theorem l Γ s X? such that F corresponds to υΛ(Pn~ι). Q.E.D.

COROLLARY 2. Assume that Y is as in Corollary 1 i) or ii), and let

Yc—>Xt (i — 1, 2) two closed immersions such that Xx and X2 are smooth

varieties of dimension equal to dim(Y) + 1 and NYtΣl = NYfXi is ample.

Then there is a birational map u:X1-^X2 which is an isomorphism on an

open neighbourhood of Y in X and induces identity on Y.

§ 2. A generalization of a result of Sommese

First we need the following extension to arbitrary characteristic of

a result of Kobayashi-Ochiai (see [11]). For the intersection theory of

line bundles needed in this section we refer to [10].



AMPLE DIVISORS 161

THEOREM 3 (Kobayashi-Ochiai). Let V be a complete Cohen-Macaulay

algebraic scheme of pure dimension t > 0 over k and L an ample invertίble

Oy-module such that (L'% = 1 and dim Γ(V, L) > t + 1. Then dim Γ(V, L)

— t+l and the canonical map φL: V-> P(Γ(V, L)) = Pι is a biregular

isomorphism.

Proof. First we prove that V is integral. Let Vu , Vn be the ir-

reducible components of V naturally regarded as closed subschemes of V

(see [10], p. 298). Then by loc. cit. Proposition 5 and Corollary 1 one has

(L'% = (L'%x + + (L'n%n, where L^L®OVi.

Since every Vt has dimension t and Lt is ample on Vu (L\l)Vi > 0 for

every i = 1, , n. Thus if V were reducible the above equality would

imply (L'ι)v > 2, a contradiction.

Thus V is irreducible. By loc. cit. Proposition 5 and Corollary 2 (p.

298) one has

(Π% = length ( O 7 | 6 ) . ( M \
•ed

where M = L ® OFred and ξ is the generic point of V. Thus length (OVίξ)

= 1, i.e. V is generically reduced. Now since V is Cohen-Macaulay and

generically reduced, [1], chap. VII, Proposition 2.2 shows that V is reduced

everywhere. Thus V is integral.

Let now sl9 , st+1 be t + 1 linearly independent section (over k) from

Γ(V,L) and A = divF (sf). Define the sequence of closed subsets of V

by Vί_< = Dj Π Π A for £ = 1, , t + 1. V,^ can be naturally en-

dowed with a structure of closed subscheme of V, i = 1, , t + 1. Then

one can easily prove as before that each Vt_t is an integral Cohen-

Macaulay scheme of dimension t — i and that there is a natural exact

sequence

0 > (sί9 - - , sd > Γ(V, L) > Γ(Vt.if L <g> OVtJ ,

where (s19 ',st) is the subspace of Γ(V9 L) generated by su , s t (see

[11] for details). From this point one gets the conclusion exactly as in

[11]. Q.E.D.

THEOREM 4. Let Y= H(d) be a hypersurface of Pn+1 (i.e. a complete

intersection of codimensίon one in Pn+1, not necessarily smooth) of degree
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d with d prime. Assume that one of the following conditions holds:

a) n > 3, or

b) char (k) = 0 and Y is a generic surface in P3 with d > 5.

Assume further that Y is embedded as an ample divisor in the protec-

tive smooth variety X. Then one has one of the following possibilities:

i) X is isomorphic to Pn+ί and the inclusion Y c X is just H(d) c
pn + l

ii) X is isomorphic to a smooth hypersurface of degree d in Pn+2 and

Y is the intersection of X with a hyperplane.

Proof. In case a) by Lefschetz's theorem we have Pic(F) = Z[Oγ(ΐ)].

Also, since Y = H(d) and dim (Y) = n > 3, H\Oγ{s)) = 0 for i = 1, 2 and

for every seZ; in particular, Hί{Ox{—mY)IOx{ — {m + 1)Y)) = 0 for i =

1,2 and for every m > 1. Thus we may apply Lefschetz's theorem to

(X, Y) and get that the map a: Pic (X) -> Pic (Y) is an isomorphism.

In case b) we may apply Noether's theorem (see [8], p. 182) and also

deduce that Pic (Y) = Z[OF(1)]. By [2] a is injective and Coker(#) is

torsion-free. Hence a turns out to be also an isomorphism.

Therefore in both cases there is an invertible Ox-module L such that

L <g> Oγ = OF(1). Further there is an integer r > 0 such that OX(Y) ^ L®\

Let σeΓ(X, OY(Y)) ^ Γ(X, L®r) be a section such that divx (σ) = Y. We

have

( L ) χ l / r ( L L n . = l / K L *. Y)x = l/r (L?) r

= l/r.(OF(l)*w)F = d/r , where LY =

In particular r divides d, and since d is prime one has two possibilities.

1) r=d, i.e. OX(Y) = Ifi*.
Then (4) gives (L'(n+1))γ = 1. On the other hand, exactly as in the

proof of Theorem 1 one shows that the sequence

0 > Γ(L®(1-*>) - % Γ{L) > Γ(OF(1)) > 0

is exact. Since d > 1 and L is ample Γ(L®(1~d)) = 0. Thus dim Γ(L) =

n + 2. Now Theorem 3 applied to V = I leads to case i).

2) r = 1, i.e. L ^ O*(y).

Again one deduces the exact sequence (for every meZ)

( 5 ) 0 > Γ(L®{m'X)) • Γ{L®m) • Γ(Oγ(m)) • 0 .

Denoting by S the graded /e-algebra Θ~=o Γ(X, L®m\ σeS, and by (5)
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S/σS ^ ®Z=0Γ(Y, Oγ(m)). Recalling that Y is a hypersurface in Pn+\ this,
last algebra is generated by its homogeneous part of degree one. Hence
S itself is generated by Sί = Γ(L), and in particular L is very ample on X

If in (5) we take m = 1 we get dim Γ(L) = dim Γ{OX) + dim Γ(OF(1)>
= rc + 3. Therefore the canonical map φ = φL\ X-+ P(Γ(L)) - Pn+Z is a
closed immersion. Since φ*(O(ϊ)) = L (taking into account that r = 1
and (4))

άegφ(X) = (O(iy^+1)^(X))P,+2 = (L^+1>)x = d .

The fact that φ(Y) is the intersection of <p(X) with a hyperplane of
Pn+2 is now clear. Thus case 2) leads to case ii). Q.E.D.

COROLLARY. Let Y be a hyperquadric in Pn+ί with n > 3. Then Y
can be an ample divisor on the smooth projective variety X if and only if
either X is isomorphίc to Pn+\ or to a smooth hyperquadric in Pn+\

Remark. If k = C the above corollary has been previously obtained
by Sommese in [13].

§3. Lifting to characteristic zero

Let k be an algebraically closed field of characteristic p > 0 and A
= W(k) the ring of Witt vectors on k, which is a complete discrete valua-
tion ring of characteristic zero, with residue field k and such that p
generates its maximal ideal. Let X be a projective smooth variety over
K One says that X has a lifting to characteristic zero if there is a pro-
jective smooth morphism /:#*-> Spec (A) whose closed fibre is isomorphic
to X. Then the generic fibre X/ of / is a projective smooth variety over
the quotient field kr of A.

Grothendieck proved in [6], expose III, theoreme 7.3 that a sufficient
condition for the existence of a lifting to characteristic zero of X is the
following "iP(Γr) = H\OX) = 0", where Tx = (Ωx/lcY is the tangent sheaf
of X.

Let now k be a field (not necessarily algebraically closed) and X a
smooth projective variety of dimension 3 over k. Let L be an ample in-
vertible Oz-module and a e Γ(X, L) a section such that Y = divz (σ) is
smooth over k. Then we have the following result which follows from [2].

PROPOSITION 1. Assume char (k) = 0. Then the natural map Pic (X)
->Pic(Y) is injectίve and its cokernel is torsion-free.
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LEMMA 1. Let k be an algebraically closed field of characteristic p > 0

and X, L, σ, and Y as above. Assume moreover:

i) X has a lifting to characteristic zero.

ii) H\OX) = 0 for ί = 1, 2.

iii) HXOy) = 0 for ί = 1, 2.

iv) H\L) = 0.
Then the map of restriction Pic (X) -> Pic (Y) is injectίve with cokernel

a torsion-free group.

Proof. Let /: 2£ -> Spec (A) be a lifting to characteristic zero of X

First we prove that the natural map of restriction Pic (&) —> Pic (X) is an

isomorphsm. Indeed, let $ be the formal completion of along X. Then

by Grothendieck's existence theorem (see [3], chap. Ill 5.4.1) the natural

map Pic iβ) -> Pic ($) is an isomorphism. It will be therefore sufficient

to show that the map of restriction Pic ($) —> Pic (X) is also an isomorphism.

Let 9£n be the closed subscheme of 9£ defined by the sheaf of ideals pn0sε.

In particular #\ = X An invertible θ£ -module is nothing but a sequence

(Ln)n>u where Ln in an invertible 0^-module, plus isomorphisms Ln+ί®

0&n = Ln. Then the map Pic ($) —• Pic (X) is precisely (Ln)n>ι -̂ —> Lx. In

order to see that this map is an isomorphism it will be sufficient to show

that for each n > 1 the map of restriction Pic (&n+ί) -> Pic (&n) is an iso-

morphism. But this follows from the standard exact sequence

0 >p«0Jpn+10v ^OX • O*. + ι >O*Λ

which together with hypothesis ii) yields the assertion.

In particular there exists an invertible O^-module S£ such that ££ ®

Oχ ^ L9 and by [3], chap. Ill 4.7.1 S£ is ample. Moreover, from the exact

sequence

Γ(&, se) — • Γ(X, L) — • iP(ar9 se) - ^ > &($?, &) — • H\x, L) = o

and Nakayama's lemma we deduce that the first map is surjective. In

particular, σ lifts to a section τ e Γ(β', ££). Set <& = div^ (τ) and g =

fl<3f: <W -> Spec (A). Then the closed fibre of g is Y, and hence g is a

smooth morphism. If Yf is the generic fibre of g, then Y' = divZ/ (τ/X')

is a smooth surface in X'. By Proposition 1 the map Pic (X') -> Pic (Y7)

is injective with cokernel a torsion-free group. In order to complete the

proof of Lemma 1 it will be therefore sufficient to show that there are

isomorphisms
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Pic (X') -^> Pic (X) and P i c ( F ) - ^ Pic (7)

making commutative the following diagram

Pic (X') > Pic (F)

Pic(X) >Fic(Y).

This fact is well known. For example we have firstly the isomorphism
Pic ( F ) - ^ Pic (^) defined by [Ml ^-> [AT], where M is an invertible
(Vmodule such that Mf\Yf ^ M. Such a Mf always exists because $/ is
a regular scheme and Yr is an open subset in &. This definition is correct
since the complement of Yf is Y and Y is defined as a closed subscheme
of W by the ideal pθ^, which is isomorphic as an O -̂module to Ow.
Secondly, by the first part of the proof the natural map Pic (#0 -> Pic (Y)
is an isomorphism. Q.E.D.

LEMMA 2. Assume that Y = P 2 (resp. y = P 1 x P1) is contained in
the smooth projective variety X as an ample divisor, where k is an alge-
braically closed field of arbitrary characteristic. Then the map of restriction
Pic (X) —> Pic (Y) is an isomorphism (resp. is injective and its cokernel is
a torsion-free group).

Proof. If char (k) = 0 this follows directly from Proposition 1 taking
into account (if Y = P2) that Pic (P2) = Z. Assume therefore char (k) > 0.
Then the conclusion will follow from Lemma 1 if we show that conditions
i)-iv) are satisfied by (X, L = OX(Y), σ, divx (σ) = Y). The verification of
conditions ii), iii) and iv) is not difficult (using the explicit computation
of the cohomology of P2 and P1 X P1 and the cohomological characteriza-
tion of ampleness) and is left to the reader.

In order to verify condition i) it will be sufficient (using [6], expose
III, theoreme 7.3) to show that H\TX) = 0 (the condition H\OX) = 0 being
contained in ii)). Consider the exact sequence (m e Z)

H\TX ® Ox(mY) ® Oτ) > H\TX ® Ox((m - 1) Y)) • H\TX ® Ox(mY)) .

Since Y is ample on X, H\TX ® Ox(mY)) = 0 for m > 0. Therefore
in order to prove that H\TX) = 0 it will be sufficient (via descending
induction on m) to see that

( 6) H\TX ® Ox(mY) ® Oy) = 0 for every m > 1 .
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Consider the exact sequence

H\TY ® Ox{mY)) • H\TX ® Ox(mY) <g> Oγ)

>H\Ox((m+l)Y)®Oγ)

(induced by 0 -* Tγ -> Tx ® Oγ -+ O^( Y) ® OF -> 0).

E F = P 2 then Oz(Y)(x) O r = O(s) with s > 0 (since Y is ample on

X). Then H\Ox((m + 1) Y) ® Or) = ίF(P 2 , O((m + 1)5)) = 0 for every m e

Z. On the other hand, the standard exact sequence on Y = P2

0 > Oγ • O(l)®3 > Tγ • 0

yields the exact sequence of cohomology

0 = H\0(ms + I)®3) > H\TY ® 0(ms)) • H\0(ms)) = 0 .

Therefore H\TY ® Ox(mY)) = H\TY ® 0(ms)) = 0. Now the exact

sequence (7) proves (6) if Y = P 2 .

If Y= P1 x P1 then OX(Y) <g)Oγ= O(a, b) with a > 0 and 6 > 0.

Then IP(Oz((m + 1) Y) ® OΓ) = ίFίP 1 X P 1, O((m + l)α, (m + 1)6)) = 0 for

every m > 0.

On the other hand, Tγ ^ 0(2, 0) Θ O(0, 2), and therefore

H\TY ® Oγ(mY)) = Hl(0(ma + 2, roδ)) Θ H\0{ma, mb + 2)) = 0 .

Again the exact sequence (7) proves (6) if Y= P 1 X P 1 . Q.E.D.

PROPOSITION 2. Assume that Y = P 2 is embedded as an ample divisor

in the smooth projective variety X. Then X is isomorphic to P 3 and Y is

contained in X as a hyperplane.

Proof. If char (k) = 0 this result is contained in Theorem 1. Thus

we may assume char (k) > 0. Since Pic (P2) = Z we may apply Lemma 2

and deduce that the map Pic(X)-> Pic(Y) is an isomorphism. Now the

argument is contained in the proof of Theorem 1. Q.E.D.

THEOREM 5. Assume that Y = P 1 X P 1 is embedded in the smooth pro-

jective variety X as an ample divisor. Then we have one of the following

possibilities:

i) X = P 3 and Y is a quadric in X.

ii) Xis isomorphic to a hyperquadric in P4 and Y is a hyperplane

section.

iii) There are α > 0 , 6 > 0 , c > 0 and s > 0 positive integers such

that a + b + c = 2s and the exact sequence of Opl-modules
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0 — • OP1 — • O(a) Θ 0(6) Θ 0(c) = E-^-> 0(s) Θ 0(s) = F—• 0

such that X is isomorphic to P(E) and Y = P(F) is embedded in X via

the surjection φ.

Proof. From Lemma 2 we deduce that the map

Pic (X)-^> Pic (Y) = ZXZ

is injective and its cokernel is torsion-free. Thus we have two possibilities:

a) Pic (X) = Z. Let L be an invertible Ox-module which is ample

and generates Pic (X). Then L ® Oγ = 0(s, t) with s > 0 and t > 0. Since

Coker (a) is torsion-free s and t are relatively prime integers. Writing

OX(Y) ~ L®r and ωx ^ L®d, we get easily from the adjunction formula that

s(d + r) = t(d + r) = - 2 , and thus s = t = 1.

Let σ e Γ(X9 OX{Y)) ^ Γ(X, L®r) be such that ά\vz (σ) = Y. The exact

sequence

0 • L® ( m " r ) - ^ L®m • O(m, m) > 0

yields the exact sequence (m e Z)

( 8 ) 0 > Γ(L®(m"r>) -ί-> Γ(L®m) > Γ(0(m, m)) • H(L^m~r)) = 0 .

Put S = θ ; = 0 Γ ( L ® w ) ; then S/σS ^ ®Z=QΓ(0(m, m)) is a graded A-

algebra generated by its part of degree one. On the other hand

(L'% = l/r.(L*2. Y)z - l/r (O(l, l) O(l, l)) r - 2/r .

Therefore r = 2 or r = 1.

a2) Case r = 2. If in (8) we take m = 1 we get dim Γ(L) = 4. Since

(L'3)x = 1 Theorem 3 implies X = P 3 and we get case i).

a2) Case r = 1. Then deg (σ) = 1 and since S/σS is generated by its

homogeneous part of degree one, the same is true for S. In particular

L is very ample. Again take m = 1 in (8) and get dim Γ(L) = 5. Thus

φL:X-+P(Γ(L)) = P 4 and since deg^L(X) = 2 we get case ii).

b) Pic (X) g Z X Z. Then the map Pic (X) - % Pic (Y) is an iso-

morphism. Therefore there are two invertible Ox-modules Lx and L2 such

that U ® OF s 0(1, 0) and L2 ® O r = 0(0,1). If OX(Y) ® Or = Ofa, 52) with

Si > 0 and s2 > 0 (F is ample on X), then since the map a is injective,

OZ(Y) ^ LfSl ® L®52. Let σ e Γ{OX(Y)) s Γ(LfSl ® L®52) be a section such
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that divx (σ) = Y. Then the exact sequence

0 > Ox((m - ΐ)Y) - ί U Ox(mY) > O(msu ms2) > 0

yields the exact sequence (exactly as in the proof of Theorem 1)

( 9) 0 > Γ(Ox((m - ΐ)Y)) -?-> Γ{Ox(mY)) • Γ(O(msu ms2)) • 0 .

Put S = Θ~=o Γ(Ox(mY)); then σ e S, and S/σS ̂  ®Z^Γ(Y, O(msu ms2))

is generated by its homogeneous part of degree one. Therefore S itself

is generated by Si and hence Y is very ample on X. If in (9) we take

/ n = l w e get

(10) •dim|Y| = (s1 + l)(s2 + 1).

If Sl = s2 = 1 then | Y\ = P 4 and X would be a smooth hypersurface

in P\ But then Lefschetz's theorem yields Pic (X) ^ Z, a contradiction.

Thus at least one s1 or s2 is > 1 .

Suppose sί > 1. Then the exact sequence

0 > Lfa~Sl) ® Lts* - % U > 0(1, 0) > 0

yields the exact sequence

0 • Γ(Lf (1'S1) ® Lf (- 2 )) > Γ(A) > Γ(O(1, 0))

Since 1 - sx < 0 and - β 2 < 0 we have ^(L? ( 1 " S l ) (x) Lf ("S2)) = 0 for

ΐ < 1. Indeed, H'iF® Ox(mY)) = 0 for i < 1 and m < 0 (with F = Lx),

and from the exact sequence

0 > jp® Ox((/?2 - 1)5T) > F® Ox(mY) • 0{m8ι + 1, ms2) > 0

we deduce for every m < 0 and ί < 1:

Oz((m - 1)10) > ff^F® Oz(mY)) > Harris, + 1, ms2)) .

By Kύnneth's formulae we get H^Oirns^ + 1, ms2)) = 0 for i < 1 and

m < 0, and the affirmation results by induction on m.

Now recalling (11) we get that the map of restriction Γ{Lύ -> Γ(O(1, 0))

is an isomorphism if sί > 1. In particular, for every Δ, Δf e\L^ (Δ Φ Δf)

we have Δ Π Δf (Ί Y = 0. Since Y is ample on X,ΔΓ) Δf is at most a

finite set of closed points. Since X is smooth we cannot have Δ Π Δr Φ φ

because otherwise
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3 == coding (Δ Π Δf) < codimx (Δ) + coding (Δf) = 1 + 1 =?= 2 .

Therefore Δ Π Δ' = φ. Thus the linear system \LX\ has no base points

and hence the corresponding map p = φ L l : X-* \L^\ = P1 (such that p*OPl(l)

^ Lx) is a morphism. Moreover, for every invertible Oz-module L, (L^ L)

= 0.
Now look at the equalities

1 - (0(1, 0) O(0, l)) r = (L,-!*. Y)z = s ^ L , ) + s2(LΓL;2) .

One deduces s^L^Ll2) = 1, i.e. s* = 1 and (L^L?) = 1. Set s t = s.

Let J e l L J be arbitrary. Then (02(YX2 J) = s2(L;3) + 2s(Ll2 L 2 ) +

(L rL;2) = (LI L;2) = 1. Therefore, denoting by M= OX{Y)®OΔ, we get

(M'2)j = 1, M is ample on J and Δ is a Cohen-Macaulay scheme of pure

dimension 2. Moreover, for every ί = 0,1, , s — 1 one has the exact

sequence (since ^ ® Ô  ~ OJ

0 > £pu-i-D (x) L 2 > L®(s-^ ® L2 > M > 0

and hence

0 > ΠLf^-v ® L2) > Γ(Lf (s~^ ® L2) > Γ(A0 .

CLAIM. Dim Γ(M) > 3.

Indeed, assuming the contrary we get

2 > dim ΓiLf^ ® L2) - dim Γ(Lf ^^"^ (g) L2) , £ = 0,1, , s - 1 ,

and therefore taking the sum:

(12) 2s > dim Γ(OX(Y)) = dim Γ(L2) .

But the exact sequence

0 • Lf (" s ) ~^> L2 > O(0,1) > 0

yields

0 = Γ(Lf (-s>) • ΓίW > Γ(O(0,1))

and thus dim Γ(L2) < % Therefore (12) becomes dim Γ(OX(Y)) < 2(s + 1),

or else dim | Y\ < 2s + 1, which contradicts (10). The claim is proved.

By Theorem 3 we deduce then that Δ ̂  P 2 and O/l) ̂  L2 ® Oj. Now

Hironaka has shown that in these circumstances p is the projection of

the projective bundle P(E) associated to a locally free OPi-module E of
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rank 3 (see [9], Theorem (1.8)). Moreover OX{Y) ®0Δς=L Lfs 0L2®OA^

L2®OΔ^. 0/1), and therefore we can take E = p*Ox(Y). Then OPm(ΐ) =

OX(Y) and the exact sequence

0 >OX • Ox( Y) > O(s, 1) > 0

yields

0 >p*Ox * OP1 >p*Ox(Y) = E

> A * 0 ( S , 1) = O(s) Θ O(s) > Rp*Ox = 0 ,

where px:P
ι X P1 -+ Pι is t h e first projection. In other words we get t h e

exact sequence of locally free Opi-modules

0 • OP1 >E > O(s) Θ 0(5) • 0 .

In particular deg (E) = 2s. By a theorem of Grothendieck (see [4] for k

= C, but the same result holds in arbitrary characteristic) there are three

integers a, b, c (uniquely determined up to a permutation) such that E =

0(ά) Θ 0(6) Θ 0(c). Finally, since OX(Y) is ample on X, E is ample on P\

and therefore α > 0, b > 0 and c > 0. In other words we get situation

iii). Q.E.D.

Remarks. 1) The case iii) of Theorem 5 really occurs. Indeed, we

shall construct an exact sequence as in case iii) with c = s, i.e. with a +

6 = s ( α > 0 , 6 > 0 and c > 0). It will be sufficient to construct a sur-

jection of the form ψ'\ O(a) Θ 0(6) —> O(a + 6) = O(s), because one can take

φ = φr 0 id o ω (and then taking the degrees one sees that Ker (φ) = OPi).

Let x0 and x1 homogeneous coordinates on P 1 and define φ\p, q) = xlp +

xΐq. We claim that Γ(φ'): Γ(0(a)) 0 Γ(O(6)) -> Γ(0(a + 6)) is surjective.

For, if ueΓ(0(a + 6)) = k[x0, xί]a+b is of the form u = Σ?=oδ α^f1"6"*, then

u = xb

op + xϊq, where p = Σt=o OntitfΓ16 Γ(0(α)) and # = 2]f4δ α . x j - ^ ^ 6 ^

e Γ(O(b)). Now since .Γ^O is surjective and O(a + 6) is generated by its

global sections, ψf is also surjective (and thus φ is surjective).

2) Note that the theorem asserting that Pn is the unique smooth

projective variety containing Pn~ι (n > 3) as an ample divisor was known

for n > 4 and char (k) arbitrary, and for n = 3 and char (k) Φ 3 (see [12]).

Added in proof. 1. Further results in connection with the problem

of ample divisors can be found in author's paper "On ample divisors: II",

Proceedings of the Week of Algebraic Geometry, Bucharest 1980, pp. 12-32,
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Teubner-Texte zur Mathematik, Band 40, Leipzig 1981. We would also
like to mention the paper of T. Fujita 'On the hyperplane section prin-
ciple of Lefschetz", J. Math. Soc. Japan 32 (1980) 153-169.

2. We are indebted to Professor A. Franchetta for informing us about
a classical result of G. Scorza, which, although stated in a different form,
turns out to be equivalent to our theorem 1 above.

3. Theorem 4 above can be also deduced from Mori's work [12].
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