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THE PRINCIPLE OF LIMITING ABSORPTION FOR

PROPAGATIVE SYSTEMS IN CRYSTAL OPTICS

WITH PERTURBATIONS OF LONG-RANGE CLASS

HIDEO TAMURA

§ 1. Introduction

The present paper is a continuation of [10] where we have proved the
principle of limiting absorption for uniformly propagative systems with
perturbations of long-range class. In this paper, we consider the Maxwell
equation in crystal optics as an important example of non-uniformly propa-
gative systems and, under the same assumptions on perturbations as in
[10], we prove the principle of limiting absorption for the stationary pro-
blem associated with this equation by using a way similar to that in [10].
We here restrict our consideration to a very special class of non-uniformly
propagative systems, but the method developed in this paper will be ap-
plicable to more general systems for which non-zero roots of characteristic
equations of unperturbed systems are at most double. For another works
on the spectral and scattering problems for non-uniformly propagative
systems with perturbations of short-range class, see [1], [5], [6], [7] and [8],
etc.

1.1. Notations. We first list up the notations to be used throughout
our entire discussion.

(1) We work exclusively in 3-dimensional euclidean space R*x with
generic point x = (x19 x2, x3). R] denotes the 3-dimensional space dual to
Rl and the generic point ξ in R3

ξ is denoted by ξ = (ξl9 ξ2, f3). We further
denote by x ξ the scalar product between x and ξ; x-ξ = ΣJJ=IX£J

(2) Ck denotes the ^-dimensional unitary space with the usual scalar
product (,). (In this paper, the notation (,) is used only for k = 6.)

(3) For a multi-index m = (mu m2, m3), m5 being a non-negative integer,
we denote by \m\ the length of m. We write dx = (3/3Xi, 9/9x2> 9/9*3)> Dx —
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(A, A, A), D, = - id/dxj (i = ^ = Ί ) and 3? = (dldxd^id/dxj^idldx^ for
m = (mu m2, m3). (We use the symbols m and π- to denote multi-indices.)

1.2. Functional spaces. We introduce the functional spaces in which

we work. We denote by L2 the Hubert space of square integrable func-

tions over R% and introduce the space L2t<x with weight a by L2>α = {/;

(1 + |x|2)α/2/e L2} (L2,o = L2). We further define the space U% as Lft = Σ

ΘL2,α, ^ summands, and the norm in this space is denoted by | |̂ fα.

1.3. Formulation of results. We shall formulate the results to be

obtained here with several assumptions. According to Courant-Hilbert [2],

the propagative system of crystal optics in homogeneous media is described

by

(1.1) (F X H)j - εβtE5 = 0 , (F X E)j + μdtHj = 0 , j = 1, 2, 3 ,

where E = \EU E2, E3) and H = *(HU H2, H3) are the electric and magnetic

field vectors, respectively, while εj9 εό > 0, and μ, μ > 0, are the dielectric

and magnetic permeability tensors, respectively. For simplicity, we assume

throughout this paper that μ = 1 and that

(1.2) εί > ε2 > ε3 .

(The case εt = ε2 or ε2 = ε3 can be dealt with similarly. In particular,

when ε1 = ε2 — e8, equation (1.1) describes a uniformly propagative system

in homogeneous isotropic media.)

Let Λ(DX) be the differential operator corresponding to F X

As is easily seen, ^(f)* = — Λ(ξ), Λ(ξ)* being the adjoint of Λ(ξ). Equation

(1.1) can be rewritten as a symmetric hyperbolic system for u = ι{ε\/2Ely

εyE2,εrE39Hί9H29Hz);

(1.3) - idtu = L0(Dx)u ,

where

(14)(1.4)

^̂ fc being Krocker's delta.
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The perturbed system associated with (1.3) which we investigate is

given in the following form:

(1.5) — ίdtu = L(x, Dx)u ,

where

16) L(x ξ)-(

M(x) = {ε3k(x)}jtk=h3 , N(x) = {μjk(x)}j>k=lf3 .

Here we make the following assumptions on M(x) and N(x):

(A.I) M(x) and N(x) are positive definite uniformly in x;

(A.2) There exists a constant δ, δ > 0, such that

(1.7) M * ) -

(1.8) \3?eJk(x)\ £ Cm(l + \x\)-^^ , \m\ ^ 1

(A.3) //jfc(x) also has the same properties as above with εβjk replaced by

((1.8) seems to be rather restrictive, but we remark below that (1.8) with

\m\ = 1 only is enough.)

Under the assumptions above, we see that the operator L = L(x, Dx)

defined by (1.6) has a natural self-adjoint realization (denoted by the same

symbol L) in Li%. The domain 3ι(L) is given by @(L) = {u ue L$, Lu e L$}.

Similarly, we denote by Lo the self-adjoint realization of LO(DX) defined

by (1.4) with S(L0).

We can now state the first result on the spectral properties of L. We

always assume that (A.I) ~ (A.3) are satisfied.

THEOREM 1.1. The eigenvalues of L are discrete with possible accumu-

lating points 0 and ±oo.

Next, we consider the following stationary equation associated with

(1.5):

(1.9) Lu - (λ ± iκ)u = f, 0 < K ^ 1 ,

with feL£>a9 a > 1/2, λ being the spectral parameter corresponding to the

time variable t Clearly, if K > 0, then there exists a unique solution u =

R(λ ± iιc)f = (L - (λ ± iιc))-χf such that u e U%. The second result can be

stated as follows:
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THEOREM 1.2. Assume that λ, λ 3? 0, is not an eigenvalue of L. Let

u = R(λ ± u)f be the solution to equation (1.9) with fe Li% a > 1/2. Then,

the following statements hold:

( i ) There exists a constant Ca independent of K, 0 < K ̂  1, such that

(ii) There exist bounded operators R(λ ± iff) from Li% to Lf^a defined

by

R(λ ± iθ)f = lim R(λ ± iκ)f

strongly in L^_a.

1.4. Reduction. In order to prove the results above, we make the

following reduction. By a simple transformation, equation (1.9) can be

reduced to

(1.10) LQu - (λ ± iκ)u - (λ ± i/c)E(x)u = /

with another feLi%, a > 1/2, (u being also another transformed function),

where

(1.11)

I6 being the 6 x 6 identity matrix. In view of (A.2) and (A.3), we see that

each component of E(x) converges to zero with order \x\~δ as |x| —> oo and

satisfies (1.8). To prove Theorem 1.2, it is sufficient to verify a similar

result for solutions to equation (1.10).

1.5. Remark. We conclude this section by making some comments

on assumption (A.2). As stated above, (1.8) in (A.2) is weakened. It will

be easily seen that the argument used in the proof can be also applied

to the case in which the perturbation M(x) is decomposed into M(x) =

Mx{x) + M2(x), where MJjc) satisfies (A.2) and M2(x) is of short-range class

(i.e. M2(x) satisfies (1.7) with δ > 1). Thus, for M(x) satisfying (1.7) and

(1.8) with 177iI = 1 only we define M^x) as

Mx{x) = <*>-3' f P((x - yXx}-r)M(y)dy , δ > γ > 0 ,

((xy = (1 + |Λ:|2)1/2) by use of the mollifier technique. Then, we see that

M&) satisfies (1.8) with another δ(δ = γ) and that Mx{x) can be written

in the above form. A similar decomposition is made for N(x).
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§2. Unperturbed propagative system

In this section, we state several properties of the unperturbed system

L0(f) (defined by (1.4)) which are necessary to the future argument.

2.1. Eigenvalues. According to [2] (pp. 602 ~ 607), the eigenvalues of

L0(ξ) are given as the roots of the equation

(2.1) p\p* - Ψ(ξ)P

2 + Φ(ξ)) = 0 ,

where

(2.2) Ψ(ξ) = εΓ\ξl + ξl) + ε Kζl + ξl) + ε^(ξl +

(2.3) Φ(ξ) = (ξl + ξl +

Hence, for ξ =̂  0, the matrix LQ(ξ) has a zero eigenvalue with double multi-

plicity and four non-zero eigenvalues;

(2.4) λ**® =

λ±2(ξ) = ±Vi(SΓ(f)- VX(f» , (λj = ί+i, j = 1, 2) ,

where

^ 0 ,

Kx = l/ε3 - 1/βt > 0 , ίΓ2 = l/βl - l/e3 < 0 , K, = l/ε2 - l/βl > 0 .

(The sign of Kj (1 <; j ^ 3) follows from (1.2).) Here we should note that

when ξ2 = 0 and VΣ& - VΊζξ, = 0 (or VΣfo + V^f, = 0), Z(?) = 0.
Therefore, ^/f) (j = 1, 2) are not smooth at such points. Summing up, we

have the following result.

LEMMA 2.1. ( i ) The eigenvalues of L0(ξ), ξ ^ 0, are enumerated so

that

Uζ) ^ US) > US) = 0 > λ_2(ξ) ̂  λ^ξ)

with relations λ.^ξ) = - λj(ξ) and λj(ξ) = λj(-ξ) (j = 1, 2).

(ii) λ^ξ) = λ2(ξ) at ξ satisfying X(ξ) = 0 and ί/f) (j = 1, 2) are not

smooth at such points.

(iii) Λ(f) + Λ(f) = Vy(f) + 2VW), Λ(?)Λ(f) - VΦ(S)
flence, 6oί/ι o/ ^(f) + A2(f) and Λ(f)^(f) are smooth in R] - {0}.
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(iv) - X) = ? U (λ - λβ U

2.2. Slowness surface. From now on, we fix λ so that λ > 0 (the case

λ < 0 can be treated similarly).

We define the surfaces Ξ3{λ)(j = 1, 2) as

Ξj(X) = {ξ; λ3(ξ) = *} .

Then, a short calculation shows that the two surfaces B^λ) and Ξ2(λ)

intersect with each other at the following four points:

(2.5) P±i =

P±2 = ( —

- ε2)/(εj - ε3) , 0 , ± — e , ) ^ - ε3)) ,

ε! — ε2)/(εj — ε3) , 0 , ± — ε^/fo — ε3))
LEMMA 2.2. (i) Ξj(X) (j = 1, 2), ^ > 0, are bounded closed surfaces, en-

closing the origin, (ii) Ba(X) are smooth except for the four points defined

by (2.5).

2.3. Unitary matrix. From now on, we fix one of the four points

defined by (2.5) and denote it by ξ0. (For example, we take p+ι as ζ0.) Let

0 be a small neighborhood of ξθ9 not containing the origin. We denote by

$±(ξ) and <o0(ξ), ξ e Θ, the 2-dimensional subspaces spanned by the eigen-

vectors corresponding to λ±1(ξ) and λ±2(ξ) and to the zero eigenvalues,

respectively. Then, we can find orthonormal bases {e{(ξ)}j=1)2, which span

£+(ξ) and which are smooth in Φ. Furthermore, it is easily seen from

definition that

(2.6) j = 1, 2 .

Similarly, we denote by {eί(ξ)}jamlt2 and {eJ

0(ζ)}j==lf2, ξeO, orthonormal bases

spanning <̂ _(?) and £0(ξ), respectively.

We define the 6 x 6 unitary matrix U0(ξ), ξe@, associated with the

orthonormal bases above so that

(2.7) A0(ξ) 0,

A.(ξ)

where
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(2.8) A±(g) =

a{k(ξ) = (L0(ξ)el(ξ) , e{(ξ)) , j , k = 1, 2 .

Here we should note that a{k(ζ) = 0, j ^ k, for ξ satisfying X(ξ) = 0. In

particular, at ξ = f0,

(2.9) α^fo) = αi2(fo) = Λ±1(?o) = λ±2(ξ0) = ± J .

§3. Weighted pseudo-differential operators

In this section, we introduce a class of pseudo-differential operators

and state several fundamental properties of these operators without proofs.

Roughly speaking, the class to be defined here satisfies relations dual to

the standard Hormander class SPtδ ([3]).

DEFINITION 3.1. We say that P(x, ξ) = {pj1c(x, £)},,*.,,„ (*, ξ) e Rl X E{,

belongs to Aβ

θ\
r

σ(#) (1 ̂  β > γ ^ 0, σ ̂  ^ + γ ^ 0), when the following con-

ditions are satisfied:

(a) P^OK, ?) is smooth in Rl X JR| and is rapidly decreasing in ξ to-

gether with Λ -derivatives of all order;

(b) |3?p,*(x, f)| ̂  ^ , . ( 1 + |f |)-*(1 + |Λ |)-( -inir> f o r any iV, iV> 0

(c) |9?3?Λ*(«, f)| ̂  ^ ^ , . ( 1 + |£|)-*(1 + |x|)"^-'w> , \m\ ̂  1 ,

(The constants 0 and σ are decaying rates of x-derivatives of zero and

first order, respectively.)

We say that a family of P(x, ξ ε) with parameter e belongs to Aβ

θ\
r

a(£)

uniformly in e, if the above constants CNtU and CN,n>m are taken inde-

pendently of ε.

We now define the pseudo-differential operator P = P(x, Dx) with

symbol P(x, ξ) e Aί\l(£) as follows:

Pu = (2ττ)-3 f eίx'ξP(x, ξ)u(ξ)dξ

for u(x) = ^u^x), , u£(x)) eS?,^ being the Schwartz space of rapidly

decreasing smooth functions, where ύ(ξ) is the Fourier transform of u(x);

u(ξ) — e~ίχtξu(x)dx, and the integration with no domain attached is taken

over the whole space.

DEFINITION 3.2. We say that P(x, Dx) belongs to OPAβ

θJσ{i\ when it
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is a pseudo-differential operator with symbol P(x, ξ) e Aζ\l(£).

In the future argument, we use frequently pseudo-differential operators

with symbols having compact support in ξ.

The next properties are fundamental to pseudo-differential operators

of class OPAβ

e\
r

a{ί). The proof of these results can be done almost in the

same way as in the Hormander class SPtδ9 so we omit it ([3], [4]).

PROPOSITION 3.1. ( i ) Let Pό(x, Dx) (j = 1, 2) be pseudo-differential

operators of class OPAβ

θ£σj(£). Then, the product P = PJ?2 is also a pseudo-

differential operator of class OPAβ

θ*a(f), where θ — Θί + Θ2 and σ = min (σj + θ2,

<?2 + #i)> ojid the symbol P(x, ξ) is expressed as P(x, ξ) = Px(x, ξ)P2(x, ξ) +

Q(x, ξ) with Q(x, ξ) e Aft(ί), p = a - γ.

(ii) Let P(x, Dx) be of class OPAβ

e\
r

σ{ί). Then, P*, P * being the ad-

joint of P in Li% is also a pseudo-differential operator of class OPAβ

θ\
7

σ(β)

and the symbol σ(P*)(x, ξ) is expressed as σ(P*)(x, ξ) = P*(x, ξ) + Q(x, ξ)

with Q(x, ζ) e AJ (^), p = σ — γ, where P*(x, ξ) is the adjoint matrix of

PROPOSITION 3.2. Let P(x, Dx) be of class OPAβ

θ\
r

σ(£). Then, P is a

bounded operator from L(

2% to Li%+Θ for any a. Furthermore, if P(x, Dx;ε)

belongs to OPAβ

θ\
7

σ(S) uniformly in ε, then P(x, Dx ε) is bounded uniformly.

% 4. Diagonalization

4.1. Decomposition. We fix θ, 0 < θ < 1, so that θ < δ for δ in (A.2).

Let E(x) be the symmetric matrix defined by (1.11) and let ejk(x) (j, k =

1, 6) be each component of E(x). Then, we can make the following de-

composition: For any ε > 0 small enough, there exists a constant R —

R(θ, ε) such that; (i) ejk(x) = ejk(x; ε) + ejk(x; ε), (ii) eJk(x; ε) = eik(x) for |* |

^ R and hence ejk(x; ε) is of compact support, (iii) \ejk(x; ε)| ^ ε(l + \x\)'φ

and \dΐejk(x;ε)\ £ εCm(l + |Λ:|)-(1 + | W | < ? ) for all x. We denote by E(x;ε) the

symmetric matrix with components ejk(x;ε); E(x;ε) = {ejk(x; ε)}i>fc=1>6.

We consider the following equation (see (1.10)):

(4.1) Lou - (λ + ifc)u -(λ + h)E(x; ε)u = / , 0 < K ̂  1 ,

with fe Z4fα, a > j . Our aim of this and the next sections is to reduce

(4.1) to an equation of the form like (3.1) in [10] through several steps.

To do this, we treat for the moment the equation (4.1) with tc = 0

(4.2) Lou - λu- λE(x; ε)u = f
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and assume that the solution u of (4.2) belongs to L$.

From now on, we fix the constant Θ with the meaning ascribed here

and set σ = 1 + θ (σ is also fixed).

4.2. Localization. Let ξ0 be the point fixed in subsection 2.3 (ξ0 = p+ί).

Let θ be a small neighborhood of ξ0, not containing the origin. (We fix

Θ throughout the remainder.)

Let ψ(ξ) be a non-negative smooth function supported in Θ such that

ψ(f) = 1 in a small neighborhood of fo We let ψ(Dx) operate on both

sides of equation (4.2) to obtain

(4.3) (Lo - λ - λE(x; ε))ψ(Dx)u = ψ(Dx)f + r(x; ε) ,

where r(x; ε) = λ[ψ(Dx), E(x; ε)]u, [, ] being the commutator. By decom-

position in 4.1 and by Proposition 3.1, the pseudo-differential operator

e-ιλ[ψ(Dx), E(x; ε)] belongs to OPAθ

σfa(6) uniformly in ε. Here we introduce

the following notation.

NOTATION 4.1. We denote by r(ε) = r(x; ε) all terms which are written

as r(e) = R(x, Dx; ε)u for the solution u of (4.2) with R(x, Dx;ε)e 0PAe

σ?σ(6)

such that the symbol ε~ιR{x, ξ ε) belongs to Aθ

σfσ(6) uniformly in ε.

According to Proposition 3.2, we see that

| r ( e ) | £ U ^ e C | κ | $ for any v ,

if ueU%.

4.3. Diagonalization. The next task is to transform (4.3) into an

equation of the diagonalized form. This transformation is made on the

basis of the lemma below (Lemma 4.1). To formulate this lemma, it is

convenient to introduce the following definition and notation.

DEFINITION 4.1. We say that P(x, ξ) defined on Rl X 0 belongs to

Aβ

μ\l(£;Θ), if φ(ξ)P(x, ξ) e Aβ

μ\l(£) for any smooth function φ(ξ) supported in

0.

NOTATION 4.2. For a vector-valued function v with 6-components, we

write v = '(v+ix), vo(x), v_(x)), where v±(x) = *(i;±1(x), v±2(x)) and vo(x) = ' ( ^ ( Λ ) ,

vQ2(x)). Roughly speaking, υ± and v0 correspond to the spaces δ± and £0

introduced in subsection 2.3, respectively. For given function v, we often

write v± — [v]± and v0 — [v]0 to denote the ±-components and O-components,

respectively.
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LEMMA 4.1. Let U0(ξ), ξ e Φ, be the unitary matrix introduced in (2.7)

and let A0(ξ) be defined by (2.7). Set L(ε) = L(x, ξ;λ,e) = L(x, ζ) - λ -

λE(x; ε), (x, ξ)eRz

xX Φ, for L(x, ξ) defined by (1.6). Then, for any ε > 0

enough, there exists a 6 X 6 matrix U(ε) = U(x, ζ λ, ε) swcΛ

m i?^ X (P. i/ere C7(ε), X(ε) = Z(x, f Λ, ε) αλid JS(ε) = R(x, ξ; λ, ε) Λαi e the

following properties:

(a) l?(ε) belongs to Aθ

σfσ(6; 0);

(b) X(ε) is of the following form:

0

o,
0

where X±(ε) and X0(ε) are 2 x 2 symmetric matrices and belong to

Ai:ϊ(2;tf);

(c) Ϊ7(ε) is represented in the form

U(e)= U0(ξ)+ U^ξ le)

with Ut(e) e A'fXβ; <D). Furthermore, U(ε) satisfies

with Rfe) e Al?β(6; Φ), I6 being the 6 X 6 identity matrix.

(d) ε-^ε), ε-'XM e"%(e), e"!/^) and e^B^e) 6eZon^ to the corre-

sponding symbol classes uniformly in ε.

We have proved a result similar to Lemma 4.1 in Appendix of [9],

where A0(ξ) was assumed to be diagonal. However, this lemma can be

also verified with a slight modification in exactly the same way as in [9],

so we omit the proof.

We now transform (4.3) into an equation of the diagonalized form.

Let χ(ξ) be a non-negative smooth function supported in Φ such that χ(ξ)ψ(ξ)

= ψ(ξ) for ψ(ξ) introduced at the beginning of subsection 4.2. We define

U(x,ξ;λ,ε)eAθ

0;°σ(6) as U(x, ξ; λ,ε) = χ(ε)U(ε) with C/(ε) in Lemma 4.1.

Similarly, we define Λ0(ξ), X±(ε) and X0(ε). We set

(4.4) v=ϋ(x,Dx;λ,ε)ψ(Dx)u.

Then, we have the next result.
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LEMMA 4.2. Let X+(ε) be as above and let v be defined by (4.4). Then,

v+ = [v]+ satisfies the equation

(4.5) (A+(DJ - λl2 + X+(x, Dx; λ, ε))υ+ = g + [r(ε)] +

with some r(ε), where A+(ξ) is defined by Λ+(ξ) = χ(ξ)A+(ξ) with A+(ζ)

given by (2.8) and I2 is the 2 x 2 identity matrix, while g is defined by

(4.6) g=[U(x,Dx;λ,ε)ψ(Dx)f]+.

v_ (resp. v0) satisfies a similar equation with A+(DX) and X+(ε) replaced by

A_(DX) and X.(ε) (resp. 0 and X0(e)).

The proof of this lemma is done by using Lemma 4.1 and by making

an easy calculation based on Propositions 3.1 and 3.2.

Here we should note that the equations for ι>_ and v0 can be easily

treated, since the symbols of pseudo-differential operators in these equations

are invertible in a neighborhood of the support of ψ(ξ) for ε small enough.

Thus, we consider the equation only for υ+ in the next sections.

§5. Transformation, I

In this and the next sections, we consider the equation (4.5) and trans-

form this into an equation of the desired form ((3.1) in [10]) through two

steps.

5.1 Change of the coordinates. We first introduce the new coordi-

nates (τ, -η) in JR| as follows:

(5.1) τ = (VK& + VK&WK , Vl = (VK& - VKzξs)lVK , V2 = ξ2,

where K3 (1 5g j ^ 3) are the constants defined in subsection 2.1 and K =

Kx + Kz. We write ζ = (r, η), η = (ηu η2). Then, there exists a constant

unitary matrix Π of size 3 x 3 such that ζ = Πξ. We further denote by

2 = ( £ , y), y = (yi, y2), the coordinates (in Rx) dual to ζ; z = Π*x. The

unitary matrix 77 induces naturally the one to one map (denoted by the

same symbol Π);(Πφ)(z,ζ) = φ(Πz, 77*ζ). For notational convenience, we

denote a representation in terms of the (z9 ζ) coordinates by the same

symbol as an original function which is represented in terms of the (x, ξ)

coordinates; φ(z, ζ) = (Πφ)(z, ζ) = φ(Πz, i7*ζ) for φ = φ(x, ξ). Clearly, Π is

a unitary map from L $ to itself and the symbol class Aζ$(4) defined in

section 3 is stable under this transformation.
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5.2. Preparations. Let f0 be the point fixed in subsection 2.3 (ξo=P+i)-

Then, f0 is represented in the ζ-coordinates as follows: ξ0 = (r0, 0, 0). (The

explicit expression for τ0 is not needed later.) We take the (fixed) small

neighborhood 0 of ξ0 in the form Θ = J X 42, where J is a small open

interval containing τ0 and β(c.RJ) is a small neighborhood of the origin

(0,0).

We state several simple facts which will be used in the later argument.

Let Ψ(ξ) (=Ψ(0) and Φ(ξ) (=<P(0) be defined by (2.2) and (2.3), respectively.

Then, we have

(5.2) x - ψ(ξ)λ2 + Φ(ξ) = c(r4 + Σ rfy\ xy-o, ζ e o,
.7=0

with some coefficients Γfy λ) (0<^j ̂  3) smooth in 42, C being a positive

constant. Furthermore, the right side of (5.2) is decomposed as

( 5 . 3 ) s + ΣΓλy;ty-<

= (τ2 - at(v; λ)τ + σ2(v; λ))(τ2 + σfy; X)τ + σfy; λ)) ,

where all the coefficients σfy X) and σό(η\X) (j = 1,2) are positive and

smooth in 42. Let tfy; X) (j = 1, 2), τx ^ r2, be the (positive) roots of the

equation

(5.4) τ>-σι(η;λ)τ + σt(r,λ) = 0.

Then, the surfaces defined by λj(ξ) — λ (j — 1, 2) are represented as τ =

τfy; X) in the (r, η) coordinates. Furthermore, using (iv) in Lemma 2.1 and

recalling the definition of A+(ξ), we have

( 5 5 ) det (A+(f) - λ) = α - Ji(£))tf - ^.(f))

= Z)(r, 9 ; ^)(τ2 - ^ ( ? ; λ)τ + σ2(V; X)) , ' ζ e 0 ,

where

(5.6) D(r9 Vf X) -

C being as in (5.2). Clearly, D(τ,η;λ) is positive and smooth in 0.

LEMMA 5.1. Let A+(ξ) (=A+(ζ)), ζ e 0, be the 2 X 2 symmetric matrix

defined by (2.8) and Zeί ai*(?) (=aί*(ζ) = a{k(τ, yj)) ( , ̂  = 1, 2) 6e the (j, k)-

component of A+(ξ). Let λj(ξ) (=λj(τ, η)) be the positive eigenvalues of L0(ξ)
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(defined by (2.4)). Let σj(η;λ) (j = 1,2) be as above. Then, the following

facts hold:

( i ) α?(r0, 0) + α2

+

2(τ0, 0) = 2λ at ξ0 = (r0, 0, 0);

(ii) α1

+

2(r,0) = α2

+

1(r,0) = 0 / o r τ 6 J ;

(iii) (9/3r)α(ro,O) + Λ(ro,O))>O;

(iv) ^(0;A) = 2r0.

Proof. Since λj(ξ0) = λ (j = 1, 2) by definition, (i) follows from (2.9)

at once. By our choice of the (r, η) coordinates, we easily see that λ^τ, 0)

= λ2(τ, 0) for τ eJ. Indeed, X(ξ) = 0 at such points, X(ξ) being as in (2.4).

Hence, the above fact follows immediately and (ii) is also verified. Since

**(£) 0 = 1> 2) are positively homogeneous of degree one and since τ is a

vector transversal to the surfaces defined by λ3(ξ) = λ (not smooth) at ξ = ξ0,

(iii) is easily verified. By a simple geometric consideration, we see that

the point (2τ0, 0, 0) lies on the surface defined by τ = σx{η\ X) and hence (iv)

follows at once.

5.3. The first step. The first step of transformation is based on the

following lemma.

LEMMA 5.2. Let A+(ξ) ( = A+(ζ)), ζeΦ, be defined by (2.8). Then, there

exist two 2 x 2 matrices S(ζ) and B(η) such that

(5.7) S(ζ)(A+(ζ) .- λI2)S(ζ) = τl2 - B(η) , ζ e Θ ,

I2 being the 2 x 2 identity matrix. Here S(ζ) and B(η) have the following

properties:

(a) S(ζ) is symmetric, inυertible and smooth in O\

(b) £(37) is symmetric and smooth in Ω, Θ = J X Ω.

The proof of this lemma is rather long, so we give it in section 7. We

admit the validity of Lemma 5.2 for the moment and continue the trans-

formation.

Let χ{ξ) (=χ(ζ)) be the function introduced in subsection 4.3. Let ω(η)

be a non-negative smooth function supported in Ω such that ω(η)χ(ζ) =

χ(ζ). We define the symbols S(ζ), V(ζ) and B(η) as S(ζ) - χ(ζ)S(ζ), V(ζ) =

χ(ζ)S(ζ)-1 and B(η) = ω(η)B(η), respectively, with S(ζ) and B(η) introduced

in Lemma 5.2. We further define Y+(z,ζ;λ,ε) as

(5.8) ?Λ*, ζ; λ, ε) = S(ζ)X+(z, ζ; λ, ε)S(ζ)

for X+(z, ζ;λ,ε) = X+(x, ξ',λ,ε) in equation (4.5). Here it should be noted
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that Y+(z, ζ λj ε) is symmetric and belongs to Aθ

θfσ(2). We set

(5.9) v+ = V(Dz)v+ = V(Dz)[U(z, Dz; λ, ε)ψ(Dz)u]+

for the solution v+ of equation (4.5). Then, we have the following result.

LEMMA 5.3. Let the symbols S(ζ), B{η) and Ϋ+(z,ζ;λ,ε) be as above.

Let v+ be defined by (5.9). Then, v+ obeys the equation

(5.10) (A - B(Dy) + Ϋ+(z, Dz; λ, ε))ΰ+ = S(D.)g + [r(e)] +

with some r(ε), where g is defined by (4.6).

Equation (5.10) is easily derived by letting S(DZ) operate on both

sides of (4.5) and by making use of Lemma 5.2. This is the equation

obtained through the first step.

§6. Transformation, II

6.1. Symbol class. To formulate the results obtained in this section,

it is convenient to introduce the new symbol class which is a subclass

of Aζ;7

μ(S) defined in section 3.

DEFINITION 6.1. We say that P(z, ζ) = {pjk(z, ζ)jfk=h£, ζ = (τ, η), belongs

to Bβ

v;
r

μ(£) (μ ^ v + γ ^ 0,1 ^ β > γ ^ 0), if the following conditions are

satisfied:

(a) P(z9ζ)eA!;l(ί);

(b) \3^pJk(z9ζ)\ ^ C0(l + |C|)-*(1 + |*|)-<"-'»ir> for any N;

(c) \dTdldn

vPjk(z, O| ^ Cm(l + |ζ|)-^(l + \z\Y^n\ \m\ ̂  1,

where the constants Co and Cm may depend on i, n and N.

We further define Bβ

v;
r

μ(£; Φ\ 0 = J x Ω, in the same way as Aξ«(£; 0)

was defined (Definition 4.1). In particular, we denote by Bβ;r

μ(£;Ω) the

subclass of Bί;r

μ(£; 0) such that P(z9 ζ) = P(z, τ, η) is independent of τ, r e J;

P{z,Q = P(zfV).

6.2. The second step. We fix γ so that 0 < γ < θ and set p = σ — γ

= 1 + 0 — f > l . (From now on, we use the constants γ and p with the

meanings ascribed here.) The second step is based on the following lemma.

L E M M A 6.1. Let B(η), η e Ω, be as in Lemma 5.2 and let Y+(ε) = Ϋ+(z, ζ ;

λ, ε) e Aθ

θfσ{2) be defined by (5.8). Then, there exist two 2 x 2 matrices P(ε)

= P(z, ζ;λ,ε) and Q(ε) = Q(z, η;λ,ε) such that
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P ( ε ) )(6.1) ( / z + P

= τl2 - B(?) + Q(ε) + R2(ε) ,

some i?2(ε) = i?2(2, ζ; λ9 ε) e Bθ

σ\
r

σ(2; Θ). Here P(ε), Q(ε) and R2(ε) have

the following properties:

(a) P(ε) ts symmetric and belongs to B9

θ\
r

σ(2; Θ). Furthermore, I2 + P(ε)

is invertible in Θ for ε small enough.

(b) Q(ε) is symmetric and belongs to B9

β\
r

σ(2; Ω).

(c) ε~1i22(ε), ε"xP(ε) and ε^Q(ε) belong to the corresponding symbol

classes uniformly in ε.

The proof of this lemma is rather long, so we give it in section 8.

We admit that Lemma 6.1 is valid and proceed to the transformation.

Let χ(ζ) and ω(η) be as before. We define the symbols T(ε) = f(z, ζ;λ,ε)

and W(ε)= W(z,ζ;λ,ε) as

Γ(ε) = χ(ζ)(I2 + P(z, ζ; λ, «)), W(ε) = χ(ζ)(I2 + P(z9 ζ; λ, ε))"1

with P(z, ζ λ, ε) introduced in Lemma 6.1. Clearly, T(ε) and W ε̂) belong

to Blιl(2). We further define the symbol A(ε) = A(t, y, η; λ, ε) as

(6.2) A(t, y, η; λ, ε) = ω(v)(-B(η) + Q(t, y9 v; λ9 ε))

for Q(ε) = Q(t, y, η λ, ε) introduced in Lemma 6.1. The symbol A(ε) has

the following properties:

(6.2.1) A(ε) is a 2 X 2 symmetric matrix;

(6.2.2) The (j, ̂ -component ajk(t, y,η\λ, ε) of A(ε) (j, k = 1, 2) has compact

support in η and satisfies the estimates

|3JM«, y, v; λ, «)l ^ ^,.(1 + |^|)^{i + ε(i + |*|)-<'- ̂ } ,
aAt, y,η;λ, ε)| ^ βC^^.^l + |7 |)-^(1 + |*|)-<* «> , \m\ ̂  1 ,

for any N, where the constants CN>n and CN>7rltn are independent of ε.

Next, we set

(6 3) w+ =

= W{z9 Dz; λ9 ε)V(Dz)[U(z9 Dz; λ9 ε)ψ(Dz)u]+

for v+ of equation (5.10). Then, we have the following result.

LEMMA 6.2. Let A(t9 y9η;λ9 ε) be defined by (6.2) and let w+ be as above.
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Then, w+ obeys the equation

(6.4) dtw+ + iA(t, y, Dv; λ, ε)w+ = ih + r,(β)

with some r^ε), where h is defined by

( 6 5 ) h = f(z,D,;λ,ε)S(Dz)g

( = f((z, D. λ, ε)S(D,)[ϋ(z, D, λ, ε)ψ(Dz)f]+)

for g defined by (4.6), while r^ε) satisfies the estimate

(6.6) \rM$+* ύ eCJu |£ /or any v ,

if the solution u to equation (4.2) belongs to L^v.

Equation (6.4) is derived by letting f (z, Ώz\ λ, ε) operate on both sides

of equation (5.10) and by making use of Lemma 6.1. This is the desired

equation and the transformation is now completed.

Now, we return to equation (4.1) with non-zero K. We make the same

transformation as (6.3) for the solution u to this equation;

(6.7) w+ = W(z, Dz; λ, ε)V{Dz)[U{z, Dz; λ, e)ψ(Dz)u]+ .

Then, by Lemma 6.2, ιυ+ satisfies the equation

dtw+ + iA(t, y, Dy; λ, ε)w+ = ih + r2(ε) ,

where h is defined by (6.5) with f = f+ ύ(Iβ + E(x; ε))u;

h = fx + iκf2 ,

U = f(z, Dz; λ9 ε)S{Dz)[ϋ(z9 Dz; λ, e)ψ(Dz)f]+ ,

Λ = Tfe Dz; λ, e)S(D.)[ϋ(z9 Dz; λ, e)(Jβ + E(z; ε))ψ(Dz)u]+ ,

and r2(ε) satisfies the estimate of the same type as (6.6). (Throughout the

remainder, we denote by r/e), j = 1, 2, , all terms satisfying the estimate

of the same type as (6.6).) Since the symbols f(z, ζ;λ,ε) and S(ζ) are

invertible in a small neighborhood of the support of ψ(ζ), /2 can be de-

composed into

U = S(Dz)
2w+ +g, + r,(β)

with some r3(ε), where gx is represented in the form

gί = G{z, Dz; λ, ε)[U(z, Dz; λ,

+ f(z, Dz; λ9 ε)S(Dz)[U(z, Dz; λ, ε)E(z; ε)ψ(Dz)u]+
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with some G(z, ζ;λ9ε) belonging to AJ;ϊ(2) uniformly in ε. Hence, by Pro-

position 3.2, gx e L $ and satisfies

(6.8) \gλ$

for C independent of ε. Summing up, we have the following result.

THEOREM 6.1. Let u be the U-solution to equation (4.1) with

a > J. Define w+ by (6.7). Then, w+ satisfies the equation

(6.9) dtw+ + iA(t, y, Dy; λ, ε)w+ + κS(Dz)
2w+ = if, - κgx + φ)

with some r4(ε), where fx e Lf\ is defined by

U = f(z, A ; λ, ε)S(D,)[ϋ(z, A ; I ε)ψ(Dz)f] +

and gi belongs to L£i and satisfies the estimate (6.8).

(6.9) is the basic equation corresponding to (3.1) in [10]. Once this

equation has derived, the proof of Theorems 1.1 and 1.2 is done exactly

in the same way as [10], so we omit it.

Finally, we note that an equation similar to (6.9) can be also derived

for another coordinate system (z, ζ) close enough to (z, ζ).

§ 7. Proof of Lemma 5.2

Proof of Lemma 5.2. For notational convenience, we write A+(ζ) as

(0,(0 = αϊ(r, η), alζ) = α?(r, η\ α(ζ) = dfc, η) = a%τ, η)).

Now, we put S(ζ) and Birj) as follows:

M, b(v)

We assume that all the components of S(ζ) and B(η) are real and hence

S(ζ) and B{η) are symmetric matrices. (Note that the component α(ζ) is

real.) Furthermore, for the moment, we assume that <S(ζ) is invertible in

0; *(0 = βi(Oβi(O - s(02 # 0. We multiply both sides of (5.7) by S{ζY*

from the right side and obtain

MQ, s(ζ) WcίO - I a(ζ) \
(7.1) W0, sz(ζ))\a(ζ), a2(ζ)-λ)

= (t-b1(η), -b{η) \(s2(ζ), -s(ζ)\
\~b(V), τ - blη))\- s(ζ), β,(0/'
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We take the determinant of both sides of (7.1). Then, in view of (5.5),

it is natural to assume that

(7.2) k(ζ) = D(ζ; λ)~v\ = D(τ, η; X)~^) ,

(7.3) 6 i ( ? ) + &.(?) = ^1(9; Λ ) ,

(7.4)

where D(ζ;X) is defined by (5.6) and σό(η\λ), j = 1, 2, are introduced in

decomposition (5.3). Equation (7.1) becomes four homogeneous linear equa-

tions for (Si(ζ)> $2(0, s(0). Using the relations (5.5) and (7.2) ~ (7.4), we see

after a short calculation that non-trivial solutions to these linear equations

are given by

8,(0 = F(Q{τ + (0,(0 - λ)E(ζ; X) - bfy)} ,

* ( 0 = F(ζ){τ + (0,(0 - X)E(C; X) - «?)} >

8(0 = - F(ζ)(a(ζ)E(ζ; X) + b(ηj) ,

with any function F(ζ), where we have set E(ζ; X) = D(ζ; λ)'ι/\

We now define the smooth function ρ(τj) (p(0) = r0), η e Ω, as the (unique)

root of the equation for r;

(7.5) 2τ + (0,(0 + a2(Q - 2X)E(τ, η;X) = σfy) .

It is easily seen that equation (7.5) has the desired root. In fact, if we set

G(r, rj) = 2r + (ax(0 + o2(ζ) — 2X)E(τ, η\ X) — σx(η), then it follows from Lemma

5.1 that G(r0, 0) = 0. Furthermore, using Lemma 5.1 again and recalling

the expression for D(τ, η\ X) defined by (5.6), we see that (3/9r)G(r0, 0) > 0.

Thus, the implicit function theorem shows the existence of the desired root

ρ(η), if Ω is taken small enough.

With P(ΎJ) defined above, we now determine bfy), b2(η) and b(τj) by

, η λ ) ,

= p(rj) + (<h(p(η)9 rj) - X)E(p(η\ η λ ) ,

= -a(p(η),η)E(p(η),η;X).

Here we note that we choose the neighborhood Θ — J X Ω so that p(η) e J

for ηβΩ. If we determine b3(η) (j = 1, 2) and b(η) as above, then we see

from Lemma 5.1 that 6j(0) = 62(0) = τ0 and 6(0) = 0. Furthermore, (7.3)

and (7.4) are satisfied. Indeed, (7.3) follows from the definition of p(η) and

(7.4) is verified by making use of (7.5) and (5.5).

Next, we define ^(ζ), t2(ζ) and t(ζ) as
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; λ) -

- X)E(ζ; X) -

= - {a(ζ)E(ζ; λ) + b(v)}l(τ - P(v)) .

These functions are well-defined and smooth in Θ, which follows from the

definitions of bό(η) (j = 1, 2) and b(η). Moreover, by Lemma 5.1, we have

that tfa) = t2(ζ0) * 0 and t(ξ0) = 0 at ξ0 = (r0, 0, 0). (In particular, t(ξ0) = 0

follows from (ii) in Lemma 5.1.) Hence, H(ζ)2 = ^(0^(0 - t(ζ)2 > 0 in 0.

Now, we determine Sj(ζ), s2(ζ) and s(ζ) by

8,(Q = VWi^U0IH(0 , 0' = i, 2), s(ζ) = -</mΓ%t(0IH(0 .

Then, Si(C), s2(ζ) and s(ζ) satisfy equation (7.1). (Take F(ζ) = VE(ζ;X)l

(τ - p(η))H(Q as F(ζ).) And Sl(ζ)s2(ζ) - s(ζf = E(ζ; X) = D(ζ; λ)-^\ Hence,

(7.2) is satisfied and S(η) is invertible in Θ. Thus, we can find S(ζ) and

B{η) with properties (a) and (b) and the proof is completed.

§ 8. Proof of Lemma 6.1

8.1. Preparations. Let B(η), η 6 Ω, be the 2 x 2 symmetric matrix

introduced in Lemma 5.2. The (j, j) and (j, k), j =̂  k, components of B(η)

are denoted by bfy) (j = 1, 2) and b(η), respectively. In the proof of Lemma

5.2, we have shown that

(8.1) 6,(0) = 6,(0) = τ0 , 6(0) = 0 .

For later use, we here set

bo(v) = i(bfy) + bfy)) , b(V) = KW7) " Wϊ»

We denote by kό(η) (j = 1,2), ηeΩ, the eigenvalues of B(η); kfy) ^

kiy) > 0. We see immediately that kx(η) = k2(η) only for η = 0 and that

(̂37) are smooth in β except for η = 0. We may choose the small neigh-

borhood (P = J χ β o f f 0 s o that β/37) € J for ηeΩ.

Let ωθ?) be as before. We set <φ, η) = ω(M(z}rη), (z) = (1 + \z\ψ\

where the constant M is fixed so large that the support of ω2(z9 rj) in η

is contained in Ω uniformly in z. We further set ω^z, η) = 1 — ω2(z, η).

We decompose .6(37) into B{η) = B^z, η) + B2(z, 37), where

(8.2) ft(*,) (
\ 0, 60(37)

(8.3) BJ&η) = ω
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We denote by hj(z9 η) (j — 1, 2) the eigenvalues of B^z, η); hx^h2> 0. As

is easily seen, hj(z,τ}) are given by

K{z, v) = 60(9) - <»i(z, ηWRvf + b(ηf ,

and hj(z, η) are smooth in R\ X Ω.

LEMMA 8.1. Let Bt(z9 η) and B2(z9 η) be as above. Let hs(z, η) (j = 1, 2)

be the eigenvalues of Bfaη). Then, the following statements hold: (i)

Afe ?) e Bl;l+r(2; Ω\ (ii) B2(z, η) e B)%r{2; Ω), (iii) hfa η) e BS;ϊ+r(l; Ω).

Proof Since b(η) = Θ(\η\) and 6(37) = O(\η\) as | ? | -> 0 by (8.1), (i) and

(ii) follow at once. For the proof of (iii), we note that cx\η |2 ^ b(η)2 + b(τjf

^ c2|^|2, which follows from the fact that the discriminant X(ζ) defined in

subsection 2.2 satisfies the same estimate as above as |^|—•(). Hence, (iii)

is easily verified.

LEMMA 8.2. Let hfaη) be as above. For given g(z,ζ) = g(zyτ,η)e

Bl;l(l; Θ) {\> ^ 0), it holds that:

(i) g&hfoηltieBl Kl Ω),
(ii) {g(z, τ, η) - g(z, h,(z, rj\ 9)}/(r - hx{z, η))

A similar result is also valid for h2(z, rj).

First, we should note that by our choice of 0 the two symbols above

are well-defined. The proof is easily done by making use of Lemma 8.1,

so we omit it.

The proof of Lemma 6.1 is done with the aid of the next lemma.

LEMMA 8.3. Let B^z, ζ) be the symmetric matrix defined by (8.2). Then,

for given symmetric matrix G(z, ζ) e Bθ

v;l(2; Φ) (v 2> θ)> there exist two 2 x 2

symmetric matrices P(z, ζ) and Q(z, η) such that

(8.5) P(z9 ζ)(τJ2 - B,{z, ζ)) + (τl2 - Bfa ζ))P(z, ζ) + G(z, ζ) = Q(z9 η) .

Here P(z, ζ) and Q(z, η) have the following properties:

(a) P(z, ζ) belongs to Bθ

v;l(2; 0);

(b) Q(z, η) belongs to Bt;l(2; Ω).

Furthermore, if ε~ιG{z,ζ\ε) belongs to Bθ

v;l(2;Θ) uniformly in ε, then

ε'xP{z,ζ\ε) and e~ιQ(z,η\ε) also belong to the corresponding symbol classes

uniformly in ε.
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8.2. Proof of Lemma 6.1. We first give the proof of Lemma 6.1, admit-

ting the validity of Lemma 8.3.

Proof of Lemma 6.1. We choose an integer K so large that Kγ > 1.

We put formally P(ε) and Q(ε) as follows:

Σ ^ Q« Σ
y-o j-o

We write P_ t = Q.t = J2. Here we determine P/ε) = P,(«, ζ; λ, ε) Qj(e)

Qj(z,η;λ,ε) to satisfy the following equations:

(8.6; 0) P0(ε)(τJ2 - B1(z; ?)) + (τ/2 - Bfa

PMτlz - BAz;,)) + (τl2 - Bfa η))Pj(e) = Q,

(8.6; j) + g
l

Furthermore, we require P/ε) and Qj(ε) to have the following properties:

(8.7; j) Pj(ε) is symmetric and e'Φ/β) belongs to Bθ//+^σ(2; Θ) uniformly

in ε, 0 ^ i ^ Z ;

(8.8; j) Q (̂ε) is symmetric and ε^Q/e) belongs to Bff//+9iσ(2; Ω) uniformly

in ε.

By Lemma 8.3, we can construct P/ε) and Q/ε) satisfying (8.6; j) ~ (8.8; j)

( O ^ j ^ K) inductively. If P/ε) and Qj(ε) are determined to satisfy (8.6; j)

and if P(ε) and Q(ε) are defined as above, then we have, recalling the

decomposition for B(η), that

where i?2(ε) = i?2(̂ > C; λ, ε) is expressed as

It is easy to see from (8.7; j) and (8.8; j) that ε~R2(ε) belongs to Bθ

σ\
r

σ(2;Θ)

uniformly in ε. Furthermore, it follows from (8.7; j) again that P/ε) = O(ε)
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and hence I2 + P(ε) is invertible in 0 for ε small enough. Thus, we can

construct P(ε) and Q(ε) with the desired properties (a) and (b) and the

proof is now completed.

8.3. Proof of Lemma 8.3. Finally we shall prove Lemma 8.3.

Proof of Lemma 8.3. For given G(z, ζ) = G(z, r, η), we write

nj* r\ - (2&(z> 0, g(z, 0ζ) \

(For brevity, we assume that g(z, ζ) is real-valued.) We use the following

notations for given k(z, η) and h{z,η):

K(Z, ζ;k) = L — {g(z, τ, η) - g(z, k(z, η\ η)} ,
τ - k(z, η)

H(z, ζ; Λ, k) = \—— {K(z, τ,v;k)- K(z, h(z, η), η; k)} .
τ - Hz, η)

(We assume that the symbols above are well-defined.) If k(z, η) and h(z, η)

belong to B\%r{l\Ω), it then follows from Lemma 8.2 that K(z, ζ k) and

H(z,ζ;h,k) belong to Bl;l(l;(D). In a similar way, we introduce the no-

tations Kj(z9 ζ; k) and Hj(z, ζ; h, k) for gj(z, τ, η) (j = 1, 2).

Now, we put P(z, ζ) and Q(z,η) as follows:

We assume that the components of P(z, ζ) and Q(£, η) are real-valued and

hence P(z, ζ) and Q(z, ̂ ) are symmetric matrices. Furthermore, we put

the components of Bfaη) as follows:

cfa η) = 60(27) + ωx(z, η)b(rj) ,

c(z, rj) = ωx(z, η)b(η) , (c, + c2 = 260) .

Then, (8.5) becomes linear equations for (pί9p2,p)9,

(8.9.1) (r - C^A - cp + gx = q,,

(8.9.2) (τ - c2)p2 - cp + g2 = q2,

(8.9.3) 2 ( r - bo)p -cPί-cp2 + g=q.

We eliminate p, and p2 from the above equations to obtain
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(8.10) 2(r - 60){r
2 - (Cl + φ + cxc2 - c2}p = Z(s, ζ) ,

where

- ft) + (τ - c1){q2 - g2)}

+ (r - d)(r - C2)((? - g) .

With the eigenvalues hs(z, rj) (j = 1, 2) of B1(z9 rj) (defined by (8.4)), (8.10)

can be rewritten as

(8.11) 2(τ - 6βXr - ht)(τ - h2)p = Z(z, ζ) .

As the first step, we require Z(z} ζ) to satisfy Z(z, bo(η), η) = 0. This implies

that

(8.12) cqι = c{ft(60) + q2 - g2(b0)} + (ct - bo)(q - g(b0)) ,

where we have set g(&0) = g(z, bo(η),η) (similarly for gό(b^)J = 1, 2). (By

our choice of the neighborhood 0 = J X Ω, these symbols are well-defined.)

We insert the expression (8.12) for cqx into (8.11) and obtain

(8.13) 2(τ - hd(τ - h2)p = Zι(z9 ζ) ,

where

Zt(z, 0 - Zfa τ, η)

= 2c(q2 - g2(b0)) + (r - c2)(q - g(b0))

- φ - cύKfa ζ; 60) + (r - cx)K2{z, ζ; 60)}

As in the first step, we set Zx(z, hx(z, η), η) = 0 and obtain, using the relation

h\ — (Cj + c2)hλ + CjC2 = c2, the expression for 2cq2;

(8 14)
{ - cJKAhr, b0) + (K - cdKfa; b0) + cK(hi; b0)} ,

where K(ht; b0) = K(z, hfa η\ η; b0) (similarly for 2Γ/Λ,; 60), j = 1, 2). We

insert (8.14) into (8.13) and obtain, using the relation (r — hx)(τ — h2) = τ2

~ fa + c2)τ + cxc2 — c2, that
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where

= Q ~ g(b0) - (r - h2)K(z, ζ; 60) - c&fa; b0) + K2(hx; b0)

+ cH(z, ζ; hu b0) + (τ - cjiϊ.fe ζ; Λ,, 60)

+ (r-c1)fl£(«,C;Λ1,6β)}.

Finally, setting Z2(z, h2(z, η), rj) = 0, we can determine q in the form

(8.15) q

with some S(z9 rj) eBθ

v;
r

σ(l; Ω) and hence q e Bθ

v;
r

σ(l; Ω). Furthermore, com-

bining (8.15) with (8.14) and (8.12), we can determine qx and q2 with the

desired properties. Thus, p = p(z, ζ) can be also determined and it belongs

to Bl:l(l;&).

Next, we use the relation (8.9.1) to determine p1# To do this, we have

to show that

cp(z, φ, η\ η) + qlz, η) - gfa Cx(z, η\ rj) = 0 .

However, this relation is readily verified by making use of (8.10). Similarly,

p2 can be also determined by using the relation (8.9.2). On the other hand,

we can easily show that (8.9.3) is satisfied for (pί9p29p) satisfying (8.9.1),

(8.9.2) and (8.10). Thus, we can construct P(z,η) and Q(z,η) with the

desired properties and the proof is now completed.
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