T. Kawasaki

Nagoya Math. J.
Vol. 84 (1981), 135-157

THE INDEX OF ELLIPTIC OPERATORS OVER V-MANIFOLDS

TETSURO KAWASAKI

Introduction

Let M be a compact smooth manifold and let G be a finite group acting smoothly on M. Let E and F be smooth G-equivariant complex vector bundles over M and let $P: \mathscr{C}^{\infty}(M ; E) \rightarrow \mathscr{C}^{\infty}(M ; F)$ be a G-invariant elliptic pseudo-differential operator. Then the kernel and the cokernel of the operator P are finite-dimensional representations of G. The difference of the characters of these representations is an element of the representation ring $R(G)$ of G and is called the G-index of the operator P.

$$
\begin{equation*}
\text { ind } P=\operatorname{char}[\text { kernel } P] \text { - char }[\text { cokernel } P] \tag{1}
\end{equation*}
$$

It is well-known that the G-index ind $P \in R(G)$ depends only on the homotopy class of the elliptic operator and, as Atiyah and Singer showed in [2], ind P is determined by the stable equivalence class $[\sigma(P)] \in K_{G}(\tau M)$ of the principal symbol $\sigma(P)$ viewed as the difference bundle over the tangent bundle τM. The Atiyah-Singer index theorem asserts that the value (ind $P)(g)$ is expressed by the evaluation of a certain characteristic class over the tangent bundle $\tau\left(M^{g}\right)$ of the fixed point set M^{g}.

$$
\begin{equation*}
\text { (ind } P)(g)=(-1)^{\operatorname{dim} M^{g}}\left\langle\operatorname{ch}^{g}[\sigma(P)] \mathscr{\mathscr { I }}^{g}(M),\left[\tau\left(M^{g}\right)\right]\right\rangle \tag{2}
\end{equation*}
$$

Here $\mathrm{ch}^{g}[\sigma(P)]$ is a class in the compactly supported cohomology group $H_{c}^{*}\left(\tau\left(M^{g}\right) ; C\right)$ expressed in the characteristic classes of the complex eigenvector bundles by the action of g on the stable vector bundle $\left[\left.\sigma(P)\right|_{z(M g)}\right]$. $\mathscr{I}^{g}(M)$ is a class in $H^{*}\left(M^{g} ; C\right)$ expressed in the characteristic classes of the real and complex eigenvector bundles by the action of g on the real vector bundle $\left.\tau M\right|_{M g}$. We call these classes over the fixed point set as the residual characteristic classes.

Next we consider the index of the operator $P^{G}: \mathscr{C}^{\infty}(M ; E)^{G} \rightarrow \mathscr{C}^{\infty}(M ; F)^{G}$

[^0]between G-invariant sections. By the orthonormality of irreducible characters, we have:
\[

ind $$
\begin{aligned}
P^{G} & =\operatorname{dim}\left[\text { kernel } P^{g}\right]-\operatorname{dim}\left[\text { cokernel } P^{g}\right] \\
& =\frac{1}{|G|} \sum_{g \in G}(\operatorname{ind} P)(g) \\
& =\frac{1}{|G|} \sum_{g \in G}(-1)^{\operatorname{dim} M^{g}}\left\langle\operatorname{ch}^{g}[\sigma(P)] \mathscr{J}^{g}(M),\left[\tau\left(M^{g}\right)\right]\right\rangle
\end{aligned}
$$
\]

The operator P^{G} can be viewed as an operator over the orbit space $G \backslash M$ in the following sense. The invariant section $s: M \rightarrow E$ is determined uniquely by the induced section $\bar{s}: G \backslash M-G \backslash E$ over the orbit space. So we may consider the invariant sections $\mathscr{C}^{\infty}(M ; E)^{a}$ as the sections over the orbit space $X=G \backslash M$. The operator P^{G} operates on these sections and its index ind P^{G} depends only on the G-equivariant homotopy class of the principal symbol $[\sigma(P)]$, which is considered to be a section over the orbit space $G \backslash \tau M$. Thus we consider P^{G} as an operator over $X=G \backslash M$.

We remark that the evaluation in (3) admits a purely local expression over X. Choose G-invariant metrics and connections on manifolds M and M^{g}, on bundles $\tau M, \tau\left(M^{g}\right)$ and $\nu\left(M^{g}\right)$ (the normal bundle of M^{g} in M) and on a stable bundle $\sigma(P)$. Then the evaluations of residual characteristic classes are given by the integrations of the corresponding characteristic forms. For each $x \in M$, we choose a small neighbourhood U_{x} so that the isotropy subgroup G_{x} acts on U_{x} and, for $g \in G, U_{x} \cap g U_{x} \neq \emptyset$ implies $g \in G_{x}$. Then the orbit space $G_{x} \backslash U_{x}$ is naturally identified with an open subset in X. A family $\left\{G_{x} \backslash U_{x}\right\}_{x \in M}$ defines an open covering of X. Choose a partition of unity $1=\sum \phi_{x}$ subordinate to this coverinig. Then we can rewrite (3) in the following form

$$
\begin{equation*}
\text { ind } P^{G}=\sum_{x \in M} \frac{1}{\left|G_{x}\right|} \sum_{g \in G_{x}}(-1)^{\operatorname{dim} V_{x}^{g}} \int_{\tau\left(U_{x}^{g}\right)} \phi_{x} \operatorname{ch}^{g}\left[\left.\sigma(P)\right|_{U_{x}}\right] \mathscr{I}^{g}\left(U_{x}\right) . \tag{4}
\end{equation*}
$$

The orbit space $G \backslash M$ is a typical example of V-manifold, and the above formula (4) can be given an interpretation which still makes sense for general V-manifolds.

The purpose of the present paper is to give an index theorem for elliptic operators over V-manifolds which generalize the formula (4).

Let X be a compact V-manifold. (For the precise definitions of V manifolds and V-bundles, see Kawasaki [6]). For each $x \in X$, there is a neighbourhood U_{x} and an identification $U_{x}=G_{x} \backslash \tilde{U}_{x}$, where \tilde{U}_{x} is a
neighbourhood of the origin in an effective real representation space of a finite group G_{x}. For each $y \in U_{x}$, choose small U_{v} so that $U_{y} \subset U_{x}$, then there is an open embedding $\phi: \tilde{U}_{y} \rightarrow \tilde{U}_{x}$ that covers the inclusion U_{y} $\subset U_{x}$. The choice of such ϕ is unique up to the action of G_{x} on \tilde{U}_{x}. Each ϕ determines an injective group homomorphism $\lambda_{\phi}: G_{y} \rightarrow G_{x}$ that makes ϕ be λ_{ϕ}-equivariant.

To express our theorem in cohomological terms, we have to assign to each V-manifold X a certain global geometric object over which the residual characteristic classes should be evaluated. If we look at (4), such an object must be a collection of all \tilde{U}_{x}^{g} s. Each \tilde{U}_{x}^{g} admits the action of the centralizer $Z_{G_{x}}(g)$ of g in G_{x}. If g and g^{\prime} are conjugate in G_{x}, then U_{x}^{g} and $U_{x}^{g^{\prime}}$ are diffeomorphic by the action of some element h in $G_{x}\left(g^{\prime}=h g h^{-1}\right)$. So we consider one element g for each conjugacy class (g) in G_{x}. For each point $x \in X$, let (1), $\left(h_{x}^{1}\right), \cdots,\left(h_{x}^{\rho x}\right)$ be all the conjugacy classes in G_{x}. Then we have a natural bijection

$$
\begin{aligned}
& \left\{\left(y,\left(h_{y}^{j}\right)\right) \mid y \in U_{x}, j=1,2, \cdots, \rho_{y}\right\} \\
& \cong \prod_{i=1}^{\rho_{x}} Z_{G_{x}}\left(h_{x}^{i}\right) \backslash \tilde{U}_{x_{x}^{i x}}^{i^{i}}
\end{aligned}
$$

So we define globally:

$$
\Sigma X=\left\{\left(x,\left(h_{x}^{i}\right)\right) \mid x \in X, G_{x} \neq\{1\}, i=1,2, \cdots, \rho_{x}\right\}
$$

Then ΣX has a natural V-manifold structure whose local coordinate coverings are $\tilde{U}_{x}^{h} \rightarrow Z_{G_{x}}(h) \backslash \tilde{U}_{x}^{h}(h \neq 1)$. The action of $Z_{G_{x}}(h)$ on \tilde{U}_{x}^{h} is not effective. The order of the trivially acting subgroup is called the multiplicity of ΣX in X at $(x,(h))$. In general, ΣX has many connected components of varying dimensions. Let $\Sigma_{1}, \Sigma_{2}, \cdots, \Sigma_{c}$ be the connected components of ΣX. Since the multiplicity is locally constant on ΣX, we may assign the multiplicity m_{i} to each connected component Σ_{i}.

On each local coordinate \tilde{U}_{x}^{h} over ΣX, we have the normal bundle $\nu\left(\tilde{U}_{x}^{h}\right)$ in \tilde{U}_{x} and the tangent bundle $\tau\left(\tilde{U}_{x}^{h}\right)$. On the normal bundle $\nu\left(\tilde{U}_{x}^{h}\right)$, we have the action of h. Then we have the eigenspace decomposition of $\nu\left(\tilde{U}_{x}^{n}\right)$

$$
\begin{aligned}
& \nu\left(\tilde{U}_{x}^{h}\right)=\underset{0<\theta \leq \pi}{\oplus} \nu_{h}^{\theta}, \\
& \begin{cases}h v=e^{i \theta} v & \text { if } v \in \nu_{h}^{\theta}(0<\theta<\pi), \\
h v=-v & \text { if } v \in \nu_{h}^{\pi} .\end{cases}
\end{aligned}
$$

The collection of these $Z_{G_{x}}(h)$-equivariant bundles $\nu_{n}^{\theta}(0<\theta \leqq \pi)$ and $\tau\left(\tilde{U}_{x}^{h}\right)$ form a real or complex vector V-bundles over ΣX. By choosing invariant connections, we have a collection of residual characteristic forms

$$
\mathscr{I}^{h}\left(\tilde{U}_{x}\right) \in \Omega^{*}\left(\tilde{U}_{x}^{h}\right) \otimes_{\boldsymbol{R}} \boldsymbol{C} .
$$

These forms define characteristic classes

$$
\mathscr{I}^{\Sigma}(X) \in H^{*}(\Sigma X ; C), \quad \text { and } \quad \mathscr{I}(X) \in H^{*}(X ; \boldsymbol{Q}) \quad(h=1) .
$$

By a V-bundle E over a V-manifold X, we mean a family $\left\{\left(G_{x}^{E}, \tilde{E}_{x} \rightarrow\right.\right.$ $\left.\left.\tilde{U}_{x}\right)\right\}$ of equivariant fibre bundles with surjective homomorphisms $G_{x}^{E} \rightarrow G_{x}$ and their attaching bundle maps $\{\Phi\}: \tilde{E}_{y} \rightarrow \tilde{E}_{x}$ for each inclusive pair U_{y} $\subset U_{x}$. We call V-bundle E to be proper if, for each $x \in X, G_{x}^{E}=G_{x}$. The attaching bundle maps $\{\Phi\}$ define a unique induced open embedding $\bar{\Phi}: G_{x}^{E} \backslash \tilde{E}_{y} \rightarrow G_{x}^{E} \backslash \tilde{E}_{x}$ of the orbit spaces of total spaces. These induced maps define the total space $E=\bigcup\left(G_{x}^{E} \backslash \tilde{E}_{x}\right)$ and the projection $E \rightarrow X$. E itself admit a structure of V-manifold.

Let $E \rightarrow X$ be a proper V-bundle. A section $s: X \rightarrow E$ is called a C^{∞} V-section if, for each $U_{x}, s \mid U_{x}: U_{x} \rightarrow E_{x}=G_{x} \backslash \tilde{E}_{x}$ is covered by a G_{x} invariant C^{∞} section $\tilde{s}_{x}: \tilde{U}_{x} \rightarrow \tilde{E}_{x}$. For a vector V-bundle E, we denote the set of all $C^{\infty} V$-sections by $\mathscr{C}_{V}^{\infty}(X ; E)$, which forms a vector space. On a vector V-bundle E, we can always construct a invariant linear connection, that is, a family of invariant connections on ($G_{x}^{E}, \tilde{E}_{x} \rightarrow \tilde{U}_{x}$) which are compatible with attaching bundle maps. Then the characteristic forms define a $C^{\infty} V$-section of the exterior power of the cotangent vector V bundle, which represent a cohomology class on X.

Let E and F be proper complex vector V-bundles over X. A linear $\operatorname{map} P: \mathscr{C}_{V}^{\infty}(X ; E) \rightarrow \mathscr{C}_{V}^{\infty}(X ; F)$ is called a (pseudo-) differential operator if locally it is covered by invariant (pseudo-) differential operators

$$
\tilde{P}_{x}: \mathscr{C}_{c}^{\infty}\left(\tilde{U}_{x} ; \tilde{E}_{x}\right)-\mathscr{C}^{\infty}\left(\tilde{U}_{x} ; \tilde{F}_{x}\right)
$$

(modulo smoothing operators), which are compatible with attaching maps. We call P to be elliptic if each \tilde{P}_{x} is elliptic. For an elliptic pseudodifferential operator $P: \mathscr{C}_{V}^{\infty}(X ; E) \rightarrow \mathscr{C}_{V}^{\infty}(X ; F)$, we have the V-index defined by:

$$
\begin{equation*}
\operatorname{ind}_{V} P=\operatorname{dim}[\text { kernel } P]-\operatorname{dim}[\text { cokernel } P] \tag{5}
\end{equation*}
$$

This index generalize ind P^{G} in (3) and (4).

Like G-equivariant case, the V-index depends only on the homotopy class of elliptic operators. The principal symbol $\sigma(P)$ of the operator P is a well-defined $C^{\infty} V$-section of the V-bundle $\operatorname{Hom}(E, F)$ over the total space $\tau_{V}^{*} X$ of the cotangent vector V-bundle. For P elliptic, the principal symbol $\sigma(P)$ defines a compactly supported difference V-bundle and the index $\operatorname{ind}_{V} P$ is determined by its stable equivalence class $[\sigma(P)]$. The stable equivalence classes of compactly supported proper difference vector V-bundles over $\tau_{V}^{*} X \cong \tau_{V} X$ form a group $K_{V}\left(\tau_{V}^{*} X\right) \cong K_{V}\left(\tau_{V} X\right)$. ($\tau_{V} X$ denotes the total space of the tangent vector V-bundle). Then V-index defines a homomorphism

$$
\begin{equation*}
\operatorname{ind}_{V}: K_{V}\left(\tau_{V} X\right) \longrightarrow Z \tag{6}
\end{equation*}
$$

An element $u \in K_{V}\left(\tau_{V} X\right)$ is represented by proper complex vector V bundles E and F over $\tau_{V} X$ and an isomorphism $\sigma: E \rightarrow F$ over $\tau_{V} X-X$. Then, choosing a suitable invariant connections, we have the residual Chern characters

$$
\operatorname{ch}^{h}(E)-\operatorname{ch}^{h}(F) \in \Omega^{*}\left(\tau\left(\tilde{U}_{x}^{h}\right)\right) \otimes_{R} C,
$$

and globally we have the classes

$$
\operatorname{ch}^{\Sigma}(u) \in H_{c}^{*}\left(\tau_{V}(\Sigma X) ; C\right) \quad \text { and } \quad \operatorname{ch}(u) \in H_{c}^{*}\left(\tau_{V} X ; \boldsymbol{Q}\right) \quad(h=1) .
$$

In this framework, we can state our theorem
Theorem. Let X be a compact V-manifold. Then, for $u \in K_{V}\left(\tau_{V} X\right)$, we have:

$$
\begin{align*}
\operatorname{ind}_{V}(u)= & (-1)^{\operatorname{dim} X}\left\langle\operatorname{ch}(u) \mathscr{I}(X),\left[\tau_{V} X\right]\right\rangle \\
& +\sum_{i=1}^{c} \frac{(-1)^{\operatorname{dim} \Sigma_{i}}}{m_{i}}\left\langle\operatorname{ch}^{\Sigma}(u) \mathscr{I}^{\Sigma}(X),\left[\tau_{V} \Sigma_{i}\right]\right\rangle \tag{7}
\end{align*}
$$

As a special case of this theorem, we get the following results:
I) (Kawasaki [6]) Let X be a compact oriented V-manifold of dimension $4 k$. As a topological space, X is an oriented rational homology manifold. The signature $\operatorname{Sign}(X)$ of X is defined by the signature of the non-degenerate symmetric bilinear form on the middle dimensional cohomology group $H^{2 k}(X ; \boldsymbol{Q})$ given by the cup product. Using de Rham cohomology, we can represent $\operatorname{Sign}(X)$ as the V-index of the signature operator $D_{+}: \Omega_{V}^{+}(X) \rightarrow \Omega_{\bar{v}}^{-}(X)$ over V-manifold X. Then we have:

$$
\operatorname{Sign}(X)=\langle L(X),[X]\rangle+\sum_{i=1}^{c} \frac{1}{m_{i}}\left\langle L^{\Sigma}(X),\left[\Sigma_{i}\right]\right\rangle
$$

The classes $L(X)$ and $L^{\Sigma}(X)$ are defined locally by the residual L-class $L^{h}\left(\tilde{U}_{x}\right)$, as we have defined $\mathscr{I}(X)$ and $\mathscr{I}^{\Sigma}(X)$.
II) (Kawasaki [7]) Let X be a compact complex V-manifold and let $E \rightarrow X$ be a holomorphic vector V-bundle. Then X admits a natural structure of an analytic space and the local holomorphic V-sections of E define a coherent analytic sheaf $\mathcal{O}_{V}(E)$ over X. The arithmetic genus $\chi(X ; E)$ is defined by:

$$
\chi(X ; E)=\sum_{i=1}^{\operatorname{dim} X}(-1)^{i} \operatorname{dim}_{C} H^{i}\left(X ; \mathcal{O}_{V}(E)\right) .
$$

Then $\chi(X ; E)$ is represented by the V-index of the Dolbeault complex over the V-manifold X with coefficients in E. We can apply our theorem and we have:

$$
\chi(X ; E)=\langle\mathscr{T}(X ; E),[X]\rangle+\sum_{i=1}^{c} \frac{1}{m_{i}}\left\langle\mathscr{T}^{\Sigma}(X ; E),\left[\Sigma_{i}\right]\right\rangle .
$$

The classes $\mathscr{T}(X ; E)$ and $\mathscr{T}^{\Sigma}(X ; E)$ are defined locally by the residual Todd class with coefficients in E.

The proof that we adopt here is completely different from those in the above two reports [6] and [7]. As we have remarked in [6], every V manifold X is presented as the orbit space of a smooth G-manifold \tilde{X} with only finite isotropy subgroups and with the trivial principal orbit type. We may choose such (G, \tilde{X}) with G compact and connected. Let P be an elliptic operator over X. Then we can lift the principal symbol $\sigma(P)$ considered as a difference V-bundle over $\tau_{V} X$ to a G-equivariant difference bundle over $\tau_{G} \tilde{X}$, the space of tangent vectors orthogonal to the orbits of G. The lifted symbol determines up to homotopy a transversally elliptic operator \tilde{P} over \tilde{X} relative to G. Then the V-index $\operatorname{ind}_{V} P$ is equal to the evaluation ($\left.\operatorname{ind}^{G} \tilde{P}\right)\left(1_{G}\right)$ of the distributional index $\operatorname{ind}^{G} \tilde{P}$ by the unit function over G.

For the distributional index of transversally elliptic operators, we refer to Atiyah [1]. We use two main results of [1]. One result is an expression of $\operatorname{ind}^{T} P$, for a transversally elliptic operator P over a manifold M relative to a toral action with only finite isotropy subgroups. The value (ind $\left.{ }^{T} P\right)\left(1_{T}\right)$ is written by the evaluation of the equivariant residual characteristic classes over the orbit spaces $T \backslash \tau_{T} M^{h}\left(h \in T, M^{h} \neq \phi\right)$ (including
$h=1$). By a direct translation, this formula gives the formula (7) in our theorem, when the V-manifold X has the form $X=T \backslash M$. Another result is a reduction formula $\left(\operatorname{ind}^{G} P\right)\left(1_{G}\right)=\left(\right.$ ind $\left.^{T}([\bar{\partial}] \otimes P)\right)\left(1_{T}\right)$, for a compact connected Lie group G, where T is a maximal torus of G and [$\bar{\partial}]$ denotes the Dolbeault complex over the flag manifold G / T.

Combining these two results, we get an expression of the V-index using the evaluation of characteristic classes over an auxiliary V-manifold $T \backslash \tilde{X}$ and its singularities. This new V-manifold $T \backslash \tilde{X}$ is a fibration (with singularities) over X with generic fibre G / T. We apply the Gysin homomorphism (the integration over the fibre) to these characteristic classes. Then we get classes over the V-manifold X and its singularities. To deduce (7), we need a formula on the equivariant residual Todd classes over the flag manifold G / T. This formula is a generalization of the following result in Borel-Hirzebruch [5].

Let G be a compact connected Lie group and let T be a maximal torus of G. We fix a G-invariant complex structure on the flag manifold G / T. Consider the fibration $\pi: B T \rightarrow B G$ of classifying spaces with fibre G / T. Its bundle along the fibre is a complex vector bundle over $B T$. We denote by $\mathscr{T}_{G}(G / T)$ the Todd class of this bundle. (This class is the G-equivariant Todd class of the complex G-manifold $G / T)$. Then Borel and Hirzebruch proved the following:

Theorem (Borel-Hirzebruch [5]). Let $\pi_{1}: H^{* *}(B T ; \boldsymbol{R}) \rightarrow H^{* *}(B G ; \boldsymbol{R})$ be the Gysin homomorphism (the integration over the fibre). Then we have:

$$
\begin{equation*}
\pi_{!} \mathscr{T}_{G}(G / T)=1 \in H^{* *}(B G ; \boldsymbol{R})=H_{G}^{* *}(p t ; \boldsymbol{R}) \tag{8}
\end{equation*}
$$

where $H_{G}^{* *}$ denotes the completed equivariant cohomology group for G-spaces.
Let $h \in T$ be an element. The action of h on G / T is holomorphic. So the fixed point set $(G / T)^{h}$ is a complex submanifold (non-connected) with the holomorphic action of the centralizer $Z_{G}(h)$. The tangent bundle τ_{h} and the normal bundle ν_{h} are the $Z_{G}(h)$-equivariant complex vector bundles. Let $\nu_{h}=\oplus \nu_{h}^{\theta}$ be the eigenspace decomposition by the action of h. Then we define the equivariant residual Todd class by:

$$
\begin{aligned}
\mathscr{T}_{G}^{h}(G / T)= & \mathscr{T}_{Z_{G}(h)} \prod_{0<\theta<2 \pi} \mathscr{T}_{Z_{G}(h)}^{\theta}\left(\nu_{h}^{\theta}\right) \\
= & \mathscr{T}\left(E Z_{G}(h) \times_{Z_{G(h)}} \tau_{h}\right) \prod_{0<\theta<2 \pi} \mathscr{T}^{\theta}\left(E Z_{G}(h) \times_{Z_{G(h)}} \nu_{h}^{\theta}\right) \\
& \in H_{Z_{G}(h)}^{* *}\left((G / T)^{h} ; C\right)=H^{* *}\left(E Z_{G}(h) \times{ }_{z_{G(h)}}(G / T)^{h} ; C\right) .
\end{aligned}
$$

The base space $E Z_{G}(h) \times_{Z_{G(h)}}(G / T)^{h}$ is a fibration over $B Z_{G}(h)$ with the fibre $(G / T)^{h}$. Then we have the Gysin homomorphism $\pi_{1}: H_{Z_{G}(h)}^{* *}\left((G / T)^{h} ; C\right)$ $\rightarrow H_{Z_{G}(t)}^{* *}(p t ; \boldsymbol{C})=H^{* *}\left(B Z_{G}(h ; C)\right.$.

Theorem. The Gysin homomorphism of the equivariant residual Todd class is given by:

$$
\begin{equation*}
\pi_{!} \mathscr{T}_{G}^{h}(G / T)=1 \in H^{* *}\left(B Z_{G}(h) ; C\right)=H_{Z_{\sigma}(h)}^{* *}(p t ; C) \tag{9}
\end{equation*}
$$

If we put $h=1$, we recover (8). The proof of this formula is straightforward. The same technique as in Borel-Hirzebruch [4] is applicable. We can express $\pi_{!} \mathscr{T}_{G}^{h}(G / T) \in H^{* *}\left(B Z_{G}(h) ; C\right) \subset H^{* *}(B T ; C)$ in the power series in the roots of the Lie group G. Then we deduce our formula from the Weyl's relation on the roots of G.

§ 1. Distributional index and V-index

In this section we summarize the results in Atiyah [1] that we need and we shall show the relation between the distributional index of transversally elliptic operators and the V-index of elliptic operators over V manifolds.

Let G be a compact Lie group and let M be a compact smooth G manifold without boundary. We choose a G-invariant Riemannian metric on M and we identify the cotangent bundle $\tau^{*} M$ and the tangent bundle τM. We define a subset $\tau_{G} M$ in τM as the set of all the tangent vectors that are orthogonal to the orbits of G.

Let E and F be G-equivariant smooth complex vector bundles over M and let $P: \mathscr{C}^{\infty}(M ; E) \rightarrow \mathscr{C}^{\infty}(M ; F)$ be a G-invariant pseudo-differential operator of order m. By choosing invariant metrics and invariant connections on E and F, we have the space of Sobolev sections $\mathscr{H}^{s}(M ; E)$ and $\mathscr{H}^{s}(M ; F)(s \in R)$. Then the operator P extends uniquely to a bounded operator $P: \mathscr{H}^{s}(M ; E) \rightarrow \mathscr{H}^{s-m}(M ; F)$. Also we have the adjoint operator $P^{*}: \mathscr{H}^{s}(M ; F) \rightarrow \mathscr{H}^{s-m}(M ; E)$. The null spaces $\mathscr{N}^{s}(P)$ and $\mathscr{N}^{s}\left(P^{*}\right)$ are closed subspaces and admit the structure of Hilbert spaces. We may consider $\mathscr{N}^{s}(P)$ and $\mathscr{N}^{s}\left(P^{*}\right)$ as unitary representations of G. We denote by \hat{G} the set of all equivalence classes of irreducible representations of G. For $\alpha \in \hat{G}$, we denote the α-components by $\mathscr{N}_{\alpha}^{s}(P)$ and $\mathscr{N}_{\alpha}^{s}\left(P^{*}\right)$.

We call a G-invariant pseudo-differential operator $P: \mathscr{C}^{\infty}(M ; E) \rightarrow$ $\mathscr{C}^{\infty}(M ; F)$ to be transversally elliptic relative to G if the principal symbol $\sigma(P)$ is invertible over $\tau_{G} M-M$. Then we have:

Theorem (Atiyah [1]). Let $P: \mathscr{C}^{\infty}(M ; E) \rightarrow \mathscr{C}^{\infty}(M ; F)$ be a transversally elliptic operator. Then for each $\alpha \in \hat{G}, \mathscr{N}_{\alpha}^{s}(P)$ is finite dimensional and does not depend on s. Furthermore the formal sum

$$
\operatorname{char} \mathscr{N}(P)=\sum_{\alpha \in \hat{Q}} \operatorname{char} \mathcal{N}_{\alpha}^{s}(P)
$$

converges in $\mathscr{H}^{-n-s}(G)(n=\operatorname{dim} M)$ for any $\varepsilon>0$.
Now we can define the distributional index:
Definition. Let $P: \mathscr{C}^{\infty}(M ; E) \rightarrow \mathscr{C}^{\infty}(M ; F)$ be a transversally elliptic operator relative to G. Then the distributional index $\operatorname{ind}^{G}(P)$ is defined by:

$$
\operatorname{ind}^{G}(P)=\operatorname{char} \mathscr{N}(P)-\operatorname{char} \mathscr{N}\left(P^{*}\right) \in \mathscr{D}^{\prime}(G)^{\operatorname{lnv}}
$$

Here we denote by $\mathscr{D}^{\prime}(G)^{\text {inv }}$ the distributions on G invariant under the inner automorphisms of G.

The distributional index has the following properties:
Theorem (Atiyah [1]). The distributional index of a transversally elliptic operator P depends only on the homotopy class of the restriction of the principal symbol $\sigma(P)$ to $\tau_{G} M-M$

$$
\left.\left.\sigma(P)\right|_{\sigma_{G} M-M} \in \operatorname{Iso}\left(\pi^{*} E, \pi^{*} F\right)\right|_{\sigma_{G} M-M}
$$

Corollary. The distributional index defines a $R(G)$-module homomorphism

$$
\operatorname{ind}^{G}: K_{G}\left(\tau_{G} M\right) \longrightarrow \mathscr{D}^{\prime}(G)^{\text {inv }} .
$$

For each $\alpha \in \hat{G}$, the transversally elliptic operator P defines a G invariant Fredholm operator

$$
P_{\alpha}: \mathscr{H}_{\alpha}^{s}(M ; E) \longrightarrow \mathscr{H}_{\alpha}^{s-m}(M ; F) .
$$

So we may consider $\operatorname{ind}^{G}(P)=\sum_{\alpha}$ ind $\left(P_{\alpha}\right)$. Then by the orthonormality of irreducible characters, we have:

$$
\left(\operatorname{ind}^{G} P\right)\left(1_{G}\right)=\operatorname{index}\left[P^{G}: \mathscr{C}^{\infty}(M ; E)^{G} \longrightarrow \mathscr{C}^{\infty}(M ; F)^{G}\right]
$$

Now we assume that the action of G on M is of trivial principal orbit type and with only finite isotropy subgroups. Then, by definition, the above number is the V-index of the elliptic operator $P^{a}: \mathscr{C}_{V}^{\infty}(G \backslash M ; G \backslash E)$ $\rightarrow \mathscr{C}_{V}^{\infty}(G \backslash M ; G \backslash F)$ over the V-manifold $G \backslash M$. Each G-equivariant bundle
$E \rightarrow M$ defines a proper V-bundle $G \backslash E \rightarrow G \backslash M$, and vice versa. The V manifold $G \backslash \tau_{G} M$ is exactly the total space $\tau_{V}(G \backslash M)$ of the tangent V-bundle. Then we have the canonical isomorphism $K_{G}\left(\tau_{G} M\right) \cong K_{V}\left(\tau_{v}(G \backslash M)\right.$) and the following commutative diagram

Conversely, given a V-manifold X, we choose a Riemannian metric on X. Then the total space $O(n)\left(\tau_{V} X\right)$ of the associated tangential orthonormal frame V-bundle is a smooth manifold. The right action of $O(n)$ is of trivial principal orbit type and with only finite isotropy subgroups. Its orbit space is canonically identified with the original V-manifold X. If we choose an injective homomorphism of $O(n)$ into a compact connected Lie group G, then the total space $\tilde{X}=O(n)\left(\tau_{v} X\right) \times_{o(n)} G$ of the associated tangential G-principal V-bundle is a smooth manifold with a right G action and its orbit space is again a V-manifold X. So we recover the original situation and we also have an identification $K_{V}\left(\tau_{V} X\right) \cong K_{G}\left(\tau_{G} \tilde{X}\right)$. Thus we reduce the computations of V-index into those of distributional index.

For the computations of distributional index, we write down some of the results in Atiyah [1]. Let G be a compact connected Lie group and let T be its maximal torus. We choose and fix a G-invariant complex structure on the flag manifold G / T. Then we have the Dolbeault complex on G / T and we consider its symbol [$\bar{\partial}$] as an element of $K_{G}(\tau(G / T))$. Let M be a smooth G-manifold with only finite isotropy subgroups. We have a G-equivariant diffeomorphism $G \times{ }_{T} M \cong G / T \times M$ by sending $(g, x) \in$ $G \times{ }_{T} M$ to ($g T, g x$). Then we have the equivalences of vector bundles

$$
G \times_{T} \tau_{T} M \cong \tau_{G}\left(G \times_{T} M\right) \cong \tau_{G}(G / T \times M) \cong \tau(G / T) \times \tau_{G} M
$$

The first equivalence comes from the $(G \times T)$-equivariant bundle map G $\times \tau_{T} M=\tau_{G \times T}(G \times M)$, where $G \times T$ acts on $G \times M$ by $(g, h)\left(g^{\prime}, x\right)=$ (${g g^{\prime}}^{-1}, h x$). The third equivalence comes from the natural identification $\tau(G / T \times M) \cong \tau(G / T) \times \tau M$. Then we define a homomorphism $r: K_{G}\left(\tau_{G} M\right)$ $\rightarrow K_{T}\left(\tau_{T} M\right)$ by:

$$
r: K_{G}\left(\tau_{G} M\right) \xrightarrow{[\bar{\jmath}] \times} K_{G}\left(\tau(G / T) \times \tau_{G} M\right) \cong K_{G}\left(G \times_{T} \tau_{T} M\right) \cong K_{T}\left(\tau_{T} M\right) .
$$

By this homomorphism, we can compute ind ${ }^{G}$ through ind ${ }^{T}$.
Theorem (Atiyah [1]). Let M be a compact smooth G-manifold without boundary (with only finite isotropy subgroups)*). Then the following diagram commutes:

where $i_{*}: \mathscr{D}^{\prime}(T) \rightarrow \mathscr{D}^{\prime}(G)^{\operatorname{inv}}$ is the dual of the restriction $i^{*}: \mathscr{C}^{\infty}(G)^{\operatorname{lnv}} \rightarrow \mathscr{C}^{\infty}(T)$.
Especially, for $u \in K_{G}\left(\tau_{G} M\right)$, we have:

$$
\begin{equation*}
\left(\operatorname{ind}^{G} u\right)\left(1_{G}\right)=\left(\operatorname{ind}^{T} r u\right)\left(1_{T}\right) . \tag{10}
\end{equation*}
$$

Another result that we need is the following:
Theorem (Atiyah [1]). Let M be a compact smooth T-manifold without boundary, with only finite isotropy subgroups. Then for $u \in K_{T}\left(\tau_{T} M\right)$, we have:

$$
\begin{equation*}
\left(\operatorname{ind}^{T} u\right)\left(1_{T}\right)=\sum_{\substack{n \in T, M^{n} \neq \phi \\ M_{i}^{h} \neq M^{h}}} \frac{(-1)^{\operatorname{dim}\left(T \backslash M_{i}^{h}\right)}}{m_{T}\left(M_{i}^{h}\right)}\left\{\operatorname{ch}_{T}^{h}(u) \mathscr{I}_{T}^{h}(M)\right\}\left[T \backslash \tau_{T} M_{i}^{h}\right], \tag{11}
\end{equation*}
$$

where M_{i}^{h} moves over the connected components of M^{h} and for each M_{i}^{h}, we define the multiplicity $m_{T}\left(M_{i}^{h}\right)$ by:

$$
m_{T}\left(M_{i}^{h}\right)=\text { the order of }\left\{g \in T \mid g x=x, \text { for any } x \in M_{i}^{h}\right\}^{* *)}
$$

We review the definitions of $\operatorname{ch}_{T}^{h}(u)$ and $\mathscr{I}_{T}^{h}(u)$. Let $i_{h}: \tau_{T} M^{h} \rightarrow \tau_{T} M$ be the inclusion, then $i_{n}^{*} u \in K_{T}\left(\tau_{T} M^{h}\right)$ admits the eigenspace decomposition $i_{n}^{*} u=\oplus_{0 \leqq \theta<2 \pi} u_{h}^{\theta}$, where $u_{h}^{\theta} \in K_{T}\left(\tau_{T} M^{n}\right)$ is the stable eigenvector bundle of eigenvalue $e^{i \theta}$. Then we have an element $\operatorname{ch}_{T}\left(u_{n}^{\theta}\right) \in H_{T, c}^{*}\left(\tau_{T} M^{h} ; \boldsymbol{Q}\right) \cong$ $H_{c}^{*}\left(T \backslash \tau_{T} M^{n} ; \boldsymbol{Q}\right)$ (the subscript c denotes the cohomology with compact support). We define $\operatorname{ch}_{T}^{h}(u) \in H_{T, c}^{*}\left(\tau_{T} M^{h} ; C\right) \cong H_{c}^{*}\left(T \backslash \tau_{T} M^{h} ; C\right)$ by:

$$
\operatorname{ch}_{T}^{h}(u)=\sum_{0 \leqq \theta<2 \pi} e^{i \theta} \operatorname{ch}_{T}\left(u_{n}^{\theta}\right) .
$$

[^1]Let $\left.\tau_{T} M\right|_{\mathcal{M}^{n}}=\tau_{T} M^{h} \oplus \nu_{h, T}=\tau_{T} M^{n} \oplus\left(\oplus_{0<\theta \leqq \pi} \nu_{h, T}^{\theta}\right)$ be the eigenspace decomposition. $\nu_{h, T}^{\pi}$ is the real eigenvector bundle of eigenvalue -1 and $\nu_{h, T}^{\theta}$ $(0<\theta<\pi)$ is a complex vector bundle on which the action of h is the multiplication by the scalar $e^{i \theta}$. We denote formally the equivariant Pontrjagin classes of $\tau_{T} M^{h}$ and $\nu_{n, T}^{\pi}$ by $p_{T}\left(\tau_{T} M^{h}\right)=\Pi\left(1+x_{j}^{2}\right) \in H_{T}^{*}\left(M^{h} ; \boldsymbol{Q}\right)$ and $p_{T}\left(\nu_{n, T}^{\pi}\right)=\Pi\left(1+y_{j}^{2}\right) \in H_{T}^{*}\left(M^{h} ; \boldsymbol{Q}\right)$ respectively, and the equivariant Chern classes of $\nu_{h, T}^{\theta}$ by $c_{T}\left(\nu_{n, T}^{\theta}\right)=\Pi\left(1+z_{j}\right) \in H_{T}^{*}\left(M^{h} ; \boldsymbol{Q}\right)$. Then we define $\mathscr{I}_{T}^{h}(M) \in H_{T}^{*}\left(M^{h} ; C\right) \cong H^{*}\left(T \backslash M^{h} ; C\right)$ by:

$$
\mathscr{I}_{T}^{n}(M)=\operatorname{det}_{R}\left(1-\left.h\right|_{\nu_{h, T}}\right)^{-1} \mathscr{R}_{T}\left(\nu_{n, T}^{\pi}\right)\left\{\prod_{0<\theta<\pi} \mathscr{S}_{T}^{\theta}\left(\nu_{h, T}^{\theta}\right)\right\} \mathscr{I}_{T}\left(M^{h}\right),
$$

where

$$
\begin{aligned}
\mathscr{I}_{T}\left(M^{h}\right) & =\mathscr{T}_{T}\left(\tau_{T} M^{h} \otimes_{R} C\right)=\prod_{j}\left(\frac{x_{j}}{1-e^{-x_{j}}} \frac{-x_{j}}{1-e^{x_{j}}}\right), \\
\mathscr{R}_{T}\left(\nu_{h, T}^{\pi}\right) & =\prod_{j}\left(\frac{2}{1+e^{y_{j}}} \frac{2}{1+e^{-y_{j}}}\right), \\
\mathscr{S}_{T}^{\theta}\left(\nu_{h, T}^{\theta}\right) & =\prod_{j}\left(\frac{1-e^{i \theta}}{1-e^{z_{j}+i \theta}} \frac{1-e^{-i \theta}}{1-e^{-z_{j}-i \theta}}\right) .
\end{aligned}
$$

Consider the orbit space $X=T \backslash M$ as a V-manifold. By definition, we can see:

$$
\begin{gathered}
X \amalg\left(\underset{i}{\amalg} \Sigma_{i}\right)=T \backslash M \amalg\left(\underset{\substack{n \in T, M M^{n \neq \emptyset} \\
M_{i}^{h} \subset M^{h}}}{\amalg} T \backslash M_{i}^{h}\right), \\
\tau_{V} X \amalg\left(\coprod_{i} \tau_{V} \Sigma_{i}\right)=T \backslash \tau_{T} M \amalg\left(\coprod_{h, i} T \backslash \tau_{T} M_{i}^{h}\right) .
\end{gathered}
$$

So we may identify $H_{T, c}^{*}\left(\tau_{T} M ; \boldsymbol{Q}\right)$ with $H_{c}^{*}\left(\tau_{V} X ; \boldsymbol{Q}\right)$ and $H_{T, c}^{*}\left(\tau_{T} M_{i}^{h} ; \boldsymbol{C}\right)$ with $H_{c}^{*}\left(\tau_{V} \Sigma_{i} ; C\right)$. Then, for $u \in K_{V}\left(\tau_{V} X\right) \cong K_{T}\left(\tau_{T} M\right)$, we can interpret:

$$
\operatorname{ch}(u) \mathscr{I}(X)+\operatorname{ch}^{\Sigma}(u) \mathscr{I}^{\Sigma}(X)=\operatorname{ch}_{T}(u) \mathscr{I}_{T}(M)+\sum_{n} \operatorname{ch}_{T}^{h}(u) \mathscr{I}_{T}^{n}(M) .
$$

Thus we have shown that the Atiyah's formula (11) is equivalent to our formula (7), if the V-manifold X is obtained as the orbit space of a toral action.

Now we consider a general V-manifold X. We may assume that X is the orbit space of a G-manifold $M . \quad G$ acts on M with only finite isotropy subgroups and of trivial principal orbit type. Then, for a real or complex G-equivariant vector bundle E, we may identify the G-equivariant characteristic class of E with the characteristic class of the V-bundle $G \backslash E \rightarrow X$
(defined by the same polynomial in Pontrjagin classes or Chern classes). We shall rewrite the formula (7) in the word of equivariant characteristic classes.

By the compactness of M and the smoothness of the G-action, the number of orbit types of G-manifold M is finite. Also, all the isotropy subgroups are finite, so the number of conjugacy classes of elements of G with non-empty fixed point set is finite. Let (1), $\left(h_{1}\right), \cdots,\left(h_{\rho}\right)$ be such conjugacy classes. Each fixed point set M^{h} admits the action of the centralizer $Z_{G}(h)$. Then the action of h on $\left.\tau M\right|_{M^{n}}$ defines the decomposition into eigenvector bundles

$$
\left.\tau M\right|_{M^{n}}=\tau_{Z_{G(h)}} M^{n} \oplus \nu_{h, G}=\tau_{Z_{G(h)}} M^{h} \oplus\left(\underset{0<\theta \leq \pi}{\oplus} \nu_{h, G}^{\theta}\right) .
$$

Since $Z_{G}(h)$ commutes with h, each summand is $Z_{G}(h)$-equivariant. Then we define $\mathscr{I}_{G}^{h}(M) \in H_{Z_{G}(h)}^{*}\left(M^{h} ; C\right)$ by;

$$
\mathscr{I}_{G}^{h}(M)=\operatorname{det}_{R}\left(1-\left.h\right|_{\nu_{n, \sigma}}\right)^{-1} \mathscr{R}_{Z_{G}(h)}\left(\nu_{n, G}^{\pi}\right)\left\{\prod_{0<\theta<\pi} \mathscr{S}_{Z_{G}(h)}^{\theta}\left(\nu_{n, G}^{\theta}\right)\right\} \mathscr{I}_{z_{G}(h)}\left(M^{n}\right) .
$$

We remark that $\nu_{n, G}$ and the normal bundle of M^{h} in M differ in dimension equal to $\operatorname{dim} G-\operatorname{dim} Z_{G}(h)$. For $u \in K_{V}\left(\tau_{V} X\right) \cong K_{G}\left(\tau_{G} M\right)$, we have $i_{h}^{*} u \in K_{z_{\sigma(h)}}\left(\tau_{Z_{G(h)}} M^{h}\right)$ and the eigenspace decomposition $i_{h}^{*} u=\oplus_{0 \leq \theta<2 \pi} u_{h}^{\theta}$. Then we define:

$$
\operatorname{ch}_{G}^{h}(u)=\sum_{0 \leq \theta<2 \pi} e^{i \theta} \operatorname{ch}_{Z_{G}(h)}\left(u_{h}^{\theta}\right) \in H_{Z_{G}(h), c}^{*}\left(\tau_{Z_{G}(h)} M^{h} ; C\right)
$$

Let $\Sigma X=\amalg \Sigma_{i}$ be the singularity V-manifold. Then we have canonical identifications

$$
\amalg \Sigma_{i}=\coprod_{j=1}^{\rho} Z_{G}\left(h_{j}\right) \backslash M^{h_{j}}, \quad \amalg \tau_{V} \Sigma_{i}=\coprod_{j=1}^{\rho} Z_{G}\left(h_{j}\right) \backslash \tau_{Z_{G\left(h_{j}\right)}} M^{h_{j}} .
$$

Let $Z_{G}(h) \backslash M^{h}=\amalg Z_{G}(h) \backslash M_{i}^{h}$ be the decomposition into connected components. Each M_{i}^{h} is $Z_{G}(h)$-invariant but not connected in general. We define the multiplicity $m_{G}\left(M_{i}^{h}\right)$ by:

$$
m_{G}\left(M_{i}^{h}\right)=\text { the order of }\left\{g \in Z_{G}(h) \mid g x=x, \text { for any } x \in M_{i}^{h}\right\}
$$

Now we can rewrite the formula (7) into:

$$
\begin{equation*}
\left(\operatorname{ind}^{G} u\right)\left(1_{G}\right)=\sum_{\substack{(k) \in(G) \\ M_{i}^{h} \subset M^{h}}} \frac{(-1)^{\operatorname{dim}\left(Z_{\sigma}(h) M_{i}^{h}\right)}}{m_{G}\left(M_{i}^{h}\right)}\left\{\operatorname{ch}_{G}^{h}(u) \mathscr{I}_{G}^{h}(M)\right\}\left[Z_{G}(h) \backslash \tau_{Z_{G}(h)} M_{i}^{h}\right] \tag{12}
\end{equation*}
$$

where we denote by (G) the set of conjugacy classes of G. We shall deduce this formula from (11) and a computation in the equivariant Chern classes on the flag manifold G / T.

§2. Gysin homomorphisms (integrations over the fibre)

Let G be a compact connected Lie group and let M be a compact G-manifold without boundary. We assume that G acts on M with only finite isotropy subgroups. Let T be a maximal torus of G. We choose and fix a G-invariant complex structure on the flag manifold G / T. Then, by (10) and (11), we have, for $u \in K_{G}\left(\tau_{G} M\right)$:

$$
\begin{align*}
\left(\operatorname{ind}^{G} u\right)\left(1_{G}\right) & =\left(\operatorname{ind}^{T} r u\right)\left(1_{T}\right) \\
& =\sum_{\substack{h \in T \\
M_{i}^{h} \subset M^{h}}} \frac{(-1)^{\operatorname{dim}\left(T \backslash \mu_{i}^{h}\right)}}{m_{T}\left(M_{i}^{h}\right)}\left\{\operatorname{ch}_{T}^{h}(r u) \mathscr{\mathscr { S }}_{T}^{h}(M)\right\}\left[T \backslash \tau_{T} M_{i}^{h}\right] . \tag{13}
\end{align*}
$$

Here $M_{i}^{h} \subset M^{h}$ denotes a connected component. In the sequel we omit i 's since all the arguments are parallel.

To deduce (12), we need to reform (13) into the evaluation over $\left[Z_{G}(h) \backslash \tau_{Z_{G(h)}} M^{h}\right]$'s. We use the Gysin homomorphisms. Consider the commutative diagram

The vertical maps induce the identifications $H^{*}\left(T \backslash M^{h} ; \boldsymbol{Q}\right) \cong H_{T}^{*}\left(M^{h} ; \boldsymbol{Q}\right)$ and $H^{*}\left(Z_{G}(h) \backslash M^{h} ; \boldsymbol{Q}\right) \cong H_{Z_{\sigma(h)}}^{*}\left(M^{h} ; \boldsymbol{Q}\right)$. The upper π is a fibration with fibre $Z_{G}(X) / T$. We orient $Z_{G}(h) / T$ by the induced complex structure from G / T. We denote the orientation sheaf on M^{h} by $o\left(M^{h}\right)$. Then we have the Gysin homomorphism $\pi_{1}: H_{T}^{*}\left(M^{n} ; o\left(M^{h}\right) \otimes \boldsymbol{Q}\right) \rightarrow H_{Z_{G(h)}}^{*}\left(M^{h} ; o\left(M^{n}\right) \otimes \boldsymbol{Q}\right)$. We may reconstruct π_{1} by using the Leray-Serre spectral sequence of the map $\pi: T \backslash M^{h}-Z_{K}(h) \backslash M$. Then we have the following proposition:

Proposition. The Gysin homomorphism π_{1} :

$$
H_{T}^{*}\left(M^{h} ; o\left(M^{h}\right) \otimes \boldsymbol{Q}\right) \longrightarrow H_{Z_{G(h)}}^{*}\left(M^{h} ; o\left(M^{h}\right) \otimes \boldsymbol{Q}\right)
$$

is a $H_{Z_{a(h)}}^{*}\left(M^{h} ; \boldsymbol{Q}\right)$-module homomorphism. For $x \in H_{T}^{*}\left(M^{h} ; o\left(M^{h}\right) \otimes \boldsymbol{Q}\right)$, we have the following formula:

$$
\frac{1}{m_{T}\left(M^{h}\right)}\left\langle x,\left[T \backslash M^{h}\right]\right\rangle=\frac{1}{m_{G}\left(M^{h}\right)}\left\langle\pi_{1} x,\left[Z_{G}(h) \backslash M^{h}\right]\right\rangle .
$$

Also we have the Thom isomorphisms

$$
\psi_{T}: H_{T}^{*}\left(M^{h} ; o\left(M^{n}\right) \otimes \boldsymbol{Q}\right) \longrightarrow H_{T}^{*},\left(\tau_{T} M^{h} ; \boldsymbol{Q}\right)
$$

and

$$
\psi_{\left.z_{G(h)}\right)}: H_{Z_{\sigma(h)}}^{*}\left(M^{h} ; o\left(M^{h}\right) \otimes \boldsymbol{Q}\right) \longrightarrow H_{\boldsymbol{Z}_{\sigma(h)}, c}^{*}\left(\tau_{\left.Z_{G(h)}\right)} M^{h} ; \boldsymbol{Q}\right) .
$$

Then we define $\tau \pi_{1}=\psi_{Z_{G(h)}} \circ \pi_{1} \circ\left(\psi_{T}\right)^{-1}: H_{T, c}^{*}\left(\tau_{T} M^{h} ; \boldsymbol{Q}\right) \rightarrow H_{Z_{G(h), c}}^{*}\left(\tau_{Z_{\sigma(h)}} M^{h} ; \boldsymbol{Q}\right)$. It is also a $H_{Z_{\sigma(h)}}^{*}\left(M^{h} ; Q\right)$-homomorphism. Looking carefully at the orientations of $T \backslash \tau_{T} M^{h}$ and $Z_{G}(h) \backslash \tau_{Z_{\sigma(h)}} M^{h}$, we have, for $y \in H_{T, c}^{*}\left(\tau_{T} M^{h} ; Q\right)$:

$$
\begin{aligned}
& \frac{1}{m_{T}\left(M^{n}\right)}\left\langle y,\left[T \backslash \tau_{T} M^{n}\right]\right\rangle=\frac{(-1)^{m_{h}}}{m_{T}\left(M^{h}\right)}\left\langle\tau \pi_{1} y,\left[Z_{G}(h) \backslash \tau_{Z_{G(h)}} M^{h}\right]\right\rangle, \\
& \left(m_{h}=\frac{1}{2} \operatorname{dim}_{R}\left(Z_{G}(h) / T\right)=\operatorname{dim}_{C}\left(Z_{\theta}(h) / T\right)\right) .
\end{aligned}
$$

We apply $\tau \pi_{1}$ to $\left\{\operatorname{ch}_{T}^{h}(r u) \mathscr{I}_{T}^{h}(M)\right\}$ in (13). Then we get:

$$
\begin{align*}
& \left(\operatorname{ind}^{G} u\right)\left(1_{G}\right)=\sum_{h \in T} \frac{\varepsilon_{G}\left(M^{h}\right)}{m_{G}\left(M^{h}\right)}(-1)^{m_{h}} \tau \pi_{1}\left\{\operatorname{ch}_{T}^{h}(r u) \mathscr{I}_{T}^{h}(M)\right\}\left[Z_{G}(h) / \tau_{Z_{G}(h)} M^{h}\right], \tag{14}\\
& \left(\varepsilon_{G}\left(M^{h}\right)=(-1)^{\operatorname{dim}\left(Z_{G}(h) \backslash \mathcal{M}^{h}\right)}\right) .
\end{align*}
$$

We compute each term $(-1)^{m_{n}} \tau \pi_{1}\left\{\operatorname{ch}_{T}^{h}(r u) \mathscr{I}_{T}^{h}(M)\right\}$ independently. First we consider $\mathscr{I}_{T}^{h}(M) \in H_{T}^{*}\left(M^{h} ; C\right)$. We have isomorphisms:

$$
H_{T}^{*}\left(M^{h} ; C\right) \cong H_{Z_{G(h)}}^{*}\left(Z_{G}(h) \times_{T} M^{h} ; C\right) \cong H_{Z_{G(h)}}^{*}\left(Z_{G}(h) / T \times M^{h}\right) .
$$

Recall the definition:

$$
\mathscr{I}_{T}^{h}(M)=\operatorname{det}_{R}\left(1-\left.h\right|_{\nu_{h} T}\right)^{-1} \mathscr{R}_{T}\left(\nu_{n, T}^{\pi}\right)\left\{\prod_{0<\theta<\pi} \mathscr{S}_{T}^{\theta}\left(\nu_{h, T}^{\theta}\right)\right\} \mathscr{\mathscr { S }}_{T}\left(M^{h}\right) .
$$

$\nu_{h, r}$ is a $Z_{G}(h)$-equivariant bundle and decomposes equivariantly into:

$$
\nu_{h, T}=\nu_{h, G} \oplus \tau_{0}\left(G / Z_{G}(h)\right),
$$

where $\tau_{0}\left(G / Z_{G}(h)\right)$ denotes the tangent space of $G / Z_{G}(h)$ at the identity coset. (We denote by the same symbol the vector space and the trivial vector bundle). So, if we lift the T-equivariant bundle $\nu_{h, T}$ to a $Z_{G}(h)$ equivariant bundle over $Z_{G}(h) \times{ }_{T} M^{h} \cong Z_{G}(h) / T \times M^{h}$, we may consider it as the pull-back of a $Z_{G}(h)$-equivariant bundle $\nu_{h, T}$ over M^{h}. Since $Z_{G}(h) / T$ is a complex submanifold of $G / T, \tau_{0}\left(G / Z_{G}(h)\right)$ is a complex vector space with a linear action of $h . h$ does not have any non-zero fixed
vector on $\tau_{0}\left(G / Z_{G}(h)\right)$. Let $\oplus_{0<\theta<2 \pi} \tau_{0}^{\theta}\left(G / Z_{G}(h)\right)$ be the eigenspace decomposition. We define:

$$
\begin{aligned}
\mathscr{I}_{G}^{h}\left(G / Z_{G}(h)\right)_{0}= & \operatorname{det}_{\boldsymbol{R}}\left(1-\left.h\right|_{\mathrm{r}_{0}\left(G / Z_{G}(h)\right)}\right)^{-1}\left\{\prod_{0<\theta<2 \pi} \mathscr{S}_{Z_{G}(h)}^{\theta}\left(\tau_{0}^{\theta}\left(G / Z_{G}(h)\right)\right)\right\} \\
& \in H_{Z_{G}(h)}^{* *}(p t ; C) .
\end{aligned}
$$

Then we have:

$$
\begin{aligned}
\operatorname{det}_{R} & \left(1-\left.h\right|_{\nu_{h, T}}\right)^{-1} \mathscr{R}_{T}\left(\nu_{n, T}^{\pi}\right)\left\{\prod_{0<\theta<\pi} \mathscr{S}_{T}^{\theta}\left(\nu_{h, T}^{\theta}\right)\right\} \\
& =\mathscr{I}_{G}^{n}\left(G \mid Z_{G}(h)\right)_{0} \times \operatorname{det}\left(1-\left.h\right|_{\nu_{h, G}}\right)^{-1} \mathscr{R}_{Z_{G}(h)}\left(\nu_{n, G}^{\pi}\right)\left\{\prod_{0<\theta<\pi} \mathscr{S}_{Z_{G}(h)}^{\theta}\left(\nu_{n, G}^{\theta}\right)\right\},
\end{aligned}
$$

where the first factor is in $H_{Z G(n)}^{* *}(p t ; C)$ and the second factor is in $H_{Z_{G}(h)}^{*}\left(M^{h} ; C\right)$. Also we have a T-equivariant decomposition:

$$
\tau_{T} M^{h}=\tau_{Z_{\sigma}(h)} M^{h} \oplus \tau_{0}\left(Z_{G}(h) / T\right)
$$

If we lift $\tau_{T} M^{h}$ over $Z_{\theta}(h) / T \times M^{h}$, then $\tau_{Z_{G}(h)} M^{h}$ is a $Z_{G}(h)$-equivariant bundle over M^{h} and $\tau_{0}\left(Z_{G}(h) / T\right)$ is the tangent bundle of $Z_{G}(h) / T$. Hence we have:

$$
\mathscr{I}_{T}\left(M^{h}\right)=\mathscr{I}_{Z_{G(h)}}\left(Z_{G}(h) / T\right) \times \mathscr{I}_{Z_{G(h)}}\left(M^{h}\right)
$$

As a whole, we have:

$$
\begin{aligned}
\mathscr{I}_{T}^{h}(M)= & \mathscr{I}_{Z_{G}(h)}\left(Z_{G}(h) / T\right) \times \mathscr{I}_{G}^{h}\left(G / Z_{G}(h)\right)_{0} \times \mathscr{I}_{G}^{n}(M) \\
& \in H_{Z_{G(h)}}^{*}\left(Z_{c}(h) / T \times M^{n} ; C\right),
\end{aligned}
$$

where the first factor is in $H_{Z_{G}(h)}^{* *}\left(Z_{G}(h) / T ; Q\right)$, the second factor is in $H_{Z_{G}(h)}^{* *}(p t ; C)$ and the third factor is in $H_{Z_{\sigma(h)}}^{*}\left(M^{h} ; C\right)$.

Next we compute $\operatorname{ch}_{T}^{h}(r u) \in H_{T, c}^{*}\left(\tau_{T} M^{h} ; C\right)$. By definition, we have $r u$ $[\bar{\partial}] \times u \in K_{G}\left(\tau(G / T) \times \tau_{G} M\right) \cong K_{T}\left(\tau_{T} M\right)$. So

$$
i_{h}^{*} r u=\left[\left.\bar{\partial}_{G / T}\right|_{Z_{G}(h) / /}\right] \times i_{n}^{*} u \in K_{Z_{G}(h)}\left(\tau\left(Z_{G}(h) / T\right) \times \tau_{Z_{G}(h)} M^{h}\right) .
$$

Since $Z_{G}(h) / T$ is a complex submanifold of G / T, we have $\left[\left.\bar{\partial}_{G / T}\right|_{Z_{G}(h) / T}\right]=$ $\left[\bar{\partial}_{Z_{G(h) / T}}\right] \lambda_{-1}\left(\tau_{0}\left(G / Z_{G}(h)\right)\right) \in K_{Z_{\sigma}(h)}\left(\tau\left(Z_{G}(h) / T\right)\right)$. Hence we have:

$$
i_{h}^{*} r u=\left[\bar{\partial}_{Z_{\sigma(h) / T}}\right] \times \lambda_{-1}\left(\tau_{0}\left(G / Z_{G}(h)\right)\right) \times i_{n}^{*} u
$$

where the first factor is in $K_{Z_{\sigma}(h)}\left(\tau\left(Z_{G}(h) / T\right)\right)$, the second factor is in $R\left(Z_{G}(h)\right)$ and the third factor is in $K_{Z_{G(h)}}\left(\tau_{Z_{G}(h)} M^{h}\right)$. Consider the eigenspace decomposition by the action of h. The action is trivial on $Z_{G}(h) / T$. So we have:

$$
\sum e^{i \theta}\left(i_{h}^{*} r u\right)^{\theta}=\left[\bar{\partial}_{Z_{G}(h) / T}\right] \times\left(\sum e^{i \theta} \lambda_{-1}\left(\tau_{0}^{\theta}\left(G / Z_{G}(h)\right)\right)\right) \times\left(\sum e^{i \theta}\left(i_{n}^{*} u\right)^{\theta}\right)
$$

Applying the Chern character on both sides, we have:

$$
\begin{aligned}
\operatorname{ch}_{T}^{h}(r u)= & \operatorname{ch}_{Z_{G(h)}}\left[\bar{\partial}_{Z_{G(h) / T}}\right] \times \operatorname{ch}_{G}^{h}\left(\lambda_{-1}\left(\tau_{0}\left(G / Z_{G}(h)\right)\right)\right) \times \operatorname{ch}_{G}^{h}(u) \\
& \in H_{T, c}^{*}\left(\tau_{T} M^{h} ; C\right) \cong H_{Z_{\sigma(h)}, c}^{*}\left(\tau\left(Z_{G}(h) / T\right) \times \tau_{\left.Z_{\sigma(h)}\right)} M^{h} ; C\right),
\end{aligned}
$$

where the first factor is in $H_{Z_{G}(h), c}^{* *}\left(\tau\left(Z_{G}(h) / T\right) ; C\right)$, the second factor is in $H_{Z_{G}(h)}^{* *}(p t ; C)$ and the third factor is in $H_{Z_{\sigma(h), e}}^{*}\left(\tau_{Z_{\sigma(h)}} M^{h} ; C\right)$. Combining this with the computation on $\mathscr{I}_{T}^{h}(M)$, we have:

$$
\begin{aligned}
\operatorname{ch}_{T}^{h}(r u) \mathscr{I}_{T}^{h}(M)= & \operatorname{ch}_{Z_{G}(h)}\left[\bar{\partial}_{Z_{G(h) / T}}\right] \mathscr{I}_{Z_{G G}(h)}\left(Z_{G}(h) / T\right) \\
& \times \operatorname{ch}_{G}^{h}\left(\lambda_{-1}\left(\tau_{0}\left(G / Z_{G}(h)\right)\right)\right) \mathscr{I}_{G}^{h}\left(G / Z_{G}(h)\right)_{0} \\
& \times \operatorname{ch}_{G}^{h}(u) \mathscr{I}_{G}^{h}(M) \\
& \in H_{T, c}^{*}\left(\tau_{T} M^{h} ; C\right) \cong H_{Z_{G(h), c}}^{*}\left(\tau\left(Z_{G}(h) / T\right) \times \tau_{Z_{G(h)}} M^{h} ; C\right),
\end{aligned}
$$

where the first factor is in $H_{Z_{G}(h), c}^{* *}\left(\tau\left(Z_{G}(h) / T ; \boldsymbol{Q}\right)\right.$, the second factor is in $H_{Z_{G}(h)}^{* *}(p t ; C)$ and the third factor is in $H_{Z_{G(h), ~}}^{*}\left(\tau_{Z_{G(h)}} M^{h} ; C\right)$. We have also:
$\operatorname{ch}_{Z_{G(h)}}\left[\bar{\partial}_{Z_{G(h) / T}}\right] \mathscr{\mathscr { V }}_{\left.Z_{G(h)}\right)}\left(Z_{G}(h) / T\right)=(-1)^{m_{h}} \psi\left(\mathscr{T}_{\left.Z_{G(h)}\right)}\left(Z_{G}(h) / T\right)\right)$,
$\left(\psi: H_{Z_{G}(h)}^{* *}\left(Z_{G}(h) / T ; Q\right) \longrightarrow H_{Z_{G}(h), c}^{* *}\left(\tau\left(Z_{G}(h) / T\right) ; Q\right)\right.$, Thom isomorphism),
$\operatorname{ch}_{G}^{h}\left(\lambda_{-1}\left(\tau_{0}\left(G / Z_{G}(h)\right)\right)\right) \mathscr{I}_{G}^{h}\left(G / Z_{G}(h)\right)_{0}=\mathscr{T}_{G}^{h}\left(G / Z_{G}(h)\right)_{0}$,
(the residual Todd class restricted at the identity component).
By the identification $H_{T, c}^{*}\left(\tau_{T} M^{h} ; C\right) \cong H_{Z_{G(h), c}}^{*}\left(\tau\left(Z_{G}(h) / T\right) \times \tau_{Z_{G}(h)} M^{h} ; C\right), \tau \pi_{1}$ is given by the composite:

$$
\begin{aligned}
\tau \pi_{1}: & H_{Z_{\sigma(h), c}}^{*}\left(\tau\left(Z_{G}(h) / T\right) \times \tau_{Z_{G(h)}} M^{h} ; C\right) \\
& \xrightarrow{\psi^{-1}} H_{Z_{G}(h)}^{*}\left(Z_{G}(h) / T \times M^{h} ; o\left(M^{h}\right) \otimes C\right) \\
& \xrightarrow{\pi_{1}} H_{Z_{G}(h)}^{*}\left(M^{h} ; o\left(M^{h}\right) \otimes C\right) \\
& \xrightarrow{\psi} H_{Z_{\sigma(h), c}}^{*}\left(\tau_{Z_{\sigma(h)}} M^{h} ; C\right) .
\end{aligned}
$$

Then we can see:

$$
\begin{aligned}
& (-1)^{m_{h}} \tau \pi_{!}\left\{\operatorname{ch}_{T}^{h}(r u) \mathscr{I}_{T}^{h}(M)\right\} \\
& \quad=\pi_{1}\left\{\mathscr{T}_{Z_{\sigma}(h)}\left(Z_{G}(h) / T\right) \mathscr{T}_{G}^{h}\left(G / Z_{G}(h)\right)_{0}\right\} \operatorname{ch}_{G}^{h}(u) \mathscr{I}_{G}^{h}(M), \\
& \left(\pi_{!}: H_{Z_{G}(h)}^{* *}\left(Z_{G}(h) / T ; C\right) \longrightarrow H_{Z_{G}(h)}^{* *}(p t ; C)\right) .
\end{aligned}
$$

Thus we have proved:

$$
\begin{align*}
&\left(\operatorname{ind}^{G} u\right)\left(1_{G}\right)=\sum_{\substack{h \in T \\
M \neq \emptyset}} \frac{\varepsilon_{G}\left(M^{h}\right)}{m_{G}\left(M^{n}\right)}\left\{\pi_{1}\left\{\mathscr{T}_{z_{G}(h)}\left(Z_{G}(h) / T\right) \mathscr{T}_{G}^{h}\left(G / Z_{G}(h)\right)_{0}\right\}\right. \tag{15}\\
&\left.\quad \times \operatorname{ch}_{G}^{h}(u) \mathscr{I}_{G}^{h}(M)\right\}\left[Z_{G}(h) \backslash \tau_{Z_{G}(h)} M^{h}\right] .
\end{align*}
$$

We compare this formula with the final form (12). In (12), the summation moves over the conjugacy classes (h) in G such that $M^{h} \neq \emptyset$, but in (15), the summation moves over all the elements in T such that M^{h} $\neq \emptyset$. We recall that every conjugacy class (h) in G meets T by finite (non-zero) times. So in (15), we sum up first the terms corresponding to the elements that belong to the same conjugacy class in G.

Let h and h^{\prime} be elements in T conjugate in G. Choose $g \in G$ such that $g h g^{-1}=h^{\prime}$. We denote by ϕ_{g} the action of g on M and by ι_{g} the inner automorphism induced by g. Then $\phi_{g}: M \rightarrow M$ is ι_{g}-equivariant and maps M^{h} onto $M^{h^{\prime}}$. It induces bundle equivalences $\tau_{h} \phi_{g}: \tau_{Z_{\sigma(h)}} M^{h} \rightarrow$ $\tau_{z_{G\left(h^{\prime}\right)}} M^{h^{\prime}}$ and $\nu_{h} \phi_{g}: \nu_{h, G} \rightarrow \nu_{h^{\prime}, G}$. These equivalences are $\left[{ }_{g}: Z_{G}(h) \rightarrow Z_{G}\left(h^{\prime}\right)\right]-$ equivariant. This shows $\phi_{g}^{*} \mathscr{I}_{G}^{h^{\prime}}(M)=\mathscr{I}_{G}^{h}(M)$ and $\left(\tau_{h} \phi_{g}\right) * \operatorname{ch}_{G}^{h^{\prime}}(u)=\operatorname{ch}_{G}^{h}(u)$. Hence we have:

$$
\begin{aligned}
& \left(\tau_{h} \phi_{g}\right)^{*}\left\{\pi_{1}\left\{\mathscr{T}_{z_{G(}\left(h^{\prime}\right)}\left(Z_{G}\left(h^{\prime}\right) / T\right) \mathscr{T}_{G}^{h^{\prime}}\left(G / Z_{G}\left(h^{\prime}\right)\right)_{0}\right\} \operatorname{ch}_{G}^{h^{\prime}}(u) \mathscr{I}_{G}^{h^{\prime}}(M)\right\} \\
& \quad=\left\{\varepsilon_{g}^{*} \pi_{1}\left\{\mathscr{T}_{z_{G(}\left(h^{\prime}\right)}\left(Z_{G}\left(h^{\prime}\right) / T\right) \mathscr{T}_{G}^{h^{\prime}}\left(G / Z_{G}\left(h^{\prime}\right)\right)_{0}\right\}\right\} \operatorname{ch}_{G}^{h}(u) \mathscr{S}_{G}^{h}(M) .
\end{aligned}
$$

For each conjugacy class (h) in G, we put $(h) \cap T=\left\{h_{1}, h_{2}, \cdots, h_{w(h)}\right\}$. For each j, we choose $g_{j} \in G$ such that $h_{j}=g_{j} h g_{j}^{-1}$. Then we have:

$$
\begin{align*}
\left(\operatorname{ind}^{G} u\right)\left(1_{G}\right)= & \sum_{\substack{(h)=(G) \\
M h \neq q}} \frac{\varepsilon_{G}\left(M^{h}\right)}{m_{G}\left(M^{n}\right)}\left\{\left\{\sum _ { j = 1 } ^ { w (h) } \iota _ { g j } ^ { * } \pi _ { 1 } \left\{\mathscr{T}_{z_{G}\left(h_{j}\right)}\left(Z_{G}\left(h_{j}\right) / T\right)\right.\right.\right. \tag{16}\\
& \left.\left.\left.\times \mathscr{T}_{G^{\prime}}^{h_{j}}\left(G / Z_{G}\left(h_{j}\right)\right)_{0}\right\}\right\} \operatorname{ch}_{G}^{h}(u) \mathscr{I}_{G}^{h}(M)\right\}\left[Z_{G}(h) \backslash \tau_{Z_{G(h)}} M^{h}\right] .
\end{align*}
$$

Now we consider the class

$$
\sum_{j=1}^{w(h)} \iota_{g \pi^{\prime}}^{*} \pi_{1}\left\{\mathscr{T}_{Z_{G}\left(h_{j}\right)}\left(Z_{G}\left(h_{j}\right) / T\right) \mathscr{T}_{G}^{h_{j}}\left(G / Z_{G}\left(h_{j}\right)\right)_{0}\right\} \in H_{Z_{G}(h)}^{* *}(p t ; \boldsymbol{C}) .
$$

The action of h on $\tau_{0}\left(G / Z_{G}(h)\right)$ has no fixed non-zero vector. By an elementary consideration, we have:

$$
(G / T)^{h}=\coprod_{j=1}^{w(h)} g_{j}^{-1} Z_{G}\left(h_{j}\right) / T .
$$

Recall the definition of $\mathscr{T}_{G}^{h}(G / T) \in H_{\boldsymbol{Z}_{G}^{(h)}}^{* *}\left((G / T)^{h} ; \boldsymbol{C}\right)$. We can see that $\mathscr{T}_{Z_{G}(h)}\left(Z_{G}(h) / T\right) \mathscr{T}_{G}^{n}\left(G / Z_{G}(h)\right)_{0}$ is the restriction of $\mathscr{T}_{G}^{h}(G / T)$ onto the component $Z_{G}(h) / T$. The holomorphic action of g_{j} on G / T defines a map $\psi_{g_{j}}: g_{j}^{-1} Z_{G}\left(h_{j}\right) / T \rightarrow Z_{G}\left(h_{j}\right) / T$. It is $\iota_{g_{j}}$-equivariant. Hence we have:

$$
\begin{aligned}
& \iota_{B_{j}}^{*} \pi_{I}\left\{\mathscr{T}_{Z_{G}\left(h_{j}\right)}\left(Z_{G}\left(h_{j}\right) / T\right) \mathscr{T}_{G}^{h_{j}}\left(G / Z_{G}\left(h_{j}\right)\right)_{0}\right\} \\
& \quad=\pi_{1}\left\{\psi_{g_{j}}^{*} \mathscr{T}_{Z_{G}\left(h_{j}\right)}\left(Z_{G}\left(h_{i}\right) / T\right) \mathscr{T}_{G}^{h_{j}}\left(G / Z_{G}\left(h_{j}\right)\right)_{0}\right\} \\
& \quad=\pi_{!}\left(\left.\mathscr{T}_{G}^{n}(G / T)\right|_{\left.g_{j}^{-1} Z_{G\left(h_{j}\right)}\right) / T}\right) .
\end{aligned}
$$

Thus we have proved:

$$
\begin{align*}
& \left.\operatorname{ind}^{G} u\right)\left(1_{G}\right) \\
& \quad=\sum_{\substack{(h) \in(G) \\
M}} \frac{\varepsilon_{G}\left(M^{h}\right)}{m_{G}\left(M^{h}\right)}\left\{\pi_{!}\left(\mathscr{T}_{G}^{h}(G / T)\right) \operatorname{ch}_{G}^{h}(u) \mathscr{I}_{G}^{h}(M)\right\}\left[Z_{G}(h) \backslash \tau_{Z_{G}(h)} M^{h}\right] \tag{17}\\
& \left(\pi_{!}: H_{Z_{G}(h)}^{* * \rightarrow G}\left((G / T)^{h} ; C\right) \longrightarrow H_{Z_{G}(h)}^{* *}(p t ; C)\right)
\end{align*}
$$

To complete the proof it will suffice to show:

$$
\pi_{1}\left(\mathscr{T}_{G}^{h}(G / T)\right)=1 \in H_{Z_{\sigma}(h)}^{* *}(p t ; C)
$$

This will be done in the next section.

§ 3. Equivariant residual Todd classes over flag manifolds

Let G be a compact connected Lie group and let T be a maximal torus of G. Choose and fix a G-invariant complex structure on the flag manifold G / T. Let $h \in T$ be an element. Then the fixed point set $(G / T)^{h}$ is a complex submanifold (closed but not connected in general). It admits the holomorphic action of the centralizer $Z_{G}(h)$. Let $E(=E G) \rightarrow E / G(=B G)$ be the universal G-principal bundle. Then we have an associated bundle: $E \times_{Z_{G(h)}}(G / T)^{h} \rightarrow E / Z_{G}(h)\left(=B Z_{G}(h)\right)$. Over its total space $E \times_{Z_{G}(h)}(G / T)^{h}$, we have vector bundles

$$
\begin{aligned}
& \tau\left((G / T)^{h}\right)_{z_{\theta(h)}}=E \times_{Z_{\sigma(h}(t)} \tau\left((G / T)^{h}\right), \\
& \nu^{\theta}\left((G / T)^{n}\right)_{z_{\sigma(h)}}=E \times_{\left.Z_{\sigma(h)}\right)} \nu^{\theta}\left((G / T)^{h}\right) \quad(0<\theta<2 \pi),
\end{aligned}
$$

(ν^{θ} denotes the eigenvector bundle by the action of h). Then we define:

$$
\begin{aligned}
\mathscr{T}_{G}^{h}(G / T)= & \mathscr{T}\left(\tau\left((G / T)^{h}\right)_{Z_{\sigma(h}(h)}\right) \\
& \in \prod_{0<\theta<2 \pi}^{* *}\left(E \times_{Z_{\sigma}(h)}(G / T)^{h} ; C\right)=H_{Z_{\sigma}(h)}^{* *}\left(\left(G / \nu^{\theta}\left((G / T)^{n}\right)_{Z_{\sigma(h)}} ; C\right)\right.
\end{aligned}
$$

$\pi: E \times{ }_{Z_{G(h)}}(G / T)^{h} \rightarrow E / Z_{G}(h)$ defines the Gysin homomorphism

$$
\pi_{1}: H^{* *}\left(E \times_{Z_{\sigma(h)}}(G / T)^{h} ; C\right) \longrightarrow H^{* *}\left(E / Z_{G}(h) ; C\right) .
$$

The purpose of this section is to prove the following formula

$$
\begin{equation*}
\pi_{1} \mathscr{T}_{G}^{h}(G / T)=1 \in H^{* *}\left(E / Z_{G}(h) ; C\right)=H_{\boldsymbol{Z}_{\theta}(h)}^{* *}(p t ; \boldsymbol{C}) \tag{18}
\end{equation*}
$$

This is the last formula in the previous section.
Let $Z_{G}(h)_{0} \subset Z_{G}(h)$ denote the identity component. Then the projection $E / Z_{G}(h)_{0} \rightarrow E / Z_{G}(h)$ is a finite regular covering. The induced map
$H^{* *}\left(E / Z_{G}(h) ; C\right) \rightarrow H^{* *}\left(E / Z_{G}(h)_{0} ; C\right)$ is injective. So we may reduce the structure group $Z_{G}(h)$ to $Z_{G}(h)_{0}$. We denote by π^{\prime} the projection

$$
\pi^{\prime}: E \times_{z_{G(h)_{0}}}(G / T)^{n} \longrightarrow E / Z_{G}(h)_{0}
$$

Then it will suffice to show:

$$
\pi_{!}^{\prime} \mathscr{T}_{G}^{n}(G / T)=1 \in H^{* *}\left(E / Z_{G}(h)_{0} ; C\right)
$$

Let $W(G)=N_{G}(T) / T$ and $W\left(Z_{G}(h)_{0}\right)=N_{Z_{\sigma}(h)_{0}}(T) / T$ be the Weyl group of G and $Z_{G}(h)_{0}$ respectively. For each right coset $\left[w_{j}\right]$ in $W(G) / W\left(Z_{G}(h)_{0}\right)$, choose one representative $g_{j} \in N_{G}(T)$. Then, as a $Z_{G}(h)_{0}$-manifold, $(G / T)^{h}$ decomposes into a disjoint union

$$
(G / T)^{n}=\coprod_{\left[w_{j}\right] \in W(G) / W\left(Z_{G}(h) 0\right)}\left(Z_{G}(h)_{0} g_{j}^{-1}\right) / T .
$$

Put $h_{j}=g_{j} h g_{j}^{-1}$, then the holomorphic action of g_{j} maps $\left(Z_{G}(h)_{0} g_{j}^{-1}\right) / T$ onto $Z_{G}\left(h_{j}\right)_{0} / T$. This map is $\left[\epsilon_{g_{j}}: Z_{G}(h)_{0} \rightarrow Z_{G}\left(h_{j}\right)_{0}\right]$-equivariant. Over each component $\left(Z_{G}(h)_{0} g_{j}^{-1}\right) / T$ in $(G / T)^{h}$, we may translate everything onto $Z_{G}\left(h_{j}\right)_{0} / T$ by the action of g_{j}. Then the bundles

$$
E \times_{z_{G}(h)_{0}} \tau\left((G / T)^{h}\right) \quad \text { and } \quad E \times_{z_{G}(h)_{0}} \nu^{\theta}\left((G / T)^{h}\right)
$$

are translated to:

$$
\begin{aligned}
& E \times_{z_{G\left(h_{j)}\right)} \tau\left(Z_{G}\left(h_{j}\right)_{0} / T\right) \cong E \times_{T} \tau_{0}\left(Z_{G}\left(h_{j}\right)_{0} / T\right)}^{E \times_{Z_{G\left(h_{j}\right) 0}} \nu^{\theta}\left(Z_{G}\left(h_{j}\right)_{0} / T\right) \cong E \times_{T} \tau_{0}^{\theta}\left(G / Z_{G}\left(h_{j}\right)_{0}\right) .} .
\end{aligned}
$$

Then we have:

$$
\begin{aligned}
& \pi_{\{ }^{\prime}\left\{\left.\mathscr{T}_{G}^{n}(G / T)\right|_{\left(Z_{G}(h)_{0} g_{j}^{-1}\right) / r}\right\} \\
& \quad=\iota_{g j}^{*}\left(\pi_{j}\right)_{1}\left\{\mathscr{T}_{T}\left(\tau_{0}\left(Z_{G}\left(h_{j}\right)_{0} / T\right)\right) \prod_{0<\theta<2 \pi} \mathscr{T}_{T}^{\theta}\left(\tau_{0}^{\theta}\left(G / Z_{G}\left(h_{j}\right)_{0}\right)\right)\right\}, \\
& \left(\pi_{j}: E / T \longrightarrow E / Z_{G}\left(h_{j}\right)_{0}, \iota_{g_{j}}: E / Z_{G}(h)_{0} \longrightarrow E / Z_{G}\left(h_{j}\right)_{0}\right) .
\end{aligned}
$$

We can describe these classes in terms of the roots of G. Let $a_{1}, a_{2}, \cdots, a_{m}$ be the positive roots of G, corresponding to the invariant complex structure on G / T (see Borel-Hirzegruch [4]). Let g be the Lie algebra of G and let $\mathfrak{g}=\mathfrak{G} \oplus \mathfrak{a}_{1} \oplus \mathfrak{a}_{2} \oplus \cdots \oplus \mathfrak{a}_{m}$ be the root space decomposition. That is: $\mathfrak{g}=\tau_{0}(G)$ and $\mathfrak{h}=\tau_{0}(T)$. $\quad T$ acts on g by the conjugacy. $\mathfrak{g}=\mathfrak{h} \oplus \mathfrak{a}_{1} \oplus \mathfrak{a}_{2} \oplus \cdots \oplus \mathfrak{a}_{m}$ is the irreducible decomposition of this T-action. \mathfrak{h} is the trivial summand. $a_{k}(k=1,2, \cdots, m)$ is a linear functional on \mathfrak{G} such that, on $\mathfrak{a}_{k} \cong C$, the action of T is given by:

$$
\begin{aligned}
& h z=e^{2 \pi i a_{k}(H)} z, \\
& \left(h \in T, z \in \mathfrak{a}_{k} \cong C, H \in \mathfrak{h} \text { such that } \exp H=h\right) .
\end{aligned}
$$

For the fixed $h \in T$, we choose $H \in \mathfrak{h}$ such that $\exp H=h$ and we put $H_{j}=w_{j} H=\operatorname{Ad}\left(g_{j}\right) H$. Then the T-invariant subspaces $\tau_{0}\left(Z_{G}\left(h_{j}\right)_{0} / T\right)$ and $\tau_{0}^{\theta}\left(G / Z_{G}\left(h_{j}\right)_{0}\right)$ in $\tau_{0}(G / T)=g / \mathfrak{h}=\mathfrak{a}_{1} \oplus \mathfrak{a}_{2} \oplus \cdots \oplus \mathfrak{a}_{m}$ are given by:

$$
\begin{aligned}
& \tau_{0}\left(Z_{G}\left(h_{j}\right)_{0} / T\right)=\underset{\substack{k ; a_{k}\left(\mathcal{F}_{j, j)}\right)=0 \\
\bmod Z}}{\oplus} \mathfrak{a}_{k}, \\
& \tau_{0}^{\theta}\left(G / Z_{G}\left(h_{j}\right)_{0}\right)=\underset{\substack{k ; a_{k}(\vec{k}, \overrightarrow{j o d})=\theta / 2 \pi \\
\text { mod }}}{\oplus} \mathfrak{a}_{k} .
\end{aligned}
$$

By Borel-Hirzebruch [4], we may identify $H^{* *}(B T ; \boldsymbol{R})=H^{* *}(E / T ; \boldsymbol{R})$ with the completion of the symmetric tensor algebra $S^{* *}\left(\mathfrak{h}^{*}\right)$. We denote by $\left[a_{k}\right] \in H^{2}(E / T ; \boldsymbol{R})$ the corresponding class to $a_{k} \in \mathfrak{b}^{*}$. Then the equivariant total Chern classes are written by:

$$
\begin{aligned}
& c_{T}\left(\tau_{0}\left(Z_{G}\left(h_{j}\right)_{0} / T\right)\right)=\prod_{k ; a_{k}\left(H_{j}\right) \equiv 0}\left(1+\left[a_{k}\right]\right) \in H^{* *}(E / T ; \boldsymbol{R}), \\
& c_{T}\left(\tau_{0}^{\theta}\left(G / Z_{G}\left(h_{j}\right)_{0}\right)\right)=\prod_{k ; a_{k}\left(H_{j}\right) \equiv \theta / 2 \pi}\left(1+\left[a_{k}\right]\right) \in H^{* *}(E / T ; \boldsymbol{R}) .
\end{aligned}
$$

Hence we have:

$$
\begin{aligned}
\mathscr{T}_{r}\left(\tau_{0}\right. & \left.\left(Z_{G}\left(h_{j}\right)_{0} / T\right)\right) \prod_{0<\theta<2 \pi} \mathscr{T}_{T}^{\theta}\left(\tau_{0}^{\theta}\left(G / Z_{G}\left(h_{j}\right)_{0}\right)\right) \\
& =\prod_{k ; a_{k}\left(H_{j}\right) \equiv 0} \frac{\left[a_{k}\right]}{1-e^{-\left[a_{k}\right]}} \prod_{0<\theta<2 \pi} \prod_{k ; a_{k}\left(H_{j j}\right) \equiv \theta / 2 \pi} \frac{1}{1-e^{-\left[a_{k}\right]-i \theta}} \\
& =\left\{\prod_{k ; a_{k}\left(H_{j}\right) \equiv 0}\left[a_{k}\right]\right\}\left\{\prod_{k=1}^{m} \frac{1}{1-e^{-\left[a_{k}\right]-2 \pi i a_{k}\left(H_{j}\right)}}\right\} .
\end{aligned}
$$

By Borel-Hirzebruch [5], we can compute the Gysin homomorphism $\left(\pi_{j}\right)_{1}$. We remark that $\left\{a_{k} \mid a_{k}\left(H_{j}\right) \equiv 0 \bmod Z\right\}$ are the positive roots of $Z_{G}\left(h_{j}\right)_{0}$. Then we have:

$$
\begin{aligned}
& \left\{\prod_{k ; a_{k}\left(H_{j}\right) \equiv 0}\left[a_{k}\right]\right\}\left(\pi_{j}\right)_{1}\left\{\mathscr{T}_{T}\left(\tau_{0}\left(Z_{G}\left(h_{j}\right)_{0} / T\right)\right) \prod_{0<\theta<2 \pi} \mathscr{T}_{T}^{\theta}\left(\tau_{0}^{\theta}\left(G / Z_{G}\left(h_{j}\right)_{0}\right)\right)\right\} \\
& \quad=\sum_{\left.w \in W\left(Z_{G}\left(h_{j}\right)\right)_{0}\right)} \operatorname{sgn}(w)\left\{\prod_{k ; a_{k}\left(H_{j}\right) \equiv 0}\left[w a_{k}\right]\right\}\left\{\prod_{k=1}^{m} \frac{1}{1-e^{-\left[w a_{k}\right]-2 \pi i a_{k}\left(\mathcal{H}_{j}\right)}}\right\}
\end{aligned}
$$

For $w \in W\left(Z_{G}\left(h_{j}\right)_{0}\right)$, we have:

$$
\begin{aligned}
& \operatorname{sgn}(w)\left\{\prod_{k ; a_{k}\left(H_{j}\right)=0}\left[w a_{k}\right]\right\}=\prod_{k ; a_{k}\left(H_{j}\right)=0}\left[a_{k}\right] \\
& w a_{k}\left(H_{j}\right)=a_{k}\left(w^{-1} H_{j}\right)=a_{k}\left(H_{j}\right) \quad(k=1,2, \cdots, m)
\end{aligned}
$$

Hence we have:

$$
\begin{gathered}
\left(\pi_{j}\right)_{1}\left\{\mathscr{T}_{T}\left(\tau_{0}\left(Z_{G}\left(h_{j}\right)_{0} / T\right)\right) \prod_{0<\theta<2 \pi} \mathscr{T}_{T}^{\theta}\left(\tau_{0}^{\theta}\left(G / Z_{G}\left(h_{i}\right)_{0}\right)\right)\right\} \\
=\sum_{w \in W\left(Z_{G}\left(h_{j}\right)_{0}\right)} \prod_{k=1}^{m} \frac{1}{1-e^{-\left[w a_{k}\right]-2 \pi i w a_{k}\left(H_{j}\right)}} .
\end{gathered}
$$

The conjugation $\iota_{g_{j}}: E / Z_{G}(h)_{0} \rightarrow E / Z_{G}\left(h_{j}\right)_{0}$ is covered by the map $\iota_{g_{j}}: E / T \rightarrow$ E / T. So, in cohomology, $\iota_{g j}^{*}$ is given by the action of the element $w_{j}^{-1} \in$ $W(G)$. Then we have:

$$
\begin{aligned}
& \pi_{!}^{\prime} \mathscr{T}_{G}^{h}(G / T)=\sum_{j} \iota_{g_{j}}^{*}\left(\pi_{j}\right)_{1}\left\{\mathscr{T}_{T}\left(\tau_{0}\left(Z_{G}\left(h_{j}\right)_{0} / T\right)\right) \prod_{\theta} \mathscr{T}_{T}^{\theta}\left(\tau_{0}^{\theta}\left(G / Z_{G}\left(h_{j}\right)_{0}\right)\right)\right\}
\end{aligned}
$$

Here, $w a_{k}\left(H_{j}\right)=w a_{k}\left(w_{j} H\right)=w_{j}^{-1} w a_{k}(H)$ and in summation $w_{j}^{-1} w$ move just all over $W(G)$. Hence:

$$
\pi_{!}^{\prime} \mathscr{T}_{G}^{n}(G / T)=\sum_{w \in W(G)} \prod_{k=1}^{m} \frac{1}{1-e^{-\left[w a_{k}\right]-2 \pi i w a_{k}(H)}}
$$

Recall the Weyl's relation that was used in Borel-Hirzebruch [4]. That is, as a function in $X \in \mathfrak{h}$, we have:

$$
\sum_{w \in W^{(}(G)} \prod_{k=1}^{m} \frac{1}{1-e^{-w a_{k}(X)}} \equiv 1
$$

Replace X by $X+2 \pi i H$ and we get:

$$
\sum_{w \in W(G)} \prod_{k=1}^{m} \frac{1}{1-e^{-w a_{k}(X)-2 \pi i w a_{k}(H)}} \equiv 1
$$

The formal power series expansion of this expression gives a relation in $S^{* *}\left(\mathfrak{h}^{*}\right) \otimes C=H^{* *}(E / T ; C)$. This shows:

$$
\pi_{\mid} \mathscr{T}_{G}^{h}(G / T)=1 \in H^{* *}\left(E / Z_{G}(h) ; C\right) \subset H^{* *}(E / T ; C) .
$$

References

[1] M. F. Atiyah, Elliptic operators and compact groups, Lecture Notes in Math., 401, Springer-Verlag, 1974.
[2] M. F. Atiyah and I. M. Singer, The index of elliptic operators, I, Ann. of Math., 87 (1968), 484-530.
[3] ——, The index of elliptic operators, III, Ann. of Math., 87 (1968), 546-604.
[4] A. Borel and F. Hirzebruch, Characteristic classes and homogeneous spaces, I, Amer. J. Math., 80 (1958), 458-538.
[5] , Characteristic classes and homogeneous spaces, II, Amer. J. Math., 81 (1959), 315-382.
[6] T. Kawasaki, The signature theorem for V-manifolds, Topology, 17 (1978), 75-83.
[7] -, The Riemann-Roch theorem for complex V-manifolds, Osaka J. Math., 16 (1979), 151-159.

Department of Mathematics
Faculty of Science
Gakushuin University
Mejiro, Tokyo, 171 Japan

[^0]: Received December 17, 1979.

[^1]: ${ }^{*)}$ In Atiyah [1], this theorem is proved without any restriction on isotropy subgroups.
 **) The definition of the multiplicity $m(h)$ in Atiyah [1] is incorrect. It depends on the whole group T and the connected component M_{i}^{h} in M^{h}.

