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THE INDEX OF ELLIPTIC OPERATORS

OVER F-MANIFOLDS

TETSURO KAWASAKI

Introduction

Let M be a compact smooth manifold and let G be a finite group

acting smoothly on M. Let E and F be smooth G-equivariant complex

vector bundles over M and let P: <ί£~(M; E) -• ̂ °°(Λf; F) be a G-invariant

elliptic pseudo-differential operator. Then the kernel and the cokernel of

the operator P are finite-dimensional representations of G. The difference

of the characters of these representations is an element of the represen-

tation ring R(G) of G and is called the G-index of the operator P.

(1) ind P = char [kernel P] — char [cokernel P] .

It is well-known that the G-index ind P e R(G) depends only on the

homotopy class of the elliptic operator and, as Atiyah and Singer showed

in [2], indP is determined by the stable equivalence class [σ(P)] e KG(τM)

of the principal symbol σ(P) viewed as the difference bundle over the

tangent bundle τM. The Atiyah-Singer index theorem asserts that the

value (ind P)(g) is expressed by the evaluation of a certain characteristic

class over the tangent bundle τ(Mg) of the fixed point set M*.

(2) (ind P)(g) = ( - l) d i m »* <ch* [σ(P)]S*(M), l<Mg)]} .

Here ch^ [σ(P)] is a class in the compactly supported cohomology group

H*(τ(Mg);C) expressed in the characteristic classes of the complex eigen-

vector bundles by the action of g on the stable vector bundle [<T(P)\TW?)]»

Jg{M) is a class in H*(M8;C) expressed in the characteristic classes of

the real and complex eigenvector bundles by the action of g on the real

vector bundle τM\Mg. We call these classes over the fixed point set as

the residual characteristic classes.

Next we consider the index of the operator PG: V"(M; E)G -> ̂ °°(M; F)°
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between G-invariant sections. By the orthonormality of irreducible char-
acters, we have:

ind PG = dim [kernel PG] - dim [cokernel PG]

( 3 ) =-L
\G\ ge

|Cr |

The operator P e can be viewed as an operator over the orbit space
G\M in the following sense. The invariant section s: M-+ E is determined
uniquely by the induced section s: G\M—G\E over the orbit space. So
we may consider the invariant sections ^°°(M; E)G as the sections over
the orbit space X= G\M. The operator PG operates on these sections
and its index inάPG depends only on the G-equivariant homotopy class
of the principal symbol [σ(P)]> which is considered to be a section over
the orbit space G\τM. Thus we consider PG as an operator over X = G\M.

We remark that the evaluation in (3) admits a purely local expres-
sion over X. Choose G-invariant metrics and connections on manifolds
M and M*9 on bundles τM9 τ(Mg) and v(Mg) (the normal bundle of M8 in
M) and on a stable bundle σ(P). Then the evaluations of residual char-
acteristic classes are given by the integrations of the corresponding char-
acteristic forms. For each x e M, we choose a small neighbourhood Ux

so that the isotropy subgroup Gx acts on Ux and, for ge G, Ux Π gUxΦ0
implies geGx. Then the orbit space GX\UX is naturally identified with
an open subset in X. A family {Gx\Ux}xeM defines an open covering of X.
Choose a partition of unity 1 = Σ Φx subordinate to this coverinig. Then
we can rewrite (3) in the following form

(4) ind PG = Σ - L - Σ (-l) d i m "if φx ch* W>)\ϋβ\S*{Ua) .
xeM \OX\ gGGx Jτ(U%)

The orbit space G\M is a typical example of V-manifold, and the
above formula (4) can be given an interpretation which still makes sense
for general V-manifolds.

The purpose of the present paper is to give an index theorem for
elliptic operators over ^-manifolds which generalize the formula (4).

Let X be a compact V-manifold. (For the precise definitions of V-
manifolds and V-bundles, see Kawasaki [6]). For each x e X, there is a
neighbourhood Ux and an identification Ux — GX\UX, where Ux is a
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neighbourhood of the origin in an effective real representation space of
a finite group Gx. For each y e Ux, choose small Uy so that Uy c Ux,
then there is an open embedding φ:Uy-+ϋx that covers the inclusion Uy

C Ux. The choice of such φ is unique up to the action of Gx on Ux.
Each φ determines an injective group homomorphism λφ:Gv->Gx that
makes φ be ^-equivariant.

To express our theorem in cohomological terms, we have to assign
to each V-manifold X a certain global geometric object over which the
residual characteristic classes should be evaluated. If we look at (4),
such an object must be a collection of all t/f's. Each U§ admits the ac-
tion of the centralizer ZGx{g) of g in Gx. If g and g' are conjugate in
GX9 then US and £/f' are diffeomorphic by the action of some element h
in Gx (g' = hgh'1). So we consider one element g for each conjugacy class
(g) in Gx. For each point xeX, let (1), (hi), , (hx

x) be all the conjugacy
classes in Gx. Then we have a natural bijection

{(y,(hQ)\yeUs, j = 1,2,...,Pv}

So we define globally:

ΣX = {(x, (K))\xeX, Gx Φ {1}, i = 1, 2, . . . , Px) .

Then ΣX has a natural V-manifold structure whose local coordinate co-
verings are U% -> ZGχ(h)\U^ (h Φ 1). The action of ZGx(h) on Ul is not
effective. The order of the trivially acting subgroup is called the multi-
plicity of ΣX in X at (x, (h)). In general, ΣX has many connected com-
ponents of varying dimensions. Let Σu Σ29 , Σc be the connected com-
ponents of ΣX. Since the multiplicity is locally constant on ΣX, we may
assign the multiplicity m* to each connected component Σt.

On each local coordinate U% over ΣX, we have the normal bundle
vφS) in Ux and the tangent bundle τ(U£). On the normal bundle v(Ux),
we have the action of h. Then we have the eigenspace decomposition of

(hv = eiθv if vevθ

h(0<θ<π) ,

\hv = — v if vevl .
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The collection of these ZGa7(/*)-equivariant bundles vθ

h (0 < θ <̂  π) and

form a real or complex vector V-bundles over ΣX. By choosing invariant

connections, we have a collection of residual characteristic forms

e Ω*(U£) ®R C .

These forms define characteristic classes

JΣ(X) e H*(ΣX; C), and J(X) e H*(X; Q) (h = 1) .

By a V-bundle E over a V-manifold X, we mean a family {(Gf, £7* ->

t/x)} of equi variant fibre bundles with surjective homomorphisms Gf -> G^

and their attaching bundle maps {Φ}: Ev-+ Ex for each inclusive pair Uy

c Ux. We call V-bundle E to be proper if, for each x e X, Gf = G*. The

attaching bundle maps {Φ} define a unique induced open embedding

Φ: Gξ\Ey —> Gξ\Ex of the orbit spaces of total spaces. These induced maps

define the total space E — U {Gχ\Ex) and the projection E-> X. E itself

admit a structure of V-manifold.

Let E—>X be a proper V-bundle. A section s:X-+ E is called a C°°

V-section if, for each [7X, s | Ux: Ux -> -B̂  = GX\EX is covered by a G*-

invariant C°° section sx: Ux —• J?x. For a vector V-bundle £J, we denote

the set of all C°° V-sections by ^£(X; E), which forms a vector space.

On a vector V-bundle E, we can always construct a invariant linear con-

nection, that is, a family of invariant connections on (Gf, 2^ —> Ϊ7J which

are compatible with attaching bundle maps. Then the characteristic forms

define a C°° V-section of the exterior power of the cotangent vector V-

bundle, which represent a cohomology class on X.

Let E and F be proper complex vector V-bundles over X. A linear

map P : ^ ( X ; E) -> ̂ γ{X\ F) is called a (pseudo-) differential operator if

locally it is covered by invariant (pseudo-) differential operators

(modulo smoothing operators), which are compatible with attaching maps.

We call P to be elliptic if each Px is elliptic. For an elliptic pseudo-

differential operator P : Vy(X; E) -+ &v(X; F\ we have the V-index defined

by:

(5 ) indF P .= dim [kernel P] — dim [cokernel P] .

This index generalize i n d P G in (3) and (4).
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Like G-equivariant case, the V-index depends only on the homotopy
class of elliptic operators. The principal symbol σ(P) of the operator P
is a well-defined C°° V-section of the V-bundle Horn (E, F) over the total
space τfX of the cotangent vector V-bundle. For P elliptic, the principal
symbol σ(P) defines a compactly supported difference V-bundle and the
index indF P is determined by its stable equivalence class [σ(P)]. The
stable equivalence classes of compactly supported proper difference vector
V-bundles over τfX = τvX form a group Kv(τfX) = Kv{τvX). (τvX denotes
the total space of the tangent vector V-bundle). Then V-index defines a
homomorphism

( 6 ) indF: Kv(τvX) • Z .

An element u e Kv(τvX) is represented by proper complex vector V-
bundles E and F over τvX and an isomorphism σ: E-> F over τvX — X.
Then, choosing a suitable invariant connections, we have the residual
Chern characters

chΛ (E) - ch* (F) e Ω*(τφi)) ®R C ,

and globally we have the classes

ch* (u) e H*(τv(ΣX); C) and ch (u) e H*(τvX; Q) (A = 1) .

In this framework, we can state our theorem

THEOREM. Let X be a compact V-manifold. Then, for u e Kv(τvX), we

have:

indΓ (u) = ( - 1 ) ^ ' <ch {u)J{X), [τrX])

+Σ LJ1

As a special case of this theorem, we get the following results:
I) (Kawasaki [6]) Let X be a compact oriented V-manifold of di-

mension 4k. As a topological space, X is an oriented rational homology
manifold. The signature Sign (X) of X is defined by the signature of the
non-degenerate symmetric bilinear form on the middle dimensional co-
homology group H2k(X; Q) given by the cup product. Using de Rham
cohomology, we can represent Sign (X) as the V-index of the signature
operator D+: Ωγ(X) -> Ωγ(X) over V-manifold X. Then we have:
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Sign (X) = <L(X), [Z]> + £ — <LΣ(X),
i=i rrii

The classes L(X) and LΣ(X) axe defined locally by the residual L-class
Lh(Ux), as we have defined J(X) and SΣ(X).

II) (Kawasaki [7]) Let X be a compact complex V-manifold and let
E-+X be a holomorphic vector V-bundle. Then X admits a natural
structure of an analytic space and the local holomorphic V-sections of E
define a coherent analytic sheaf (PV(E) over X. The arithmetic genus
χ(X; E) is defined by:

χ(X; E) - ' i f (-1)* dim, H\X; ΘV{E)) .
i = l

Then χ(X; E) is represented by the V-index of the Dolbeault complex over
the V-manifold X with coefficients in E. We can apply our theorem and
we have:

x(x E) = έ

The classes ^*(X; S) and ^^(Z; E) are defined locally by the residual Todd
class with coefficients in E.

The proof that we adopt here is completely different from those in
the above two reports [6] and [7]. As we have remarked in [6], every V-
manifold X is presented as the orbit space of a smooth G-manifold X with
only finite isotropy subgroups and with the trivial principal orbit type.
We may choose such (G,X) with G compact and connected. Let P be
an elliptic operator over X. Then we can lift the principal symbol σ(P)
considered as a difference V-bundle over τvX to a G-equivariant difference
bundle over τGX, the space of tangent vectors orthogonal to the orbits
of G. The lifted symbol determines up to homotopy a transversally elliptic
operator P over X relative to G. Then the V-index ind7 P is equal to
the evaluation (indG P) (l0) of the distributional index indβ P by the unit
function over G.

For the distributional index of transversally elliptic operators, we rόfer
to Atiyah [1]. We use two main results of [1]. One result is an expres-
sion of indr P, for a transversally elliptic operator P over a manifold M
relative to a toral action with only finite isotropy subgroups. The value
(indΓ P) (1T) is written by the evaluation of the equivariant residual char-
acteristic classes over the orbit spaces T\ττM

h (h e T, Mh Φ φ) (including
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h = 1). By a direct translation, this formula gives the formula (7) in our

theorem, when the V-manifold X has the form X— T\M. Another result

is a reduction formula (ind* P) (1G) = (indΓ ([3] <g> P)) (1Γ), for a compact

connected Lie group G, where T is a maximal torus of G and [9] denotes

the Dolbeault complex over the flag manifold G\T.

Combining these two results, we get an expression of the V-index

using the evaluation of characteristic classes over an auxiliary V-manifold

T\X and its singularities. This new V-manifold T\X is a fibration (with

singularities) over X with generic fibre G\T. We apply the Gysin homo-

morphism (the integration over the fibre) to these characteristic classes.

Then we get classes over the V-manifold X and its singularities. To

deduce (7), we need a formula on the equivariant residual Todd classes

over the flag manifold G/T. This formula is a generalization of the fol-

lowing result in Borel-Hirzebruch [5].

Let G be a compact connected Lie group and let T be a maximal

torus of G. We fix a G-invariant complex structure on the flag manifold

GjT. Consider the fibration π:BT-+BG of classifying spaces with fibre

G/T. Its bundle along the fibre is a complex vector bundle over BT.

We denote by FG(G\T) the Todd class of this bundle. (This class is the

G-equivariant Todd class of the complex G-manifold G/T). Then Borel

and Hirzebruch proved the following:

THEOREM (Borel-Hirzebruch [5]). Let πx: H**(BT; R) -* H**(BG; R) be

the Gysin homomorphism (the integration over the fibre). Then we have:

( 8 ) π^G(GIT) = 1 e H**(BG; R) = Hg*(pt; R),

where H%* denotes the completed equivariant cohomology group for G-spaces.

Let h e T be an element. The action of h on G/T is holomorphic.

So the fixed point set (G/T)h is a complex submanifold (non-connected)

with the holomorphic action of the centralizer ZG(h). The tangent bundle

τh and the normal bundle vh are the ZG(Λ)-equivariant complex vector

bundles. Let vh — ®vθ

h be the eigenspace decomposition by the action of

h. Then we define the equivariant residual Todd class by:

Π
O<0<2JΓ

e m*w{{GIT)h; C) = H**(EZβ(h) X ZβW (GIT)"; C).
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The base space EZG(h) XZQ{h)(GIT)h is a fibration over BZG(h) with the
fibre (GIT)\ Then we have the Gysin homomorphism TΓ,: H$*w((GIT)h; C)
-> HS$»(pt; C) = H**(BZG(h; C).

THEOREM. The Gysin homomorphism of the equivariant residual Todd
class is given by:

(9) π^Uβ\T) = 1 e H**(BZG(h); C) = ff**w(pί; C) .

If we put h = 1, we recover (8). The proof of this formula is straight-
forward. The same technique as in Borel-Hirzebruch [4] is applicable.
We can express πx3Γ%(GIT)eH**(BZG(h);C) c H**(BT;C) in the power
series in the roots of the Lie group G. Then we deduce our formula
from the WeyΓs relation on the roots of G.

§ 1. Distributional index and F-index

In this section we summarize the results in Atiyah [1] that we need
and we shall show the relation between the distributional index of trans-
versally elliptic operators and the V-index of elliptic operators over V-
manifolds.

Let G be a compact Lie group and let M be a compact smooth G-
manifold without boundary. We choose a G-invariant Riemannian metric
on M and we identify the cotangent bundle τ*M and the tangent bundle
τM. We define a subset τGM in τM as the set of all the tangent vectors
that are orthogonal to the orbits of G.

Let E and F be G-equivariant smooth complex vector bundles over
M and let P: tf°°(M; E) -> tf"(M; F) be a G-invariant pseudo-differential
operator of order m. By choosing invariant metrics and invariant con-
nections on E and F, we have the space of Sobolev sections Jfs(M; E)
and 3tf"(M; F) (s e R). Then the operator P extends uniquely to a bounded
operator P: J4?S(M; E) -> Jfs'm(M; F). Also we have the adjoint operator
P*:^f"(M;F)->^-m(M;jB). The null spaces Jf\P) and Jf\P*) are
closed subspaces and admit the structure of Hubert spaces. We may con-
sider Λ°S(P) and Jf'(P*) as unitary representations of G. We denote by
G the set of all equivalence classes of irreducible representations of G.
For a € G, we denote the ^-components by Jίs

a(P) and Jf*a(P*).

We call a G-invariant pseudo-differential operator P: ^°°(M; E) ->
q?°°(M; F) to be transversally elliptic relative to G if the principal symbol
σ(P) is invertible over τGM — M. Then we have:
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THEOREM (Atiyah [1]). Let P: tf°°(M; E) -> V°°(M; F) be a transversally

elliptic operator. Then for each aeG, JΓ*JJP) is finite dimensional and does

not depend on s. Furthermore the formal sum

char JT(P) = £ char Λ"

converges in J^~n~e(G) (n = dimM) for any ε > 0.

Now we can define the distributional index:

DEFINITION. Let P : ^°°(M; E) -• ̂ °°(M; F) be a transversally elliptic

operator relative to G. Then the distributional index indG (P) is defined

by:

indG (P) = char Jf(P) - char ^ ( P * ) e 3)\Gf™

Here we denote by ^ '(G) i n v the distributions on G invariant under the

inner automorphisms of G.

The distributional index has the following properties:

THEOREM (Atiyah [1]). The distributional index of a transversally

elliptic operator P depends only on the homotopy class of the restriction of

the principal symbol σ(P) to τGM — M

0(P)LM-M € Iso (π*E, π*F)\τGM_M .

COROLLARY. The distributional index defines a R(G)-module homo-

morphism

indG: KG(τGM) • ίT(G) inv .

For each aeG, the transversally elliptic operator P defines a G-

invariant Fredholm operator

Pa: jfs

a(M; E) • ̂ fs-m(M; F) .

So we may consider indσ (P) = XJα ind (Pα). Then by the orthonormality

of irreducible characters, we have:

(indG P ) (lσ) = index [PG: tf°°(M; E)G > ̂ °°(M; F)G] .

Now we assume that the action of G on M is of trivial principal

orbit type and with only finite isotropy subgroups. Then, by definition,

the above number is the F-index of the elliptic operator PG: <gγ(G\M\ G\E)

-> <g"ϊ(G\M; G\F) over the V-manifold G\M. Each G-equivariant bundle
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E-> M defines a proper V-bundle G\E ~> G\M, and vice versa. The V-

manifold G\τGM is exactly the total space τv(G\M) of the tangent V-bundle.

Then we have the canonical isomorphism KG(τGM) ^ Kv(τv(G\M)) and the

following commutative diagram

KG{ZGM)

Kv(τv(G\M))

Conversely, given a V-manifold X, we choose a Riemannian metric

on X. Then the total space 0{ή)(τvX) of the associated tangential ortho-

normal frame V-bundle is a smooth manifold. The right action of O(ή)

is of trivial principal orbit type and with only finite isotropy subgroups.

Its orbit space is canonically identified with the original V-manifold X.

If we choose an injective homomorphism of O(n) into a compact connected

Lie group G, then the total space X = O(n)(τvX) X 0 ( n ) G of the associated

tangential G-principal V-bundle is a smooth manifold with a right G-

action and its orbit space is again a V-manifold X. So we recover the

original situation and we also have an identification Kv(τvX) = KG{τGX).

Thus we reduce the computations of V-index into those of distributional

index.

For the computations of distributional index, we write down some of

the results in Atiyah [1], Let G be a compact connected Lie group and

let T be its maximal torus. We choose and fix a G-invariant complex

structure on the flag manifold G/T. Then we have the Dolbeault complex

on G/JΓ and we consider its symbol [5] as an element of KG(τ(GIT)). Let

M be a smooth G-manifold with only finite isotropy subgroups. We have

a G-equivariant diffeomorphism G Xτ M = G\T X M by sending (g, x) e

G X τ M to (gT, gx). Then we have the equivalences of vector bundles

G X τ ττM s τG(G XTM)^ τG(G/T X M) s τ(G/T) X τGM.

The first equivalence comes from the (G X T)-equivariant bundle map G

X TτM = τGXT(G X M), where G X T acts on G X M by (g, ΛXg7, x) =

{ggfh~ι, hx). The third equivalence comes from the natural identification

τ{GjT X M) ^ r(G/Γ) X rilί. Then we define a homomorphism r: KG{τGM)

->KT(τTM) by:

r: # β ( r e M) -^-> Kβ{τ(GlT) X τGM) s ίΓ0(G XΓ ττM) s



ELLIPTIC OPERATORS 145

By this homomorphism, we can compute indG through indΓ.

THEOREM (Atiyah [1]). Let M be a compact smooth G-manίfold without

boundary (with only finite isotropy subgroups)^. Then the following diagram

commutes:

indG I ind Γ

where £#: &(T) -> @'(G)™ is the dual of the restriction i*: ^°°(G)inv

Especially, for u e KG(τGM), we have:

(10) (inάGu)(lG) = (inάTru)(lT).

Another result that we need is the following:

THEOREM (Atiyah [1]). Let M be a compact smooth T-manίfold without

boundary, with only finite isotropy subgroups. Then for u e Kτ(ττM), we

have:

(
(11) (indΓ ύ) (1Γ) = Σ {

κτM*φ

where M* moves over the connected components of Mh and for each M£9

we define the multiplicity mτ{Mf) by:

mτ(Mi) = the order of {ge T\gx = x, for any xeMf}** } .

We review the definitions of ch£ (u) and ./£(#). Let ih: ττM
h —> ττM

be the inclusion, then i$u e Kτ(ττM
h) admits the eigenspace decomposition

i*u == ®Q^θ<2π u°h, where uθ

he Kτ(ττM
h) is the stable eigenvector bundle of

eigenvalue eίθ. Then we have an element chτ(ul) e H^c(ττM
h; Q) ^

H*(T\ττM
h;Q) (the subscript c denotes the cohomology with compact

support). We define ch£ (u) e H$J?TM
h\ C) s H*(T\ττM

h; C) by:

chMκ)= Σ e^ch

*} In Atiyah [1], this theorem is proved without any restriction on isotropy sub-
groups.

**) The definition of the multiplicity m^h) in Atiyah [1] is incorrect. It depends on
the whole group T and the connected component M1} in Mh.
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Let ττM\Mκ = ττM
h φ uhfT — ττM

h φ (®0<θ^π vθ

hfT) be the eigenspace decom-

position. v%tT is the real eigenvector bundle of eigenvalue —1 and v{tT

(0 < θ < TΓ) is a complex vector bundle on which the action of h is the

multiplication by the scalar eίθ. We denote formally the equivariant

Pontrjagin classes of ττM
h and vπ

htT by pτ(ττM
h) = \[ (1 + x>) e H?(Mh; Q)

and Pτ(»lτ) = Π (1 + y))e H£(Mh;Q) respectively, and the equivariant

Chern classes of v'htT by cτ(vθ

h)T) = Π (1 + Zj) e H$(Mh; Q). Then we define

e ίίΓ*(MΛ; C) s H*(T\Mh; C) by:

— / ^ Λ 4 (Λ ___ fa I \~^ Oft (\tπ i / I I <

where

C) =
— e X} 1 — ex

. r) = Π ί ) >
' V V 1 + β« 1 + e~" /

ft,r) - ΠΠ ^ .

Consider the orbit space X = Γ\M as a V-manifold. By definition,

we can see:

(LI r ^ i ) = T\ττM U (LI

So we may identify HHττM; Q) with H*(τrX; Q) and H£c(ττMt; C) with

H*(τrΣt; C). Then, for ueKr(τrX) S KT(τTM), we can interpret:

ch (a)^(X) + ch* (u)S*(X) = chΓ (u)

Thus we have shown that the Atiyah's formula (11) is equivalent to our

formula (7), if the F-manifold X is obtained as the orbit space of a toral

action.

Now we consider a general V-manifold X We may assume that X is

the orbit space of a G-manifold M. G acts on M with only finite isotropy

subgroups and of trivial principal orbit type. Then, for a real or complex

G-equivariant vector bundle E, we may identify the G-equivariant char-

acteristic class of E with the characteristic class of the F-bundle G\E-+X
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(defined by the same polynomial in Pontrjagin classes or Chern classes).

We shall rewrite the formula (7) in the word of equivariant characteristic

classes.

By the compactness of M and the smoothness of the G-action, the

number of orbit types of G-manifold M is finite. Also, all the isotropy

subgroups are finite, so the number of conjugacy classes of elements of

G with non-empty fixed point set is finite. Let (1), (/&j), , (hp) be such

conjugacy classes. Each fixed point set Mh admits the action of the

centralizer Z0(h). Then the action of h on τM\Mh defines the decomposi-

tion into eigenvector bundles

τM\Mκ = τZG(h)M
hΦvh>β = τZβ(h)M

h Θ ( 0 via) .

Since ZG(h) commutes with h, each summand is ZG(/ι)-equivariant. Then

we define S%(M)e H*oih)(Mh; C) by;

SUM) = det Λ (1 - h\Vh QYι®ZQ{hM,G){ Π
KQ<θ<

We remark that vhtG and the normal bundle of Mh in M differ in dimen-

sion equal to dim G — dim ZG(h). For u e Kv(τvX) ~ K0(τGM), we have

i*ueKZβ{h){τZG{h)M
h) and the eigenspace decomposition i%u = ®Qύθ<2π uθ

h.

Then we define:

Let ΣX = [] Σi be the singularity V-manifold. Then we have canonical

identifications

LI Σt = JJ ZG{h$\Mhi, II TrΣt = IJ ZAh,)\tnhfiM*' .

Let ZG(h)\Mh = [] ZG(h)\Mi be the decomposition into connected com-

ponents. Each Mi is ZG(/ι)-invariant but not connected in general. We

define the multiplicity mG{Mf) by:

mG(M?) = the order of {g e ZG(h) \ gx = x, for any x e Mf} .

Now we can rewrite the formula (7) into:

(12) ( ind β i i ) ( l β )=
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where we denote by (G) the set of conjugacy classes of G. We shall

deduce this formula from (11) and a computation in the equivariant Chern

classes on the flag manifold GjT.

§2. Gysin homomorphisms (integrations over the fibre)

Let G be a compact connected Lie group and let M be a compact

G-manifold without boundary. We assume that G acts on M with only

finite isotropy subgroups. Let T be a maximal torus of G. We choose

and fix a G-invariant complex structure on the flag manifold G/ϊ7. Then,

by (10) and (11), we have, for ueKG(τGM):

/ 1\dim

= Σ ( ~ 1 }

hr
mΊ(MΪ)

Here Mf C Mh denotes a connected component. In the sequel we omit

i's since all the arguments are parallel.

To deduce (12), we need to reform (13) into the evaluation over

[ZG(h)\τZo(h)M
h]9s. We use the Gysin homomorphisms. Consider the com-

mutative diagram

Mh-^ EZG(h) X ZG(h) Mh

T\Mh > ZG(h)\Mh .

The vertical maps induce the identifications H*(T\Mh; Q) ^ H$(Mh; Q) and

H*(ZG(h)\Mh;Q)^H$G(h)(Mh;Q). The upper J is a fibration with fibre

ZG(X)IT. We orient ZG(h)IT by the induced complex structure from G/Γ.

We denote the orientation sheaf on Mh by o(Mh). Then we have the

Gysin homomorphism π{: H$(Mh o(Mh) <g> Q) -* HfG(ft)(MΛ o(Mh) ® Q). We

may reconstruct πx by using the Leray-Serre spectral sequence of the map

π: T\Mh — Zκ(h)\M. Then we have the following proposition:

PROPOSITION. The Gysin homomorphism πx\

m(Mh; o(Mh) ®Q) — • mo(h)(Mh; o(MΛ) ® Q)

is a H$β{h)(Mh;Q)-module homomorphism. For xeH$(Mh;o(Mh)® Q)9 we

have the following formula:
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< v > [ Z M W ' ] > •

Also we have the Thom isomorphisms

fτ: m{Mh; o(Mh) ®Q) > HUττM
h; Q)

and

; o(M») ® Q) —> ffJU,. (τZβWM>; Q) .

Then we define ΓTΓ, = ψZgW o π , o (ψy)-1: Hlc(τTM
h; Q) -+ fl|β(ft,,c(rZo(ft)ΛίΛ; Q).

I t is also a H%am(MΛ; Q)-homomorphism. Looking carefully at the orien-

tations of T\ττM
h and Zβ(h)\τZglh)M

n we have, for yeH$,£τTM
h;Q):

mτ(Mh) w '

(mh = I dim* (ZG(h)jT) = dimc (ZG(h)IT)) .

We apply wr, to {ch^ (ru)Jff(M)} in (13). Then we get:

(ind* u) (1G) = Σ e ^ * >
(14) fe6Γ WβiM*1)

We compute each term (—l)m*rπ, {chf (ra) J$(M)} independently. First

we consider Jj{M)eH$(Mh',C). We have isomorphisms:

m{Mh; C) s mβW(Zβ(h) XTM»; C) s mβW(Za(h)IT X

Recall the definition:

= detB (1 - Λk Γ)-^Γfe>

vh>τ is a ZG(Λ)-equivariant bundle and decomposes equivariantly into:

where τo(GjZQ(h)) denotes the tangent space of G/ZG(h) at the identity

coset. (We denote by the same symbol the vector space and the trivial

vector bundle). So, if we lift the Γ-equivariant bundle vhfT to a ZG(h)~

equivariant bundle over ZG(h) X τ Mh = Z0(h)IT X Mh, we may consider

it as the pull-back of a ZG(/&)-equivariant bundle vhfT over Mh. Since

ZG{h)jT is a complex submanifold of G/Γ, τo(GIZG(h)) is a complex vector

space with a linear action of h. h does not have any non-zero fixed
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vector on τ0(GIZo(h)). Let ®0<θ<2π τβ

0(GIZG(h)) be the eigenspace decomposi-

tion. We define:

Then we have:

detB (1 - h\.htTY
ίXM.τ){ Π y°M,

= J?>e(GIZe(h)\ X d e t ( l - h\,htβ)->MZβUvl,a)\ Π

where the first factor is in H$*ih)(pt; C) and the second factor is in

H$G(h)(Mh;C). Also we have a T-equivariant decomposition:

ττM
n = τZQ{h)M> Θ τo(ZG(h)IT) .

If we lift ττM
h over ZQ(K)\T X ΛP, then τZβ{h)M

h is a Zβ(/ι)-equivariant

bundle over Mh and τo(Zβ(/ι)/T) is the tangent bundle of ZG(h)IT. Hence

we have:

= JZβW(ZG(h)IT) X

As a whole, we have:

JUZ(h)IT) X JHG\ZG{K)\ x

where the first factor is in H$*(h)(ZG(h)IT; Q), the second factor is in

H$*(h)(pt; C) and the third factor is in HiΰW(Mh; C).

Next we compute ch£ (rύ) e HfiiC(ττM
h C). By definition, we have ru

[5]χueKMG/T) X τGM) s Kτ(ττM). So

ί£ra == [3G / ΓUG ( Λ ) / Γ] X ί*ueKZGih)(τ(ZG(h)IT) X τZ ( ? ( Λ )M
Λ) .

Since ZG(h)IT is a complex submanifold of G/T9 we have [dG/τ\ZG{h)/τ] =

Hence we have:

itru = [3W Λ ) / Γ] X λMG/ZJh))) X ifi*,

where the first factor is in KZQih)(τ(ZG(h)IT)), the second factor is in

R(ZG(h)) and the third factor is in KZGih)(τZGih)M
h). Consider the eigenspace

decomposition by the action of h. The action is trivial on ZG(h)/T. So

we have:
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ΣJ dtruy = [dZoW/τ] X (Σe^-iWίG/Z^A)))) X (

Applying the Chern character on both sides, we have:

x cS^iX.^GIZ^h)))) X ch£(")
; C) s ίί|σ(ft),c(τ(ZG(Λ)/Γ) X r w , M f t ; C),

where the first factor is in H$*ih)ιC(τ(Zβ(h)IT); C), the second factor is in
H$*m(pt;C) and the third factor is in H$βWιC(τZo(h)M

h;C). Combining
this with the computation on J%{M), we have:

X

X

6 HUτTM»; C) S iί|β(ft),c(r(ZG(Λ)/Γ) X r w w M » ; C) ,

where the first factor is in H%*ihhc(τ(Z0(h)IT; Q), the second factor is in
H$*w{pt; C) and the third factor is in Htom,XτZamMk; C). We have also:

: m*ιh)(Zβ(h)IT; Q) > m*wMZa(h)IT); Q), Thorn isomorphism) ,

(the residual Todd class restricted at the identity component) .

By the identification Hlc(ττM>; C) s H$ΰ{hhMZβ(h)IT) X τZaWMh\ C), xπx

is given by the composite:

X

H$aih)(Zβ(h)IT x Mh; o(Mh) ® C)

Then we can see:

(JΓ, : m*w(Zβ(h)IT; C) — > flϊβ*<w(P<;

Thus we have proved:

(indG

<15>
X
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We compare this formula with the final form (12). In (12), the sum-

mation moves over the conjugacy classes (h) in G such that Mh Φ 0, but

in (15), the summation moves over all the elements in T such that Mh

Φ 0. We recall that every conjugacy class (h) in G meets T by finite

(non-zero) times. So in (15), we sum up first the terms corresponding to

the elements that belong to the same conjugacy class in G.

Let h and h! be elements in T conjugate in G. Choose ge G such

that ghg'1 = h'. We denote by φg the action of g on M and by cg the

inner automorphism induced by g. Then φg: M -> M is ^-equivariant and

maps Mh onto Mh\ It induces bundle equivalences τhφg: τZG(h)M
h —>

τZβihΊM
h' and vhφg:vhtG-^vh%G. These equivalences are [cg: ZG(h)~> Z0(h')]-

equivariant. This shows φ*J%(M) = J%M) and (τhφg)* chG'(u) = cb&u).

Hence we have:

chj? (w)^(M)}

For each conjugacy class (h) in G, we put (Λ) Π T = {Λj, /ι2, - , Λ

For each j , we choose gteG such that /^ = gjhgj1. Then we have:

x rhAGIZAh,)\}

Now we consider the class

)t; C) .

The action of h on τo{GjZG{h)) has no fixed non-zero vector. By an ele-

mentary consideration, we have:

. 7 = 1

Recall the definition of ^(G/T)e H^(h)((G/T)h;C). We can see that

^ZQW{ZG{h)IT)3Γ%{GlZG{h)\ is the restriction of F%iG\T) onto the com-

ponent ZG(h)jT. The holomorphic action of gs on GjT defines a map

ψgj: gjλZGQι^\T'-> ZGQι^)\T. It is ^.-equivariant. Hence we have:
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Thus we have proved:

(17)

(«,: m*w{(GIT)h; C) • H$%h)(pt; C)) .

To complete the proof it will suffice to show:

πXΓXfilT)) = 1 e fl**(w(pί; C) .

This will be done in the next section.

§ 3. Equivariant residual Todd classes over flag manifolds

Let G be a compact connected Lie group and let T be a maximal

torus of G. Choose and fix a G-invariant complex structure on the flag

manifold G/T. Let he T be an element. Then the fixed point set (G/T)h

is a complex submanifold (closed but not connected in general). It admits

the holomorphic action of the centralizer Zσ(h). Let E(=EG) -> EjG (=BG)

be the universal G-principal bundle. Then we have an associated bundle:

E XZβih) (G/T)h -> E/ZG(h) (=BZG{h)). Over its total space E χZβ(h) (GjT)\

we have vector bundles

= E XZa(h)

= EX ZaW AWT)*) (0<θ<2π),

(vθ denotes the eigenvector bundle by the action of h). Then we

define:

e H**(E χZβm (GITT; C) = H^UiGlTf; C) .

π: E XZσ(h) (G/T)h -> EjZG(h) defines the Gysin homomorphism

*,: H**(E XZGih) (G/T)h; C) > H**(E/ZG(h); C) .

The purpose of this section is to prove the following formula

(18) π^HGIT) = 1 e H**(EIZG(h); C) = fl|*(Λ)(pί; C ) .

This is the last formula in the previous section.

Let ZG(h\ C ZG(h) denote the identity component. Then the projec-

tion EIZG(h)Q -> E[ZG(h) is a finite regular covering. The induced map
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H**(EIZG(h);C)-+H**(EIZG(h)0;C) is injective. So we may reduce the

structure group ZG{h) to ZG(h)0. We denote by π' the projection

πf: E X Zoih)0

Then it will suffice to show:

π[3Γ%{GIT) = 1 e H**(EIZG(h)0; C) .

Let W(G) = NG(T)/T and W ^ W o ) = NZQ(h)Q(T)IT be the Weyl group

of G and ZG(Λ)0 respectively. For each right coset [ws] in W(G)/W(ZG(h)0),

choose one representative gt e NG(T). Then, as a ZG(Λ)0-manifold, (GIT)h

decomposes into a disjoint union

Put /^ = gjhgΐ1, then the holomorphic action of g5 maps (Zβ(h)ogj'1)IT onto

ZG(hj)0IT. This map is [^: ZG(h)0 —> ZG(^)0]-equivariant. Over each com-

ponent (Zβ(h)Qgj'1)IT in (G/T)h

9 we may translate everything onto ZQ(hj)QIT

by the action of gJm Then the bundles

^h)o((Iy) and

are translated to:

E XZΰihj)oτ(ZG(hj)0IT) s £J Xττo(ZG(hj)olT) ,

Then we have:

y π -̂
O<0<2;r

^E/Z β (h) 0 —

We can describe these classes in terms of the roots of G. Let

a19 α2, , am be the positive roots of G, corresponding to the invariant

complex structure on G\T (see Borel-Hirzegruch [4]). Let g be the Lie

algebra of G and let $ = Ij Θ ax θ α2 θ θ αm be the root space decom-

position. That is: g = τo(G) and Ij = ro(T). Γ acts on g by the conjugacy.

g = ζ 0 ctj 0 α2 θ 0 αOT is the irreducible decomposition of this Γ-action.

ϊ) is the trivial summand. ak (k = 1, 2, , m) is a linear functional on

ϊ) such that, on ak s C, the action of ϊ 7 is given by:
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hz = e2°ίa*{H)z,

(heT, zeak = C, i fe I) such that expH — h).

For the fixed /ιeT, we choose if e ζ such that exp H = h and we put

fl", = WjH = Ad (^)iϊ. Then the T-invariant subspaces τo(ZG(hj)oIT) and

τθ

0(GIZG(hj)0) in τo(G/T) = g/l) = α, Θ α2 Θ Θ αm are given by:

τo(ZG(hj)oIT) = e α» ,
mod Z

τθ

0(GIZG(hj)0) = © αfc .
modZ

By Borel-Hirzebruch [4], we may identify H**(BT; R) = H**(E/T; R) with

the completion of the symmetric tensor algebra S**(ή*). We denote by

[ak] eH2(E/T; R) the corresponding class to akeψ. Then the equivariant

total Chern classes are written by:

cτ(τo{ZG{hό)oIT)) = Π (1 + faJ) e H**(JB/Γ; i?) ,
fc(HV)O

= Π
Hence we have:

= π Λ

 [ g *L Ί π π

- e-lat}-Uta*VIfiJ '

By Borel-Hirzebruch [5], we can compute the Gysin homomorphism (TΓ^.

We remark that {ak \ ak(Hj) = 0 mod Z) are the positive roots of ZG(hj)0.

Then we have:

Π
O < 0 < 2 J Γ

{ Π [αjj^λί^ΓίrβίZβίΛΛ/Γ)) Π

sgn (w) lΛ=o [ w a Δ M i-e-ci.-
For we WiZ^hjW we have:

= Π M>
Λ; akiHj) =0

ak(Hj) (k = 1,2, . . . , m).

Hence we have:
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= Σ Π

O<0<2JΓ

1

The conjugation ιgj\EjZG{K)0-> EjZG{hό\ is covered by the map ιgj\EjT-+

E/T. So, in cohomology, **y is given by the action of the element wj1 e

W(G). Then we have:

HΓΓTS
Here, wak(Hό) = wak(wjH) = wγwak(H) and in summation K J 1 ^; move just

all over W(G). Hence:

= Σ

Recall the WeyΓs relation that was used in Borel-Hirzebruch [4], That

is, as a function in X e ζ , we have:

m -I

Replace I b y 1 + 2πiH and we get:

1 1
^ ϋ J . - 1 1 1 --mn.τ*(X\-ϊ.*i.wa.i,(Tr\

The formal power series expansion of this expression gives a relation in

S**0&*) ® C = H**(E/T; C). This shows:

πx3Γ%G\T) = 1 e H**(EIZβ(h); C) c H**(EIT; C).
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