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SOME LIE ALGEBRAS OF VECTOR FIELDS

AND THEIR DERIVATIONS

CASE OF PARTIALLY CLASSICAL TYPE

YUKIHIRO KANIE

Introduction

Let (M, SF) be a smooth foliated manifold, and ^(M, 2F) the Lie

algebra of all leaf-tangent vector fields on M.

Assume that (M, JO admits a partially classical structure τ, ω or θ

(see § 4.1). Then we have natural Lie subalgebras fτ(M, &), J~cτ(M, 3^),

3Tω(M, &), 3ΓC0)(M, &), 3ΓΘ(M, JO of the Lie algebra f(M, JO = jro(M, &)

(see § 4.2). These Lie algebras including 3Γ(M, JO itself are called of par-

tially classical type. Here we study the structures of those Lie algebras

and their derivation algebras.

The derivation algebra of &~(M, SF) is naturally isomorphic to the

Lie algebra J2?(M, IF) of all locally foliation-preserving vector fields on

M (see [4]). We get similarly natural Lie subalgebras J2fT(M, <F), ̂ Cΐ(M, &),

SeSM, &), J?cω(M, &), £9(M, &) of se(M, &) = J?0(M, &) (see § 4.2).

Our main results (announced in [11]) are

MAIN THEOREM. Let M be a smooth (p + q)-dimensional manifold,

and !F a codimension q foliation on M. Assume that (M, 3F) is equipped

with a partially classical structure τ, ω or θ.

(a) Let σ = 0, cτ(p Φ 1), cω or θ. Then

= 0 ,

(b) Let σ = τ(p Φ 1) or ω. Then

r.(M, JO; r.(M9 JO) s J?cσ(M, &)ir.(M, JO
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The Lie algebras of partially classical type correspond in the formal
case to some parts of E. Cartan's classification of infinite intransitive Lie
algebras (see T. Morimoto [5]), and N. Nakanishi [6] discusses about de-
rivations of such Lie algebras.

This work is in a series of F. Takens' work [9] and the author's [2],
[3], [4] which we use in this paper for general references. However this
work is also an attempt to define natural and typical Lie algebras of
vector fields in the intransitive case.

The content of this paper is arranged as follows. In § 1, we introduce
Lie algebras 3~'a and ££a for standard foliations on Euclidean spaces, and
study their structures. In § 2, we introduce the grading of subalgebras
of &'β and =£fσ, consisting of vector fields with polynomial coefficients, and
the finite dimensional Lie subalgebras S3, of 5^a, on which any derivations
of 2Γa and S£σ are determined. We prove Main Theorem (Theorem 3.6)
for &~σ and if σ (flat case) in § 3. In § 4, we define partially classical struc-
tures on (M, &) and Lie algebras ^σ(M,^) and ifσ(M, J^), and prove
Main Theorem (Theorem 4.10). Here it is essential that derivations of
&~β(M, IF) (σ = r, ω, θ) are localizable (Proposition 4.8). In § 5, we give a
further discussion on H\^σ(M, &); £Γσ{M, &)) and £P(if,(M, &); £>σ(M, &))
for σ = τ and ω. In § 6, we treat the pathological case (p = 1 and σ = τ
or cr), prove our theorem for ϊΓcτ and ifcr, and remark that there are
derivations of ZΓτ and ifτ which cannot be realized by vector fields
(properly outer derivations).

All manifolds, foliations, vector fields, etc. are assumed to be of C~-
class, throughout this paper. However, for flat case, our method here is
applicable without any change to the case of analytic or complex category.
Similarly the results in [2], [3], [4] for flat case are valid in those cate-
gories.

§ 1. Lie algebras ^ , Se and their subalgebras

1.1. Notations and definitions. Fix a coordinate system υu , υp in
a p-dimensional Euclidean space U = Rp, and wu , wq in a ̂ -dimensional
W = Rq. We consider vector fields on the (p + g)-dimensional space V =
U®W= Rp+q, and the Lie algebra 8t( V) of all vector fields on V. Denote
d/dVi by 3f (i = 1, , p), and d/dwa by da (a = 1, , q). Use Latin indices
i,j, k, - for variables in U, and Greek indices a, β, for variables in
W, otherwise stated.
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Consider the standard codimension q foliation 3F on V, defined by

parallel p-planes: π^1 (a point), where πw is a canonical projection of V

onto W. Let &~ be the Lie algebra of all leaf-tangent vector fields on V,

then by [4], the derivation algebra 2e\ (β~) of ZΓ is naturally isomorphic

to the Lie algebra ££ of foliation-preserving vector fields, and Jδf is de-

composed as

JSf = SΓ + ££' ,

where =£?' is naturally isomorphic to the Lie algebra SΪ(W).

Let Ω(V) be the exterior algebra of all differential forms on V, and

be the ideal of Ω(V), generated by dwu , dzt^, that is,

= {α e fl( V); α(X;, X2, •) = 0 for X, e 2Γ) .

Denote by β ( J 0 the complement of J{^) in i2(V), that is,

Ω{V) = fl(# ) + ^ ( ^ ) ,

and β ^ ) is the exterior algebra over C°°(V), generated by dυu

LEMMA 1.1. ( i ) T/iβ ideal J(JP) is Lx-stable for XeJP, and ίx-stable

for X e &Ί where Lx means the Lie derivative with respect to X, and ixa

means the interior product of X and a.

(ii) The ideal J(&) is a differential ideal, that is, dJ{&) c

Proof. It is enough to use the fact that &~ is an ideal of if. Q.E.D.

1.2. Put p = n, xi — vt (i = 1, , ή), and τ = dxx A Λ dxn. A

leaf-tangent vector field X is called partially conformally unimodular, if

Lxτ is congruent to φ(w)τ modulo Jiβ?) for some function φ(w)e C°°(W )̂.

Moreover, if the function φ(w) is zero, X is called partially unimodular.

Then by Lemma 1.1, we get two Lie subalgebras of ZΓ\

= {Xe «r Lxτ = ^(M;)T (mod y(i^)) for some φ(w) e C°°(W)}

LEMMA 1.2. Wriie Z e &~ as X= Σ3-ifi(χ> w)df

( i ) X is partially unimodular, if and only if 2?-i dift — 0

(ii) X is partially conformally unimodular, if and only if

(iii) ZΓτ is an ideal of 3Γcτ, and \2Γcτ, ,Tcτ] c &~r.
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(iv) Put Iτ = 2]?=i xfii 6 3~cτ. Then, any Xe ZrQτ is decomposed as X =

Xx + X2, where X, e *Γτ, X2 = n~^(w)Ir and Lxτ = φ(w)τ

Namely,

Tcτ = 3Γτ + n-χC-{W)It.

(v) If X is partially unimodular, ixτ e Ω{^) is a partially closed

(n — ΐ)-form, that is, dixτ e J{^). The mapping which assigns ixτ to Xe

2Γτ is the linear isomorphism of 3Γτ onto the subspace of Ωn~\!F), consisting

of partially closed (n — ί)-forms, that is,

jrτ = {ae Ωn-\&)\ da e S(&)} .

(vi) Let αei3Λ"2(«f). Denote by X[a] the partially unimodular vector

field corresponding to the Ω{^)-part of da. The assignment of X[a] to a

defines a mapping of Ωn~\<F) onto ZΓτ. Put

atj = dxx A Λ dxt Λ Λ dxd Λ Λ dxn ,

then for any functions f and g in C°°(V),

where { , }ί; is the Poίsson bracket in xt and xj9 that is,

1.3. Put p = 2n, xt = vi9 yt = vn+ί (1 ^ i ^ ή), and ω = 2]?-i dxt A dyt.

A leaf-tangent vector field X is called partially conformally symplectic, if

Lxω is congruent to a form φ{w)ω modulo J(βF) for some function φ(w)

e C°°(W). Moreover, if the function φ(w) is zero, X is called partially

symplectic. Then by Lemma 1.1, we get two Lie subalgebras of ̂ Ί

3TCω = {Xe F\ Lxω ΞΞ φ(w)ω (mod J(&)) for some φ(w) 6 C°°(W)} .

LEMMA 1.3. Write XeZΓ as X= ΣT-ififay* w)di
( i ) The following three conditions are equivalent:

(a) X is partially symplectic;

(b) djj = -dj+nfi+n, di+nfj = dj+nfί9 djj+n = djfi+n (1 <Li,j ^ τι);

(c) there is a unique function He C°°(V) up to functions in C°°(W)

such that ft = dί+nH and fi+n = —diH for any i (1 ^ i <£ n).
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(ii) X is partially conformally symplectic, if and only if for any 1 <̂

i, j £ n, di+nfj = dJ+Ji9 dJJ+n = djfi+n, dtfj + dj+nfi+n = δtJφ(w) for some func-

tion φ(w)e C°°(W), where dia is Kroneckerfs delta.

(iii) £Γm is an ideal of <Tcω, and [<Tcω, &~em] c ̂ "β.

(iv) Put Iω = Σ*=i vβi e ZΓcω. Then, any I e J M is decomposed as

X= X, + X2 where X, e Tφ, X2 = 2-ίφ(w)Iω and Lxω = φ(w)ω

Namely,

(v) Denote by XH the partially symplectic vector field corresponding

to a function He C°°(V) as in (i). Then for any functions H and K in

\XH, Xκ\ =Z —X{H,K) J

where { , } is the Poίsson bracket in the variables xu , xn, yu , yn, that

is,

n

{H, K) = £] (Hx.Ky. — HyiKXi) .

1.4. Put p = 2n + 1, xt = uo y< = u i+w (1 <̂  i ^ n), 2 = ϋ2B+1, and <9 =

dz — 2]ϊϊi J i ^ . A leaf-tangent vector field X is called partially contact,

if Lx# is congruent to a form φ(x, y, z, w)θ modulo J(βF} for some function

φ(x, y, z, w) e C°°( V). We denote by 3ΓΘ the Lie subalgebra of ZΓ, consisting

of all partially contact vector fields.

LEMMA 1.4 Write I e J as X= ΣSΆιU(x, y, z, w)dt.

( i ) X is partially contact, if and only if there is a unique function

k(x, y, z, w) e C°°( V) such that for any i (1 ̂  i ^ ή),

fi = —3< + »A , Λ + n = (3i*) + yi(d2n + lk) ,

iίβre, fe is obtained as k = £z# = Λn+i —

(ii) Le£ # 6e a mapping from T9 to C°°(V), ^Λic/i assigns Z # =

ίo XeέΓθ. Then the linear mapping # is bijective.

(iii) // X is partially contact, it satisfies the following equalities:

(#)l 3i + n/»» + l = Σ Λ(3| + «Λ) (1 ̂  ί ^ Λ) ,
i = l

(tt)2
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(iv) Denote by k the inverse mapping of #. We can introduce the

generalized Poisson bracket ( ( ,)) in C°°(V) as follows:

((f,g)) = [fb,gbY (f,geC~(V))

= {f,g}sv - f*(g - Σyjgy) + Sn(f- ΣyJv) >

where {, }xy is the Poisson bracket in the variables xu , xn, yu , yn.

Using Poincare's lemma with parameters, we can get these Lemmata

1.2 ~ 1.4 similarly as in the transitive case (see [2] and [3]).

1.5.

Remark. Our Lie algebras f, ^τ, ^cτ, $~ω, 2Γcω and ZΓβ correspond in

the formal case to "intransitive Lie algebras whose transitive parts are

infinite and primitive" (see E. Cartan [1] and T. Morimoto [5]) with the

exception of 3Γτ for p — 1. In fact, 3Γa is isomorphic to the topological

completion of the Lie algebra C°°(W) ® 2ίσ(Z7) for σ = 0, r, cτ, ω, cω and θ,

where WXU) is the Lie algebra of classical type, consisting of vector fields

on the Euclidean space U (see [3]). In our notation, ^ 0 = F and SI0(C7)

1.6. Lie algebras J£σ. We can similarly define Lie subalgebras of =£?

as follows: for σ = τ or ω,

\ LΣσ = φ(w)σ

and

see = {Xe 2\ LΣΘ = φ(x, y, z, w)θ (mod S(&))} .

Then we get easily

LEMMA 1.5. ( i ) Let σ = τ, ω or θ. Then Lxσ = 0 for any Xe ££'.

(ii) Let σ — τ, cτ, ω, cω or θ. Then 3~a is an ideal of =£?,, 2f is a sub-

algebra of &σ, and ££a is a direct sum of 2Γa and ££' as vector spaces:

Proof. ( i ) By the definition of σ, σ and da belong to Ω(tF), and ix

= 0 on Ω(&) for Xe ££'. Hence, LΣσ = 0.

(ii) Since F is an ideal of J5f, the assertion (ii) follows from (i).

Q.E.D.
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By Lemmata 1.1 and 1.5, we get easily

PROPOSITION 1.6. Let σx be congruent to σ modulo J{^) for σ = τ, ω

or θ. Then Lie algebras 3Γ aχ and 3? Oχ given by σλ are the same as by σ:

<eaχ =<ea (σ = τ, ω, θ),

and Lxσλ e J(£F) for Xe ££'', hence ££' is a subalgebra of ££\χ for any σ.

1.7.

Remarks. Let σa = a(w)σ (σ = τ, ω, θ) for some non-vanishing function

a(w) e C~(W). Put X = ΣUftiv, w)dt e «Γ and Y = Σl-i ga{w)da e &', then

Lxσa = a(w)Lxσ ,

1 q

Lγσa = 2] (^a^)(^)ga(w)^a (mod J{!F)) .
α(^) «=i

Hence, if we consider analogously Lie algebras Taa for σα, these are ex-

actly the same as those for a. However, if the function a(w) is not con-

stant, Lγσa Ξ£ 0 (mod/(«f)) for Ye J*?', and so Sef is not a subalgebra of

££ΐa or j£?ωα. To avoid this difficulty, we have two ways. One way is to

replace «5f; by the Lie subalgebra j£?£ of =£?σa (σ = τ, ω, θ) which is isomorphic

to J2?7 under the Lie algebra homomorphism Ψ. Here Ψ is defined for Y =

ΣU>ga(w)dae<?' as f(Y) = Y - (l/nσa(w)) ( Σ . (3.α)Λ)I# e ̂ f f α , where τzr =

λi and τιω = n^ = 2; Iσ is defined in Lemmata 1.2 and 1.3 (σ = τ, ω); Ie—

2zd2n+1 + Σ?-i υ$i- Then we get that LΨmσa e /(«f), and that Seaa is a

direct sum of 3Γ9 = ̂ f f a and Jδf7.

The second way which we take in the following is to use coordinate

transformations ψσ:

( Xi = a(w)xx ,

*t = Xt (2^i£ή) ,

ft = α(w;)y, (1 <: i ^ n) ,

δ;β = wa (1 ̂  α ̂  q) .

x, = α(^)x, ,

Then we get
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f ψ*rβ = dx, A • • • A dxn , ψ*o»β = Σ dxi A dyt,

= dz-Σ Jidxt (mod S(&)).
i = l

Moreover we get that Lγ(ψΐσa) e J{&) for

Y = Σ gAwPa = Σ ga(β)Sβ e J2?' (9β = d/dwa).
a a

In fact, for σ = r

^ + Xl έ <tom,
a(w) α-i α2(u;)

then

ψ*rα = dxιΛ - Λdxn + XiΣ -Q^p-dΐϋa Λdx2Λ -- Λdxn,
a(w)

d(ψfτa) = dx! Λ Σ ^^-dwa Λdx2Λ '- Λdxn« a

+ -iΣ(5βdaa)a-(3aa)(5βa)dWβ Λ ^ Λ ^ Λ . . . Λ Λ m .

Hence

ir( f ? Γα) = iyd(ψ*τa) + dir(ψ*τa)

Ξ - Σ -^-Atfe, Λ Λ dxn + d U Σ ^-gMz A - Adxn)

= 0

We get similarly the assertion for a = ω and θ.

1.8. Property (A). Denote by 2I(M) the Lie algebra of all vector
fields on a smooth manifold M. Let 93(M) be a Lie subalgebra of SI(M)
defined by local conditions such that we can define a Lie subalgebra 33(£7)
of 3ί([7) for any open subset U of M. We say that S3(M) has ί/ie property
(A) for an open set £7, if τv(83(M)) = ^(85(170) for any open set C/7 such
that t/ C U\ Here r^ is the restriction mapping onto U.

Then we get the following similarly as for the transitive case.

PROPOSITION 1.7. The Lie algebras 2Γa for σ = 0, r, ω and θ have the
property (A) as subalgebras of 2Ϊ(V) for sufficiently many open sets (such
as in Proof).
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Proof. For any open set U, the Lie algebra <T(U) is a module over

C°°(U). And the Lie algebra tΓθ(U) is isomorphic to C°°(U) because of

Lemma 1.4 (i) and (ii).

For any simply connected open set U, we get, by Lemma 1.3 (i), a

function H on U for any Xe &~ω(U) such that X = XH on U.

Let U be a simply connected open set whose closure is a compact

manifold. Let X be partially unimodular, then we get, by Lemma 1.2 (vi),

an (n - 2)-form a e Ω(F) on U such that X = X[a] on £7. Q.E.D.

1.9. Commutators in 3Γa and ££β.

PROPOSITION 1.8. ( i ) Let p^2. The Lie algebras £Γa and Sea are

perfect for σ = 0, r, ω and θ. Moreover there hold equalities:

Fa = [rm, zra\ = [&„ τσ] (σ = o, θ),

P. = [^*, fλ = [^o ^c J = [̂ e , ̂ c J (̂  = τ, ω) .

(ii) Lei p = 1. 77ιe Lie algebra ZΓτ is abelίan, and ifΓ, ZΓ and ££ are

perfect. Moreover

Proo/. ( i ) Using the fact that [&',yσ] C ^ and if' = [&',&'], it

is sufficient to show that ^ = [&*σ, 3Γσ] for σ = 0, r, ω and θ.

Case of ZΓ. Let X = f(v, w)di9 then X = [9ί? Λ(ϋ, w;)9J, where

h(v, w) = /(u, w)dVi .

Case o/ « r̂. Any function f(x, w) can be written as / = {xί9 g}ίj9 where

g(x,w) = Γ f(x,w)dxj .

Jo

Hence we get the assertion of the proposition by Lemma 1.2 (vi).

Case of 3~'ω. Similarly any function H(x, y9 w) can be written as H =

{xu G}9 where

G(x, y9 w) = \V1 H(x9 y9 w)dyί .
Jo

Hence the assertion follows from Lemma 1.3. (i) and (v).

Case of 3Γβ. For a function k(x9 y9 w) independent of z, the assertion
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can be reduced to Case of ίΓm by Lemma 1.4 (ii) and (iv). Hence we may

assume that k is written as k = zh for some function he C°°(V). Put

g = Γ1 hdyx ,
o

then we get

k = ((XA g)) + {(x,g, z)) .

(ii) By Lemma 1.2 (i) and (ii), we get that fτ = C^WO^, and X e

3~cτ can be written a s l = f(w)d1 + Xigiuήdί for some f,ge C°°(W). Q.E.D.

PROPOSITION 1.9. Put mσ = 3, 2, 2 and 4 for a = 0, r, α> and 0 respec-

tively. If a vector field XeJ~σ satisfies jmσ(X)(0) = 0, then there exists a

finite number of vector fields Xu , X2r e !Γa such that

I = Σ K J . J and JXXt)(0) = 0 (i = 1, , 2r).

Here, the case where σ = τ and p = 1 is excluded.

Proof. For σ = 0, this is Proposition 1.4 in [4].

For σ = T, by Lemma 1.2 (vi), we get this proposition similarly as

Proposition 4.7 in [3].

Let σ — ω. By Lemma 1.3 (i) and (v), it is sufficient to show that

any function H written as

H= f[xiiy?tίluήι G(x,yfw)
i=l α=l

with 2 * ($i + mί) + Σ« «̂ ^ ^ can be decomposed as

with jΨM = 0 for i = 1, , 2r.

If Σ ί ^ ^ 2 or 2 ι ^ i ^ 2, the assertion follows from similarly as

Proposition 2 in [2]. So we may assume that Σ* &ι ^ 1 a n ( i

Hence Σ« «̂ ^ 2, and we may write H as H = wawβG. Put
Σ* m ί ^

then we get that j2K(0) = 0 and H = {XtWawfi9 K}.

Let σ — θ. By Lemma 1.4 (i), (ii) and (iv), it is sufficient to show that

any function /e C°°(V) with jί4/(0) = 0 can be written as
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f=Σ>((8t,gi*r)),
1 = 1

and j'igiXO) = 0 for i = 1, . , 2r.

If dj = 0 for any or, this is reduced to Proposition 2.7 in [3]. If d2n+1f

= 0, this is reduced to the case where σ = ω. So we may assume that

/ is written as / = zwag for some a. Put

then we get

/ = ((x,zwa, A)) + ((xA zwa)) . Q.E.D.

JVb£e. The case where p = 1 and σ = r, cτ is pathological. So we

exclude this case in § 2 — § 5, and treat the case in § 6.

§2. Vector fields with polynomial coefficients

2.1. Grading of Lie subalgebra ?ra Π $. Denote by R[V] the algebra

of all polynomials in the variables υu , vp, wu , wq. The vector field

X= Σ?=i/j(f, w)dt + Σa=iga(
v> w)d<* on V i s said to be with polynomial

coefficients, if f^v, w) and ga(v, w) are in R[V] (i = 1, ,p, α = 1, , q).

Such vector fields form a Lie subalgebra S of 2ϊ(V), and we get Lie sub-

algebras <Tσ Π S of ^ σ and f̂, Π $ of JS?σ for σ = 0, τ, cr, ω, cω and ^. Put

ία = Σ ? - l Vidi f θ Γ σ = 0» Γ» CΓ» ^ a i l d C0)> a n d ^ = 2 U2W + An + 1 + Σ i - 1 ^ 9 i

Then, we get

7σ e ^ σ Π 8 (σ = 0, cτ, cω, 0) ,

I. e (^ C ,VO Π S (σ = τ,ω).

Put J = Σ ί - i w«d« e ^ J t h e n w e h a v e a natural grading of STσ Π S as

follows.

LEMMA 2.1. ( i ) Let σ = 0, τ, cτ, ω or cω. For αnj 72 ^ — 1 and m ^

— 1,

#(n, m) = {Xe^σ Γ\%; [I., X] = nXy [J, X] = (m + ΐ)X}

= {X = Σ?=i /Ϊ(U> ^ i e &'o Λ «^ homogeneous polynomials

of degree n + 1 in υu - - ,vp, and

of degree m + 1 in wu , wq} ,

ί/ie L/e algebra y'σ Π S is decomposed as
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src n ® = Σ r£n, m).

(ii) For αn-y n ^ — 2 and m ̂ > — 1,

^ , ( n , m) = {Xe *Γa Π «; [I*, X] = nX, [J, X] = (m + ΐ)X} ,

then the Lie algebra $~θ Π $ is decomposed as

Moreover, under the isomorphism #, (5^^ Π S)# = i?[V], anc? ^ ^ n , m)

is isomorphic to

3Γθ{n, rrif — {/'e R[V]; f is weighted homogeneous of degree n + 2 in

*i, , *n, Vu , y«, «, and o/ degree m + 1 in wu , wJ ,

where deg xt — degyt = deg ^ a = 1 and deg <ε = 2.

(iii) Lei σ = 0, τ, cr, co, cω or ^, ί/ien

[&Άn9 m), 3rχri, mf)] c ^ ( n + nr, m + m' + 1) ,

ẑ  Λere &Ί(n9 m) = 0 for n or m <* —2 (σ Φ 0), and &~θ(n, m) — 0 for n ^

- 3 or m ^ —2.

2.2. Subalgebras S3,. For <7 = 0, τ, cτ, ω and ceo, put

= Σ

and put

Then these S3σ are finite-dimensional subalgebras of SΓ'σ Π % for all σ.

Our aim of this section is to show that any derivation of 3Γa or ^a is

determined on the subalgebra S3σ.

LEMMA 2.2. Let σ = 0, r, cr, <y, e<w or <?. If a derivation D of yc is zero

on S3,,, then D is zero on Tβ Π t .

LEMMA 2.3. Let a = 0, τ, cr, ω, cω or Λ If a derivation D of <£0 is zero

on S3ff, then D is zero on S?β Π Sί.

The proof of these two lemmata will be given in § 2.4 — 2.6. Here

we remark the following proposition which easily follows from Propositions

1.3 and 1.4 in [3], Proposition 1.5 in [4], and Proposition 1.9.
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PROPOSITION 2.4. Let σ — 0, r, cτ, ω, cω or θ. If a derivation D of ZΓa

or ££o is zero on S3σ, then D is zero on ?Γσ or ££a respectively.

2 3. Here we summarize the facts which will be applied later. Put

Γβ(v) = {Xe ^σ; [da, X] = 0 (1 ̂  a £ q)} ,

«Γa(w) = {Xe J-σ; [di} X] = 0 (1 ̂  i ^ p)} .

LEMMA 2.5. Lei o = 0, r, cr, ω, cω or θ.

( i ) LetXe 2I( V). 7/ [5,, X] = 0 for ί = 1, . , p, then X is independent

of the variables vl9 , up, ί/iαί is, Xe ^(M;).

(ii) Let Xe3Ta. If [X, Y] = 0 /or α^y Ye&*σ(n, -1) α iίΛ λi ̂  - 1 ,

X is m ^σ(w), and moreover X is in C°°(W0b for σ = θ.

(iii) Let Xe^σ. If [X, Y] e J*f' for any Ye£Γσ{n, -1) with n ^ - 1 ,

X is m e^X^) + &k'.

(iv) Lei Xe 3Γm(w). If [X, 7J = 0, then X = 0.

(v) [^.(ι;),J2f/] = 0.
(vi) Lei Xe 2f. If [X, Y] = 0 for any Ye £Γσ(n, 0) wiίΛ n ^ - 1 , then

X = 0 .

(vii) Let σ = τ or ω. Let Xe ^ ( u ; ) or 3Γ{w\ If [X, ̂ ( 0 , -1)] = 0,

then X = 0.

Proof. For σ Φ θ, this lemma follows similarly as Lemma 1.1 in [4].

For a = θ, it is enough to note Lemma 1.3 (iii) or (iv), and Lemma 2.1 (ii).

We can prove (vii) similarly as (iv), by using vector fields xβj (i Φ j)

or xtdXi — yfiy. instead of Iτ or Iω respectively. Q.E.D.

2.4.

Proof of Lemma 2.2. Our proof is similar to the proof of Proposition

2.1 in [4] (the case of a — 0), and consists of following four steps.

Step 1. D is zero on fσ(ϋ) ΓΊ 8.

Step 2. D is zero on <Γσ(0, 0).

Step 3. D is zero on Σn^-i Σm*-i ^Xn, m).

Step 4. D is zero on fβ Π 8.

We can prove Siep 1 similarly as the corresponding transitive cases

(see [2] and [3]).
Let a = cτ, cω and θ. Then Iσ is in J'c. So, by using the grading

Σxn (Σm*-1 ̂ X71' m )) θ f ^ Π ®> W θ C a Π P r θ V Θ S ^ 4 b ^ t t i e i n d u C t i θ n O ϊ l

n, similarly as Lemmata 3.4 and 5.9 in [3].
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Step 2. Let Xe^rσ(0, 0). By Lemma 2.1, we get

[ya(n, -1) , X] C ,rσ(n, 0) and [Iσ, X] = 0 .

Applying D to these formulae, we get by the assumption

[^σ(n, -1) , D(X)] = 0 (n ^ -1) and [/„ D(X)] = 0 .

Hence Lemma 2.5 (ii) and (iv) imply that D(X) — 0.

Step 3. The proof is carried out by the induction on m. When m is

nonpositive, the assertion holds by the assumption. Assume that D is

zero on J]n^-ι Σ^m^k-i <^σ(n9 #0 for some k > 0. Clearly it is enough to

show that D(X) = 0 for the case where X is written as

where J^a λa = k + 1 and Ye &\(n, —1) with rc <̂  — 1. There is an index

β with ^ > 0. Apply D to

then D(X) = 0 because wjιXe ^~σ(n, k — 1) and z^I, e ^",(0, 0).

2.5. Case of σ = τ or ω. Let σ = τ or ω. For Step 3 we can prove

it similarly as above by noting the following equalities: (for λβ > 0),

fdt = wl1 zi Jfy = [wjτfdj, XjWβά (ί φ j) (σ = τ) ,

X = i ι ; ί . . ι ι^9 x < = [ιι;j1X,i

We can prove Step 2 and Step 4 similarly as above by elementary

calculations. However, here we give a simple proof by using some facts

about graded Lie algebras (see Singer-Sternberg [8], for definitions).

FACTS, (a) There are natural isomorphisms

Γ0(-l9 -1) = U, r.(β, -1) S 8. and r.(k, -1) S gife) ,

itΛere gr = ^ί(ί7), gω = 3p(U) and Q(

σ

k) is the k-th prolongation of Qσ.

(b) a. = [U,Q?].

(c) The adjoint action of <Tσ(0, — 1) on ^~σ(k, — 1) is the natural action

of gσ on Q{J°\ and is irreducible (the irreducibility is due to H. Weyl [10]).

Step 2. It is enough to show that D(waX) = 0 for any Xe yσ(0, - 1 ) .

By Fact (b), we get vector fields Yt e ^ , ( - 1 , -1) and Zt e SΓσ(l, -1) (1 ^ i

^ r) such that X = 2« ITί> ̂ J . So ^ α Z is written as
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Hence D(waX) = 0, because waYt e ^ ( - 1 , 0) and Zt e <Tσ(l, -1).

Step 4. Decompose J f n « a s J , n 8 = Σ ^ - i (Σ»a-i ^.(A, in)). The

proof is carried out by the induction on k. The assertion for k = — 1

holds by Step 3. Assume that D is zero on Σn**-i (Σm^-i «̂ \(ft> #0) for

some β ^ 0. Let I e ^(fc, m). Applying D to [34, X] e ^ ( f t — 1, m), we

get that D(X) e JΌ{w). Thus we get the mapping Dk = D|^σ(fc>m) of ^α(A, m)

to Tσ(w), and we want to show Dk = 0.

There are the natural isomorphisms 3Γa{n, m) ^ Pm+ι{W)®§(?\ where

Pm+1(W) is the space of homogeneous polynomials of degree m + 1 in the

variables wu , «v Let Ye ^σ(0, — 1) = gσ, then we get that D[y, X] —

[Y, D(X)], so Dk o ad Y = ad Yo Dfc, that is, the following diagram commutes:

w+1(W) ® gi&)

l(x)adF

w. or (U rn\
<-/ σ\'"1 lit'/

^ σ ( ^ ) a d y > ^ ( w ) .

Since the adjoint action of Qσ on q{

σ

k) is irreducible by Fact (c), it is enough

to show that Dk\0) φ 0.

Let σ = T, f(Φθ) e Pm+ί(W) and X = xξ+%. Then, fXe ^rϋ(k,m) is

written as

so fXeD^iO) by Sίeps 1 and 2.

Let σ = a), /(^=0) e Pm+1(W) and X = xξ+1dvi9 then / I e ^.(fe, m). We

want to show D(fX) = 0. Write D(fX) as D(fX) = Σ (ah(w)dXh + bk(w)dyk\

Applying D to [x^x. — ytdyi9 fX] = δn(k + 2)fX (where δtl is the Kronecker's

delta), we get

[XidXi - JidV0 D(fX)] = -alw)dXi + bt(w)dVi

= δn(k + 2)D(fX) = δn(k + 2)Σi(aύ{w)dXj + bs(w)dVJ) .

For ί Φ 1, we get that a^w) = δ̂ w;) = 0. For ί = 1, we get

-a, ={k + 2)a, and bt = (k + 2)b, ,
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so a, = bx = 0 because k ^ 0. Thus, D(fX) = 0. Q.E.D.

2.6.

Proo/ of Lemma 2.3. We need only to prove that D = 0 on JS?'

Π Sϊ. For σ = cr, cω and 0, we can prove similarly as in the proof of

Proposition 2.3 in [4] (σ = 0), by noting Lemma 2.5 (ii) and (iv) and the

fact that Iσ e «fff.

For σ = τ and ω, we can also prove similarly as above, by using

Lemma 2.5 (vii). Q.E.D.

§ 3. Derivations of ff*9 and S£a

3.1. Derivation. Let Z be a vector field on V. We define ad Z as

adZ(X) = [Z, X] for l e 2I(V). Then we have

LEMMA 3.1. For a = 0, τ, cτ, ω, cω <m<2 #, £/ιe mapping Z -> adZ|^ f f or

Z-+ad Z\jrβ of S?σ, into ^eι{^σ) or ^eϊ(^σ) respectively is an into isomor-

phism, where σf — σ for σ = 0, cτ, cω cmd ̂ , and a' = cσ /or a = τ, α>.

Proof It is sufficient to show the injectivity. Let Zej£?σ/. Assume

that ad Z(3Γσ) = 0. By Lemma 2.5 (iii), we can write Z as Z = X + Y with

Xe&~.{w) and YeJδf7. Then we get that X = 0 by Lemma 2.5 (v) and

(iv), and that Y = 0 by Lemma 2.5 (vi). Q.E.D.

LEMMA 3.2. ( i ) Let D be a derivation of <£a for σ = 0, r, ω or θ. Then

c Γm.

(ii) Lei D be a derivation of ycσ or ££cβ forσ = τ or ω. Then

Proof. This follows immediately from Proposition 1.8 and the following

general proposition. Q.E.D.

PROPOSITION 3.3. Let T be an ideal of a Lie algebra L such that

[T, T] = T Let D be a derivation of L. Then D(T) c T, that is, D in-

duces a derivation D\τ of the Lie algebra T

Proof. Let XeT. Write X as X = ΣΛ-i [Yt, Zt] with Yt, Zt e T. So,

since T is an ideal, we get

D(X) = D(Σ [Yi, Zή = Σ {[DM), Z<] + [Yt, D(ZZ)]} e T.

Q.E.D.

3.2. Determination of
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PROPOSITION 3.4. Let D be a derivation of 3Γσ for σ = 0, τ, cτ, ω, cω

or θ. Then there exists a unique vector field Z on V such that D — ad Z

on S3ff. Moreover, Z is in ££a>, where σr = σ for σ = 0, cτ, cω or θ, and σr

= ca for σ = τ or ω.

The proof of this proposition will be given in § 3.3 ~ 3.4.

PROPOSITION 3.5. Let D be a derivation of *Γa or ££a for σ = 0, τ, cτ,

ω,cω or θ, then there exists a unique vector field ZeSί(V) such that D

— dAZ\<ra or 8LdZ\<?σ respectively. Moreover, Z is in ££β>, where σr is as in

Proposition 3.4.

Proof Let D be a derivation of &~σ. Then by Proposition 3.4, we

get a unique vector field ZeJ^V, such that D = s.άZ on S3σ. Since

ad Z(^σ) C &~σ9 A = D — ad Z is also a derivation of &\ and vanishes

on S3σ. Hence by Propositon 2.4, we get that D1 = 0, that is, D = ad Z

on <5Γσ.

Let D be a derivation of ££ΰ, then we can restrict D to ̂ Γσo by Lemma

3.2, where σQ = σ for a Φ cτ or cω; and σ0 — τ or ω for σ = cτ or cα> re-

spectively. Q.E.D.

THEOREM 3.6. ( i ) Let σ = 0, cτ, cω or θ. All derivations of ££\ are

inner, that is, @e\(J£σ) = ad^fσ = «Sfff. Hence,

(ii) Lei (? = τ ( p ^ l ) o r ω . T/ie derivation algebra of ££\ is naturally

isomorphic to seca, that is, ^eι{^σ) = {adZUσ; Z e i f J ^ ifcσ. Hence,

(iii) Lβί (7 = 0, cτ, cω or θ. The derivation algebra of 37~a is naturally

isomorphic to &„, that is, Sieι{3Γσ) = {aάZ\^σ; Ze Sfσ} = Sθa. Hence,

(iv) Let σ = τ (p ψ 1) or ω. The derivation algebra of 3Γσ is naturally

isomorphic to &cσ, that is, 9n{STσ) = {adZ|^σ; Ze&eσ} ^ ^cσ. Hence,

H\srΰ; Fσ) s 2J7. ^ C"(W)Ia + 2' .

Proof. This follows from Lemma 3.1 and Proposition 3.5. For the

latter half, remember that H\L\ L) ^ ^>(L)/adL (see e.g. § 1 in [2]).

Q.E.D.
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3.3.

Proof of Proposition 3.4. It is sufficient to show the following two

lemmata. Here we can determine Z as Z = Zx + Z29 where Zx and Z2 are

given in the lemmata below.

LEMMA 3.7. Let D e 3tt\ (<?~σ). Then there exists a vector field Zx e <Γβ.

such that D = ad Zx on <Tg(n, — 1) with n <I 0.

Proof. By using Poincare lemma with parameters, we can get the

assertion similarly as in the corresponding transitive cases (see Lemma 5

in [2] and Propositions 3.2 and 5.5 in [3]). Q.E.D.

LEMMA 3.8. Let De@eι(J'σ). Assume that D = 0 on Ta{n, — 1) with

n <ί 0. Then there exists a unique vector field Z2 on V such that D = ad Z2

on S3σ. Moreover, Z2 is in 3".

Proof, ( i ) Let σ Φ θ. Let I e ^ ( - 1 , 0). Since [X, f.(-l9 -1)] =

0, we get [D(X),^rσ(-l, -1)] = 0, so D(X)e^σ(w) by Lemma 2.5 (ii).

Hence we get the linear map U = fl|,tf(.1)0) of ^ , ( - 1 , 0 ) = W* ® U to

yχw) = C°°(W) ® U, which commutes with ad X for Xe ^,(0, -1) . Thus

we get the following commutative diagram: for Xe 3l(£7) or &p(C7) (σ — ?>

cτ or ω, cω respectively)

adA

Ω

Since a;^^ are basis of ^ ( — 1 , 0 ) , we get by Schur's lemma

D(wjdt) = ha(w)dt (l^i£p,l^a£q)

for some functions ha(w) e C°°(W). Here we remark that we can show

this fact also by simple calculations. In fact, apply D to

wadt = [wadj, xβi] (σ = τ(i Φ j), σ = cτ) ,

and

wadXi = [wβxp xβXi - yβyj] , wβyi = [wβyp yβVi - xtdx} (σ = ω, cω) .

Let Z2 be a vector field on V such that D = ad Z2 on S3σ. Since
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[Z2, *Γa(n, -1)] = 0 for n ^ — 1, we get that Z2 e Se1', by Lemma 2.5 (i), (iv)

and (vii). Write Z2 as Z2 = Σ«£«(^R, then

[Z2, ii^gj = £ α ( ^ (1 ^ i ^ p, 1 ^ α ^ g) .

Hence, gα(z#) must be equal to ha(w) for all a.

(ii) Let σ = θ. By Lemma 1.4 we get the derivation D of C°°(V)

such that ΰ o f = j(oΰ. Take bases {1} of ^ , ( - 2 , -1)*, {xt,yt}(lί:lSn) of

^ ( - 1 , -1)*, {u;β}(«^β) of . ^ , ( - 2 , 0)* and {waxi9 wayί}aύiM^q) of ^ ( - 1 , 0)*.

We want to show that D(wa) = ha(w), D{wax^) = ha(w)xί and D{way^) =

K(w)yi for some functions ftα(w) 6 C°°(W).

Since ((α;β,l)) = ((iι;β,x1)) = ((iι;β,y<)) = 0, we get that (φ(ιι;β), 1)) =

0 θ , JO) = 0, so by Lemma 2.5 (ii), jD(a;α) e C"(W). Put

Put/α ί = D(waxτ) Apply ΰ to ((ι^αx,, 1)) = ((waxi9 Xj)) = 0 and ((a;

= ^ ;α;α, then we get that 32/αί = 3y/β < = 0 and dXjfai = δί:iha(w), so that

/\ = hβ(w)Xi + haί(w) for some functions AβίeC°°(W). Apply J5 to

((/jf, waxj) = —waXi, then by Proposition 2.1 (ii)

hence we get that hai = 0, that is, D(wax^) = ha(w)Xi.

Similarly we get that D(way%) = ha(w)yt.

Let Z2 be a vector field on V such that D = ad Z2 on S3*. Since lb =

3» Λ< = 3yt + ^3,, ̂  = - 3 x t , easily we get that Z2 e ^(M;) + S?f. Similarly

we get Z2 e Jδf', since [7,, Z2] = 0. Write Z2 as Z2 = Σ ^ gβ(w)dβ, then

[Z2, w;bα] =

hence, ^α(iί;) must be equal to ha(w) for all a. Q.E.D.

§ 4. Lie algebras fa(M, &) and f̂ σ(M, «F), and their derivations

4.1. Structures on leaves. Let ilί be a (p + ^-dimensional manifold

and 3F a codimension q foliation on M. Around any point M, there is

a distinguished coordinate neighbourhood (U;vl9 , ι;p, î i, , wq), for

which a plate represented as wί = constant, , wq = constant in U is a

connected component of L Π U for some leaf L of IF (see e.g. [7] for de-

finitions).

Let &*(M, IF) be the Lie algebra of all leaf-tangent vector fields on

M, then by [4], the derivation algebra of 2Γ{M, !F) is isomorphic to the
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Lie algebra ££(M, 3^) of all locally foliation-preserving vector fields on M.

Let Ω{M) be the exterior algebra of all differential forms on M, and

J(M, &) be its ideal defined by

S(M, «f) = {αe Ω(M); a(Xu X2, •) = 0 for Xt e 3Γ{M, JF)}

= {ae Ω(M); cfa = 0 for every leaf L of &} ,

where cL is the inclusion mapping of L in M. Then, we get the following

lemma similarly as Lemma 1.1.

LEMMA 4.1. ( i ) The ideal J{M, &) is Lx-stable for Xe ££(M, &), and

ίx-stable for Xe 3Γ{M, &).

(ii) The ideal J(M,!F) is a differential ideal.

DEFINITION 4.2. A p-form τ on M is called a partially unimodular

structure on (M, &), if tfτ Φ 0 for every leaf L of J^, that is, efτ is a

volume form on L. Then we get dτ e J(M> ^).

DEFINITION 4.3. Let p = 2n. A 2-form ω on M is called a partially

symplectίc structure on (M, J5"), if dω 6 «/(M, J^) and ^ω is of rank 2n for

every leaf L of J^.

DEFINITION 4.4. Let p = 2τι + 1. A 1-form ^ on M is called a par-

tially contact structure on (M, JO, if O£0) Λ (dtfθY Φ 0 for every leaf L

of <r.

These τ, α> and ^ are called partially classical structures, and we get

their normal forms as follows.

PROPOSITION 4.5. Let τ,ω or θ be a partially unimodular, symplectίc,

or contact structure on (M, ̂ ) respectively. Then we can take distinguished

coordinates (U;vu , vp, wu , wq) around any point of M such that on U

τ = dvx A Λ dvp

ω ΞΞ Σ dvt A dvί+n (mod S(M, &)) .
ί = l

n

θ = dv2n+ί - 2 vi+ndυt

i = l

Proof. At first choose distinguished coordinates (U; υu , υp, wu ,

wq), then by similar arguments to the proof of Darboux's theorem for the

variables vu , vp, we get the above normal form up to a multiplicative

factor depending on the variables wu , wq. But this factor does not
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vanish anywhere, so we can take the coordinate transformation ψσ as in

§ 1.7. Q.E.D.

4.2. Lie algebras &ΆM, &) and &σ(M, &). Let τ be a partially uni-

modular structure on (M, IF). A vector field Xe <T(M, £F) is called partially

conformally unίmodular, if Lxτ is congruent to φτ modulo J{M, &) for

some function φ e C°°{MY, where C°°(MY is the space of functions which

are constant on each leaves of &r. Moreover, if the function φ is zero,

X is called partially unίmodular. Then by Lemma 4.1, we get two Lie

subalgebras of J~(M, 2F):

£Γτ{M, ^) = {Xe sr{M, &); Lxτ e J(M,

«5Tcr(M, &) = {Xe F(M, &); Lxτ = φτ (mo

for some φ e C°°{MY} .

Let ω be a partially symplectic structure on (M, J^). A vector field

X e ϊF(M, IF) is called partially conformally symplectίc, if Lxω is congruent

to φω modulo J(M, !F) for some function φ 6 C°°(My. Moreover, if the

function φ is zero, X is called partially symplectic. Then by Lemma 4.1,

we get two Lie subalgebras of

)\ Lxω e

); Lxω = ^ω (mod ./(ikf,

for some

Let ^ be a partially contact structure on (Λf, J^). A vector field

, IF) is called partially contact, if Lxθ is congruent to φθ modulo

J(M, <F) for some function φ e C°°(M). Such vector fields form the Lie

subalgebra &Ί(M, &) of y(M, &) by Lemma 4.1.

These Lie algebras f(M, &), r£M, &), Tcτ(M, &), <Tω(M, JF), ̂ c ω (M, &)

and έΓθ(M9 IF) are called of partially classical type (see Remark in § 1.5).

Similarly as above, we can define Lie subalgebras of Sf(M, !F): for

a = τ or ω,

, &); Lxσ e J{M, &)} ,

f, &)\ Lxσ ΞΞ φσ (mod J(M, &))

for some φ e C~(MY} ,

and

J2?,(AT, ̂ ) = { I e J2P(M, ̂ ) ; L z^ = ^ (mod ./(M, ^ ) )

for some 95 e C°°(M)} .
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Then by Lemma 4.1, we get that 3Γa(M, &) is an ideal of Sea(M, &) for

every a, and these Lie algebras &~σ(M, J^) and S£a(M, !F) are defined by

classes of partially classical structures modulo J(M, 2F).

If we take distinguished coordinates such as in Proposition 4.5, vector

fields in SΓa(M, !F) or S£σ(M, !F) for a = τ, cτ, ω, cω and θ can be described,

in local, similarly as Lemmata 1.2 ~ 1.4 (see Remarks in § 1.7).

4.3. Derivations.

LEMMA 4.6. Let U be an open subset of M, and Xe 3? O{M, F) for a =

0, τ, cτ, ω, cω or θ. Assume that [X, Y] = 0 on U for any Ye J~σ(M, F) with

its support contained in U. Then, X = 0 on U.

Proof. Let P be a point of U, and fix a distinguished coordinate

neighbourhood (U';v19 , vp, wl9 , wq) around P such as in Proposition

4.5. Take a neighbourhood Ό" of P such that C7" C Ό' Π U. Let Y' be

in ^ ( n , — 1) (n <̂  0) with respect to the fixed coordinates. For σ = 0, τ, ω

and θ, we get by Proposition 1.7 a vector field YG Tβ(M> IF) such that

Y = Y' on C77/ and the support of Y is contained in U. Then we have

that [X, Y] — 0 on [/, by the assumption. By Lemma 2.5, we have that

X = 0 on £7", in particular at P. Hence we get that X = 0 on U. Q.E.D.

From this lemma, we get the following proposition similarly as Prop-

osition 2.4 in [3],

PROPOSITION 4.7. Let D be a derivation of $~σ{M, IF) or S£a{M, !F) for

σ = 0, τ, cτ, ω, cω or θ. Then, D is local.

PROPOSITION 4.8. Let D be a derivation of ^~σ(M, &) for σ = 0, r, ω

or θ. Then D is localizable (see § 1.2 in [3] for definitions).

Proof. This follows from Proposition 1.2 in [3] and Propositions 1.7

and 4.7. Q.E.D.

4.4.

PROPOSITION 4.9. Let D be a derivation of J~σ(M, 3F) or JS?,(M, &) for

σ = 0, τ, cr, ω, cω or 0. Then there exists a unique vector field Z on M such

that D = ad Z on $~σ(M, S?) or Seσ(M, &) respectively. Moreover, Z is in

, IF), where σ1 is as in Proposition 3.4.

The proof of this proposition will be given in §4.5. Here we get

Main Theorem similarly as Theorem 3.6:
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THEOREM 4.10. ( i ) Let σ = 0, cτ, cω or β. All derivations of £fσ(M, &)

are inner, that is, @ei (&σ(M, &)) = ad &σ(M, &) ^ Se a{M, 3?). Hence

H\S£a(M, &); S£a{M, ̂ )) = 0.

(ii) Let σ = τ (p Φ 1) or ω. The derivation algebra of ££ a(M, IF) is

naturally isomorphic to J?cσ(M, IF), that is,

9* (<?.(M, &)) = {ad ZU, ( J f f j r ) Ze J?σ(M, ^)} s S?e,{M,

Hence,

(iii) Let σ — 0, cτ, cω or θ. The derivation algebra of 2Γσ(M, &) is

naturally isomorphic to <&σ(M, ^), that is,

= {ad Z\rΛM^ Z e

Hence,

(iv) Let σ = τ (p Φ 1) or ω. The derivation algebra of ZΓa(M, &) is

naturally isomorphic to ££ca{M, IF), that is,

= {ad Z\TΛM ^ Z e <?cσ(M,

Hence,

4.5.

Proof of Proposition 4.9. (a) Case of 3Γσ(M, &) (σ = 0, τ, ω, θ). Take

a distinguished coordinate neighborhood system {{Uλ\v[, , v*p, w[, ,

wx

q)}xeA on (M, 3F) such as in Proposition 4.5.

Let D be a derivation of ^σ(M, J^). Since Z) is localizable (Proposi-

tion 4.8), the derivation Dλ e^eι{3Γa{Uλ)) can be defined for all ΛeΛ in

such a way that D(X)\m = DXZ|^) for all l e ^ ( M , ^ ) . Then by Prop-

osition 3.5, there exists a unique vector field Zλ on Uλ for any λ e A such

that Dλ — Siά Zλ\rσ(Uχy On the other hand, since D is local, we get that

D%χnuμ = jD"|^ni7^ s o ^ = Zμ on C7A Π Uμ. Hence there is a vector field

Z on M such that Z = Zλ on Uλ for all λ e A and D = a d Z | ^ ( J f f ^ . More-

over, we have Z e J2V(M, J*"), because Z' e JSfσ<C7A, ̂ \uλ) for all i e l
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(b) Case of ^cσ(M, &) (σ = τ, ω). Let D be a derivation of Fcσ{M, &).

Restrict D to &~σ(M, !F), then we get the derivation Dr = Z>|^σ(iιfvF) of

&ΆM, !F) with values in ycβ(M, ίF). Similarly as Proposition 4.8, we

can show that Ώf is localizable. So for any open set U, we can define

the derivation jyπ of ^a{Ό,F\υ) with values in 2rca(JJ,F\Ό) in such a

way that rυ ° Dr= ΏfΌ°τΌ. If U is sufficiently small, &ΆJJ) is perfect, and

so Ώ'Ό(ZΓ£U)) C &"β(U). Then by Proposition 3.5, we get a unique vector

field Zυ e &e,(U) such that Σ/π = B.άZv on yσ(U). Similarly as (a), there

is a vector field Ze^cσ(M, &) such that Z\Ό = Zυ and D/ = a d Z on

For any X e <Tcσ(M, &) and all ΎeSΓa{M^\ we get

[D(X), Y] = D([X, Y]) - [X, D(Y)]

= [Z, [X, Y]] - [X, [Z, Y]]

= [[Z,X],Y].

Then by Lemma 4.6, we get that D(X) = [Z, X], hence D = ad Z on

^c.(M, JO-
(c) The proof for the case of J?σ(M, !F) is similarly obtained as in

(b). Q.E.D.

§ 5. Partially exactness of differential forms

5.1. Partially exactness. In this section, we treat only the case

where σ = τ or ω. Recall that τ and ω are partially closed, that is, dr, dω

e y(M, &). Let nτ = n(=p) and nω = 2.

DEFINITION 5.1. Let σ be r or ω.

( i ) Let φ e C^iMy. We call σ partially semi-exact with respect to

φ, if there exists an (nσ — l)-form a on M such that φσ is congruent to da

modulo S(M> &).

(ii) σ is called partially exact, if σ is partially semi-exact with respect

to constant functions on M.

(iii) σ is called partially non-exact, if σ is not partially semi-exact

with respect to any function φ(φθ)e C^iMy.

Easily from the definition, we get the following proposition.

PROPOSITION 5.2. ( i ) Assume that tfσ represents a non-zero class of

Hnσ(L;R) for each leaf L of ίF. Then, σ is partially non-exact.

(ii) If all leaves of ϊF are compact, then any partially unimodular

structure τ on (M, !F) is partially non-exact.
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LEMMA 5.3. ( i ) Let φe C°°{MY. There exists a vector field Xe

$" ca(M, IF) such that Lxσ is congruent to φσ modulo J(M, IF), if and only

if σ is partially semi-exact with respect to φ.

(ii) σ is partially non-exact, if and only if <¥*cσ(M, &) = J~σ(M, &).

(iii) If σ is partially semi-exact with respect to a non-vanishing func-

tion φ e C°°(MY, then σ is partially exact

Proof ( i ) Proof on the "only if" part Let X be a vector field such

that Lxσ = φσ (mod J>(M, J^)). Put a = ίxσ, then by Lemma 4.1,

da = dίxσ = Lxσ — ίxdσ = Lxσ = φσ (mod <f(M, IF)) .

Proof on the "if" part Let a be a form on M such that da = φσ

(mod c/(M, J^)). By the partial nondegeneracy of σ, there exists a unique
vector field Xe T(My &) such that ixσ = a (mod J(M, &)). Then

Lxσ = dίx<7 = da ~ φσ (mod ./(M,

(ii) This follows from (i).

(iii) From the assumption, there is an (nσ — l)-form a such that φσ

ΞΞ da (mod J(M, &)). Put ψ = l/φe C~{Mγ. Then

d(ψa) = dψ Λ a + ψda = ψda = ψ ^ = σ (mod ,/(M, i^)) ,

because dψeJ(M9&). Q.E.D.

5.2. T7ιe mapping Φ. Denote by Φo the mapping which assigns to Xe

^cσ(M, &) the function φ e C°°{MY such that Lxσ = φσ (mod </(M, J^)).

Then, by factoring J~a{M, S?) and Sea(M, &), we get the mapping Φf and

Φ as follows:

Since the kernel of Φo is J?σ(M, IF), the mapping Φ is injective. Hence

we get

LEMMA 5.4. ( i ) Φ is a zero map, if and only if ^cσ(M, 3F) = &\{M, IF).

(ii) If Φ is a zero map, then σ is partially non-exact
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Proof, (ii) Since <Γσ(M, &) = ^cσ(M, &) Π J2?,(M, &), then <Γcσ(M, &)

= ^ ( M , «F), so we get the assertion by Lemma 5.3 (ii). Q.E.D.

LEMMA 5.5. Let σ be partially semi-exact with respect to a function

φ e C^My. Then the image of Φ includes the ideal φ-C~(Mγ of C°°(MY.

Proof. By Lemma 5.3 (i), there is a vector field X e 3Γcσ{M, J*") such

that Lxσ = φσ (mod S(M, &)). Let ψ e C°°(My, then

L^Σσ = ψLxσ + dψ Λ ixa = ψLxσ = ψφσ (mod «/(M,

Hence ψXe Fcσ(M, SF) C ^ ( M , ^ ) , and Φ(ψX) = ψφ, that is, φC~(MY c

LnΦ. Q.E.D.

LEMMA 5.6. Lei σ 6e partially exact. Then

( i ) Φ is surjective, hence Φ is the isomorphism.

(ii) ΓΛe inclusion map η of ycσ{M,tF) into gca(My!F) induces the

isomorphism η* of Tcσ{M, &)\ΓXMJF) onto Seca(M, &)\seβ(M, &\

Proof, ( i ) This follows from Lemma 5.5.

(ii) Since se£M9&) Π ^rcσ(M9^) = &ΆM9&), then ? # is injective.

Let XeSeeβ(M,&r)\&β(M9&). Then there is a function ^ ( ^ 0 ) 6 ^ ^

such that Lxσ = ^σ (mod «/(M, J^)). Similarly as in the proof of Lemma

5.5, we get a vector field Ye ^rcσ(M, &) such that LYσ = ^σ (mod ^(Af, J*0).

Put Z = Z - Y e Seca(M, &), then Lzσ = Lxσ - LYσ ΞΞ 0 (mod S(M, &)), so

Z e Jδfσ(M, IF). Thus, Ύ](Y) represents a class of X, that is, η* is surjec-

tive. Q.E.D.

THEOREM 5.7. Lei σ be τ or ω.

( i ) Assume that C°°(M)^ = 1? and σ is noί partially exact, then

(ii) Assume that a is partially exact, then

Proo/. Recall that π~\$) s ^ ( M , 2F)\Fa(M, &). (i) The assumption

implies that 0 is a zero map. (ii) This follows from Lemma 5.6 (i) and

(ii). Q.E.D.
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5.3.

EXAMPLE 1. Let M = Rp+q, and the foliation 3F on M be given by

p-planes parallel to the coordinate p-plane. Then C°°{MY ^ C°°(Rq). Let

τ = dxx Λ Λ dxn (p = ή) and ω = J^=1 dxt Λ dyt (p = 2ή), then τ and

ω are partially exact. In fact,

τ = d{x1dx2 Λ Λ dxn) and co = d[Σ xtdyA .
\i = l /

EXAMPLE 2. Let M be the product of manifolds X and Y. Consider

the product foliation J% r : M = U*eχ {*} X F Then C00(ΛfyF*r = C°°(X).

Assume that Y admits a volume form τ or a symplectic form ω. Let π

be the projection of M onto Y. Then, τr*r or τr*α> is a partially unimodular,

or symplectic structure on (M, ^pr) respectively. Moreover, π*σ{σ = τ, ώ)

is partially exact, or non-exact, if and only if σ is exact or not respectively.

EXAMPLE 3. Consider the foliation &\ on Rz = {(x, y, z)} as R3 =

{z = 0} U UceJR,ε=±i{2 = εex~c}9 and a partially unimodular and symplectic

structure τ = dx A dy on (R\ βr

e). Then C™(Rzye = R and τ is partially

exact. In fact, τ = c?(xrfy).

EXAMPLE 4. Consider the linear foliation ίFλ on the 2-dimensional

torus T2 = R2/Z2 with a slope λ If λ is a rational number, C°°{T2Yλ ^

C^iS1) and any partially unimodular structure on (T2, J^) is partially

non-exact by virtue of Proposition 5.2 (ii). If λ is irrational, C°°(T2Yλ = R

and any partially unimodular structure τ is also partially non-exact. In

fact, suppose that τ = dφ (mod <f{T2, J^)) for some function 0 6 C°°{T2).

Since ^ τ ^ 0 for every leaf L of 3Fλy we can easily show that the func-

tion cfφ increases or decreases infinitely along the leaf L. But this con-

tradicts the periodicity of φ.

We can modify this example to get linear foliations of codimension

1 of the 3-dimensional torus T3 such that C°°(T3y ^ R and any partially

symplectic structure on (T3, JO is partially non-exact.

EXAMPLE 5. Let M = {(x, y) e R2; x < 1 and x2 + y2 > 1/4}. Consider

the foliation J^: M = [Jr>m Lr, where Lr = {(x, y) e M; x2 + y2 = r2}. Using

polar coordinates (r, θ), we get that C°°(MY ^ C°°((l/2, oo)) and the form

r = dθ is a partially unimodular structure on (M, J^). Let Jf be the sub-

space of C°°((l/2, oo)), consisting of functions which vanishes on the open

interval (1/2,1). Since the leaves Lr are compact only for r < 1, easily

we get
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PROPOSITION 5.8. Let φ e C°°((l/2, oo)). Then, τ is partially semi-exact

with respect to φ, if and only if the function φ belongs to Jf\

On Mx R, we get the foliation: M X R = \Jr>m^r X R, and the

partially symplectic structure dθ A dz which is partially semi-exact with

respect to φ e Jf.

§6. Properly outer derivations

6.1. In the following we treat the case where σ = τ and p = 1. By

Lemma 1.2, we get the isomorphisms

*Γτ = C~(W)d and 3Γcτ = C°°(W)d + C~(W)I,

where we omit the index 1 of xt and 3^ I = Iτ = xd. Hence

^ 0 1 = R[W]d =

Σ
w = - l

Λn, m)

s Σ Σ
Then we get the following lemma similarly as Lemmata 2.2 and 2.3.

LEMMA 6.1. Let D be a derivation of 3Γcτ or J£?CΓ. Assume that D = 0

on Σn+m^-i ^"cX^, m). Then D = 0 on 3Γcτ f i t or =£?cr Π S respectively.

Here we get for ^

LEMMA 6.2. Lei D be a derivation of =£?Γ. Assume that D(X) = 0 /or

= a,3α and J ( l ^ a ^ q). Then D = 0 oτz J2fr Π «.
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Proof, At first we show that D = 0 on ^ \ n 8 = Σm*-i ^ \ ( — 1 , m),

by the induction on m. When m is negative, the assertion holds by the

assumption. Assume that D = 0 on 3Γτ{—1, £) (£ <: m — 1, m ̂  0). Let

X e ^ Γ ( - l , m), and define the vector fields Y e ^ Γ and ZeJS?' as D(X) =

y+ z.
Apply D to [da9X]e3r'τ(—l,m— 1), then we get that Y and Z are

with constant coefficients.

Apply D to (m + 1)X = [J, X], then we get

(m + iχy + z> = [j, γ + z] = o - z,

hence Y = Z = 0, so Z>(X) = 0. Thus D = 0 on 3Γτ Π S.

We can show that fl = 0 on i f ' ί l S , similarly as Last Step of the

proof of Proposition 2.3 in [4]. Q.E.D.

6.2.

LEMMA 6.3. Let D be a derivation of &*cτ or ££cτ. Then there exists

a unique vector field Z on V such that D = a d Z on Σn + mg_i ^cτ{n, m).

Moreover, Z is in S£cτ,

Proof Let D e 2e% {3Γcτ) or 3* (&er). Since Tτ = [£Γcτ, £>cτ] and f(w)d

= [f(w)d, I], then we get that D(3Γτ) c ^ r , similarly as Proposition 2.3.

Define functions g,gae C°°(W) as D(d) = g(w)d and D(wβ) = (ga(w) +

wag(w))d for 1 ̂  α ^ ^. Put Zx = -g(w)I + Σ« ga(w)dβ e 3Γcτ + ^ 7 , then

we get

[Zί99\=g(w)d =

[Zu wJS] = ga(w)d + wag(w)d = Z>(iι;β3) .

Let A = D - ad Z^ then A is a derivation of ^"cr, and A(d) = Dλ(wβ)

= 0. Apply A to d = [d, I] and wβ = [wad, I], then we get easily that

A(i) e ̂ τ . Put Z2 = A(i), then [Z2, /] = Z2 = A(D and [Z2, a] = [Z2, ^α5]

= 0.

Thus we get a vector field Z = Zι + Z2 e J£?CT such that D = ad Z on

Σ»+m^-i^*cr(Λ, m).

To prove the uniqueness of Z, it is sufficient to show that a vector

field Z on V is zero, if [Z, a] = [Z, 7] = [Z, wad] = 0. Q.E.D.

6.3.

PROPOSITION 6.4. Let D be a derivation of J~cτ or £fcr. Then there
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exists a unique vector field Z on V such that D = ad Z on 2Γcτ or ££cτ re-

spectively. Moreover, Z is in &cτ.

Proof. We can prove this for =£?cτ similarly as Proposition 3.5, by the

following lemma.

LEMMA 6.5. If a vector field X e 3~cτ satisfies f(X)(0) = 0, then there

exists a finite number of vector fields Yt e J5?cr and Zt e ZΓcτ (1<L i ^ r) such

that X = Σ£-i [Yt, Z*] <™d JKYiM = j\Zτ)φ) = 0.

Moreover, for XeJ~τ, we can take vector fields such that Yte^τ and

Z, e *rcτ or ££'.

Proof. It is enough to remark the formulae

waf(w)d = [f(w)d, waxd] = [f(w)da, 2-Wβ] , (l^a^q)

and

g(w)I = [g(w)da, waxd] . Q.E.D.

We return to the proof of Proposition 6.4 for ^"cr. We get that D

= 0 on J r similarly as for j£?cτ by the lemma above. So it is enough to

show that D(X) = [Z, X] for X = f(w)I, where Z is obtained in Lemma 6.3.

Apply A = D - ad Z to [d, X] = f(w)d e *Γτ and [I, X] = 0, then easily

we get Dλ(X) = 0, that is, D(X) = [Z, X]. Q.E.D.

From Proposition 6.6, we get

THEOREM 6.7. ( i ) The derivation algebra of ZΓQτ is naturally iso-

morphίc to £?cτ, that is, @a ($~cτ) = ad S£cτ ^ JS?cr. Hence,

(ii) All derivations of =£?cr are inner. Hence,

6.4.

LEMMA 6.8. Let D be a derivation of S£τ. Then there exists a vector

field Z on V such that D(X) = [Z, X] forX=d and da, and D(J) = [Z, X]

(modg), where 3 = R d is the center of S£τ. Moreover, Z is in S£τ + RI

and is unique modulo 3.

Proof. Let D be a derivation of =£?r. Define the functions fa(w) and

g!(w) in C~(W) as D(da) = fa(w)d + Σβg!(w)dβ. Apply D to [3.,3J = 0f
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then we get that djβ = dβfa and dag
r

β = dβg
r

a for 1 <; a, β, γ <: q. Then

there are unique functions / and gr e C°°(W) such that fa = dj, gl = dag
r

and /(0) = r (0) = 0 for 1 £ a, γ ^ q. Put Zx = -/(w)3 - ΣA-i §a(w)d« e ifτ,

then [Zly 3J = D(Sα).

Let A = D — ad Zl9 then A is a derivation of &t and A(3J = 0.

Apply A to [da, J] = da, then we get that D^J) is with constant coefficients.

Define the constants a and ba (1 <: a <: q) as D(J) =, ad + Σa bada. Put

Z2 = Σ« bada e J^', then D,(J) = [Z2, J ] + ad and [Z2, 3J = 0.

Let A = A - ad Z2, then we get that D2(3«) = 0, D2(J) = ad, and A

€ 0 r t (J2fΓ). Apply A to [3, 3 J = [3, J] = 0, then easily we get that D2(d)

can be written as A(d) = cd for some constant ceR. Put Z, = — cxd =

-de ^cτ, then we get that [Z3, 3] = cd = A(3) and [Z8, 3J = [Z3, J l = 0.

Thus we get a vector field Z = Z1 + Z2 + Z3 satisfying the conditions

of the lemma.

To prove the uniqueness of Z, it is enough to show that vector fields

Z on V must be in g if [Z, 3] = [Z, 3J = 0 and [Z, J ] e 3. Q.E.D.

6.5. Outer derivations.

DEFINITION 6.9. Let © be a Lie subalgebra of 2ί(V).

( i ) A derivation D of © is called natural outer, if there exists a

vector field Z g © on V such that Z) = ad Z on ©, and there are no such

vector fields in ©.

(ii) A derivation D of © is called properly outer, if there are no

vector fields Z on V such that D = ad Z on ©.

Let aeR. Define a linear map Da of j£?r to itself, as Da(fda) = a(dj)d

and Da(fd) = 0 for any function /e C°°(W0.

LEMMA 6.10. ( i ) Da is a derivation of S£τ, and

(ii) Da is properly outer for a Φ 0.

Proof. ( i ) Let / and g e C"(W). Since [fd, gd] = 0, [fda, gd] = f(dag)d

and [fda, gdβ] — f(dag)dβ — g(dβf)da, we can easily check the derivation

property of Da.

(ii) Let Z be a vector field on V such that Da = ad Z on j£?r. Since

£)α(3) = Dα(3J = Da(wad) = 0, then we get easily that Z is in the center 3.

However, this contradicts that [Z, J ] = Da(J) = #α3 =£ 0. Q.E.D.

LEMMA 6.11. Let D be a derivation of S£τ. Assume that D(d) — D(da)

= 0 (1 £ a < q) and D(J) = qad e 3, then D = Da on £>τ Γϊ Si
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Proof. Since Da(d) = Da(da) = 0 and Da(J) = qad = D(J), so D1 = D

- Da is a derivation of J^Γ such that A(9) = A(9«) = DX(J) = 0. Then

by Lemma 6.2, we get that A = 0, that is, D = Da on Seτ Π S. Q.E.D.

6.6.

PROPOSITION 6.12. Let D be a derivation of Seτ. Then there exists a

vector field Z on V and a constant aeR such that D = a d Z + Da on ££τ.

Moreover, Z is in J?T + R-I, and is unique modulo 3.

Proof. Let De@e*(&τ). Then by Lemmata 6.8 and 6.11, we get a

vector field Z and a constant a such that D = ad Z + Da on j£?τ Π St.

Hence by Lemma 6.5, we get similarly as Proposition 6.4 that D = ad Z +

Da on Jί?r. Q.E.D.

THEOREM 6.13. The derivation algebra @eι(<£?τ) has the 2-dimensional

subspace of outer derivations, and the 1-dimensional one of natural outer

derivations. Hence,

6.7. Since 3~τ is abelian and ZΓτ = C°°(W), then all non trivial deriva-

tions of ZΓτ are outer, and the derivation algebra 2* (J~τ) is naturally

isomorphic to the space ^in(C°°(W), C°°(VF)) of all linear maps of C°°(W)

to itself.

LEMMA 6.14. Let D be a derivation of Fτ. Then there exists a vector

field Z on V such that D(X) = [Z, X] for X=d and wad (1 £ a ^ q).

Moreover, Z is in J£cτ and is unique modulo ZΓτ.

Proof. Let D e $eι {3Γτ). Define the functions /, fa e C°°( W) such that

D(d) = f(w)d and D{wβ) = (fa(w) + wj{w))d for 1 £ a £ q. Put

z = -*/(w)d + Σ fa(w)da e secτ,
a

then we get

[Z, wβ] = (Λ(M ) + wj(w))d = D(wβ) .

Let A = D - ad Z, then A is a derivation of 3Γτ and A(3) =

= 0. Let a vector field X on V which satisfies [X, 3] = [X, wβ] = 0

(1 <L a -^ q), then easily we get that X e $~τ. Hence, Z is unique modulo

erτ. Q.E.D.

Here we summarize results for ^
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THEOREM 6.15. ( i ) All derivations of Tτ are outer, and the derivation

algebra $)e\(J7'^ is ίsomorphίc to the linear space S£in (C°°(W), C°°(W)).

Hence,

H\Pτ, «Γτ) ς* S£in (

(ii) The space of natural outer derivations of ZΓτ is isomorphίc to

C~(W) I+ ££'.

(iii) Any linear map φ of C°°(W0(1) to C°°(W) defines a properly outer

derivation Dφ of Fτ such that Dφ(d) = Dφ{wβ) = 0, and Dφ(fd) = φ{f)d for

fe C°°(W0(1), where C°°(W0(1) is the subspace of C°°(W) consisting of functions

whose 1-jets vanish at the origin.

6.8.

Remark. Since any one of «̂ *r, ?Γcτ, S£τ and £?CT does not satisfy the

property (A), I don't know the way to localize their derivations in general.

However in some examples of (M, J5*, τ), we can determine the structure

of these Lie algebras and their derivation algebras. I will discuss such

examples elsewhere.
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