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SOME LIE ALGEBRAS OF VECTOR FIELDS
AND THEIR DERIVATIONS
CASE OF PARTIALLY CLASSICAL TYPE

YUKIHIRO KANIE

Introduction

Let (M, #) be a smooth foliated manifold, and (M, #) the Lie
algebra of all leaf-tangent vector fields on M.

Assume that (M, #) admits a partially classical structure z,w or 6
(see §4.1). Then we have natural Lie subalgebras J .M, ¥), I .(M, F),
T M, F), T..M,F), T(M, F) of the Lie algebra (M, F) = T (M, F)
(see § 4.2). These Lie algebras including (M, &) itself are called of par-
tially classical type. Here we study the structures of those Lie algebras
and their derivation algebras.

The derivation algebra of (M, %) is naturally isomorphic to the
Lie algebra #(M, #) of all locally foliation-preserving vector fields on
M (see [4]). We get similarly natural Lie subalgebras Z.(M, ¥), Z.(M, F),
LM, F), L...M, F), (M, F) of (M, F) = L(M, F) (see §4.2).

Our main results (announced in [11]) are

MaIN THEOREM. Let M be a smooth (p + q)-dimensional manifold,
and & a codimension q foliation on M. Assume that (M, F) is equipped
with a partially classical structure t, o or 6.

(@ Leto =0, ce(p+1), co or . Then

H(2 (M, F); £,(M, F)) =0,
H(T (M, F); 7 (M, 7)) = £ (M, #)|T (M, F) .

(b) Let o =t(p +1) or w. Then

H(Z (M, 7); £ (M, 7)) = £.(M, F)|£ (M, F) ,
H\T (M, F); T (M, F)) = £ (M, F)|T (M, F) .

Received October 26, 1979.
175



176 YUKIHIRO KANIE

The Lie algebras of partially classical type correspond in the formal
case to some parts of E. Cartan’s classification of infinite intransitive Lie
algebras (see T. Morimoto [5]), and N. Nakanishi [6] discusses about de-
rivations of such Lie algebras.

This work is in a series of F. Takens’ work [9] and the author’s [2],
[3], [4] which we use in this paper for general references. However this
work is also an attempt to define natural and typical Lie algebras of
vector fields in the intransitive case.

The content of this paper is arranged as follows. In § 1, we introduce
Lie algebras 7, and &, for standard foliations on Euclidean spaces, and
study their structures. In § 2, we introduce the grading of subalgebras
of 9, and %,, consisting of vector fields with polynomial coefficients, and
the finite dimensional Lie subalgebras 8, of 7 ,, on which any derivations
of 7, and &, are determined. We prove Main Theorem (Theorem 3.6)
for 7, and %, (flat case) in §3. In §4, we define partially classical struc-
tures on (M, #) and Lie algebras .M, #) and &, (M, ), and prove
Main Theorem (Theorem 4.10). Here it is essential that derivations of
T (M, F) (¢ = 7, w,0) are localizable (Proposition 4.8). In §5, we give a
further discussion on H( (M, ¥); 7 (M, ¥)) and H(Z (M, F); £ (M, F))
for 0 =z and w. In § 6, we treat the pathological case (p =1 andg =7
or cr), prove our theorem for 9, and %, and remark that there are
derivations of 7, and %, which cannot be realized by vector fields
(properly outer derivations).

All manifolds, foliations, vector fields, etc. are assumed to be of C=-
class, throughout this paper. However, for flat case, our method here is
applicable without any change to the case of analytic or complex category.
Similarly the results in [2], [3], [4] for flat case are valid in those cate-
gories.

§1. Lie algebras J,% and their subalgebras

1.1. Notations and definitions. Fix a coordinate system v, ---, v, in
a p-dimensional Euclidean space U = R?, and w,, - - -, W, in a g-dimensional
W = R’ We consider vector fields on the (p + g)-dimensional space V =
U® W = R**%, and the Lie algebra (V) of all vector fields on V. Denote
d/ov, by 8, =1, ---,p), and dfow, by d, (@ =1, ---, g). Use Latin indices
i,j, k, - -+ for variables in U, and Greek indices «, 3, - - - for variables in
W, otherwise stated.
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Consider the standard codimension g foliation % on V, defined by
parallel p-planes: =3' (a point), where z, is a canonical projection of V
onto W. Let  be the Lie algebra of all leaf-tangent vector fields on V,
then by [4], the derivation algebra Z.:(J) of g is naturally isomorphic
to the Lie algebra % of foliation-preserving vector fields, and Z is de-
comiJosed as

L =T+ 7,

where %’ is naturally isomorphic to the Lie algebra A(W).
Let 2(V) be the exterior algebra of all differential forms on V, and
J(F) be the ideal of 2(V), generated by dw,, - - -, dw,, that is,

I(F)={ac2V);a(X,, X;, -++) =0 for X, eT}.
Denote by 2(%#) the complement of #(%#) in 2(V), that is,
V) = AF) + J(F),
and 2(F) is the exterior algebra over C~(V), generated by duv, ---, dv,.

LEmMMA 1.1. (i) The ideal # (%) is Ly-stable for X e %, and iy-stable
for Xe 7, where Ly means the Lie derivative with respect to X, and iya

means the interior product of X and «.
(ii) The ideal #(F) is a differential ideal, that is, dS(F) C S(F).

Proof. It is enough to use the fact that 9 is an ideal of #. Q.E.D.

1.2. Put p=n, x,=v,G=1,---,n), and t=dx; A --- Adx,. A
leaf-tangent vector field X is called partially conformally unimodular, if
L,z is congruent to ¢(w)r modulo (&) for some function ¢(w)e C~(W).
Moreover, if the function ¢(w) is zero, X is called partially unimodular.
Then by Lemma 1.1, we get two Lie subalgebras of 7 :

T.=1{XeT; Ly =0 (mod S(F))},
T = {Xe T ; Lyt = ¢(w)r (mod J(F)) for some ¢(w)e C=(W)}.

Lemma 1.2. Write Xe I as X = 37, fix, w)d,.

(1) X is partially unimodular, if and only if > 7., d,f, = O.

(ii) X is partially conformally unimodular, if and only if > r,0.,f; €
C>(W).

(iil) 7. is an ideal of T, and [T ¢, T ol C T ..
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Gv) Putl =37 ,x0,€7,. Then, any Xe T, is decomposed as X =
X, + X,, where X, €7, X, = n'¢(w)l, and Lyr= $w)r (mod S (F)).
Namely,

T =T .4+ n'C(W)I,.

(v) If X is partially unimodular, iyt e 2(F) is a partially closed
(n — 1)-form, that is, diyr € S (F). The mapping which assigns iyt to X €
. is the linear isomorphism of 7, onto the subspace of Q" '(¥), consisting
of partially closed (n — 1)-forms, that is,

T, = {ae 0" (F); dac S(F)} .

(vi) Let ae 2" %(%). Denote by X[a] the partially unimodular vector
field corresponding to the Q(F)-part of da. The assignment of X[a] to «
defines a mapping of 2"~(%#) onto I,. Put

N N
ay=de, A - ANdx A - Adx, A e A dx,
then for any functions f and g in C=(V),

Xlfa;] = (=1)"*@,)9, — @9} (QA=i<j=mn),
[XTfer,;), X[gaisl] = (=D X[{{, ghseis]

where {, };; is the Poisson bracket in x, and x;, that is,

{f, g}y = (0.)0,8) — 9,/)@.8) .

1.3. Putp=2n,x,=v,y,=0,,, A <i<n),and o = D %, dx;, A\ dy,.
A leaf-tangent vector field X is called partially conformally symplectic, if
Lyw is congruent to a form ¢(w)w modulo (&) for some function ¢(w)
e C*(W). Moreover, if the function #(w) is zero, X is called partially
symplectic. Then by Lemma 1.1, we get two Lie subalgebras of 7 :

T,=1{XeT ;Lo = 0(mod #(F))} .
T o = {X€T; Lyw = ¢(W)o (mod F(F)) for some ¢(w)e C=(W)}.

LeEMMA 1.3. Write Xe 9 as X = >, fi(x, y, w)3,.
(i) The following three conditions are equivalent:
(&) X is partially symplectic;
(b) o.f, = =0 nfiins Orinf; = aj-wzfi’ 0ufjin = 0;fisn A= 1,j < n);
(c) there is a unique function He C=(V) up to functions in C=(W)
such that f, = 6,,,H and f,,, = —0,H for any i(1 <i < n).
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(ii) X is partially conformally symplectic, if and only if for any 1 <
I, ] 1, 0,.0f) = 0unfis 010 = 0if1uns 0ufy + 0510fiin = 6yyp(w) for some func-
tion ¢(w)e C=(W), where é;, is Kronecker’s delta.

@{il) 7, is an ideal of T .., and [T 4, T c0]l C T ..

iv) Put I, =>*",v0,€J .. Then, any Xe7J, is decomposed as
X =X, + X, where X, 7, X, = 2"'¢(w)l, and Lyo = ¢(w)o (mod J(F)).
Namely,

T ww=T,+ 271C(W)I, .

(v) Denote by X, the partially symplectic vector field corresponding
to a function He C=(V) as in (1). Then for any functions H and K in
C=(V),

[XH, XK] = _X(H,K) ’
where {,} is the Poisson bracket in the variables x,, - -+, X,, Y1, - =+, ¥, that
is,
{H! K} = lZ_; (HmKw - HWKM) .

14, Pt p=2n+1, %, =0,y =0,, A <i<n), 2= Uy,;, and 0 =
dz — > ydx,. A leaf-tangent vector field X is called partially contact,
if Ly# is congruent to a form ¢(x, y, 2, w)d modulo #(F) for some function
#(x, y, 2, w) e C(V). We denote by 7, the Lie subalgebra of 77, consisting
of all partially contact vector fields.

LEMMA 14. Write Xe 9 as X = >74 fi(x, y, 2, w)3,.
(i) X is partially contact, if and only if there is a unique function
k(x,y, z, w) € C=(V) such that for any i 1 < i < n),

fo= =Bisks fron = OR) + 20usik), and frns = k= 3, 300R) -

Here, k is obtained as k = iy0 = fy,.1 — > 01 Yifse

(ii) Let # be a mapping from T, to C=(V), which assigns X* = i,0
to Xe 7, Then the linear mapping % is bijective.

(iii) If X is partially contact, it satisfies the following equalities:

(#)1 ai+nf2n+l = iZ:iyj(ai+nfj) (1 é i é n) )

#): ¥iOsnsifonss — ji: Y1@ens1f1)) = fisn — Oifonsr + i:lyj(azﬂ) .
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(iv) Denote by b the inverse mapping of 4. We can introduce the
generalized Poisson bracket ((,)) in C=(V) as follows:

((f,e) =1 8T (f,geC(V))
= {f}g}zy - fz(g - ji:ﬂngyj) + gz(f— jz:zlyjfyj> ’

where {, },, is the Poisson bracket in the variables x,, - - -, X, Y1, ** * Yu-

Using Poincaré’s lemma with parameters, we can get these Lemmata
1.2 ~ 1.4 similarly as in the transitive case (see [2] and [3]).

1.5.

Remark. Our Lie algebras 9,9, .9 o 7 v 7 . and I, correspond in
the formal case to ‘“‘intransitive Lie algebras whose transitive parts are
infinite and primitive” (see E. Cartan [1] and T. Morimoto [5]) with the
exception of -, for p = 1. In fact, , is isomorphic to the topological
completion of the Lie algebra C=(W)® %, (U) for ¢ = 0, z, ¢z, w, co and 4,
where %, (U) is the Lie algebra of classical type, consisting of vector fields
on the Euclidean space U (see [3]). In our notation, 7, = J and U(U)

= A(U).
1.6. Lie algebras ¥,. We can similarly define Lie subalgebras of %
as follows: for ¢ = 7 or o,
&, ={XeZ;Loec S(F),
Lo, = {XeZ; Lya = g(w)o (mod S (F))},
and
&, = {XeZ; L0 = é(x,y, 2, w)§ (mod S (F))} .
Then we get easily

LEmMA 15. (i) Let o = 7,0 or 6. Then Lyo = 0 for any Xe &'.
(ii) Let ¢ = r,ct,w,c0 or 8. Then T, is an ideal of &,, &’ is a sub-
algebra of %,, and &, is a direct sum of I, and &’ as vector spaces:

L, =T, + 7.

Proof. (i) By the definition of ¢,¢ and do belong to 2(%#), and i,
=0 on %) for Xe¥'. Hence, Lysg = 0.
(i1) Since J is an ideal of %, the assertion (ii) follows from (i).
Q.E.D.
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By Lemmata 1.1 and 1.5, we get easily

ProPOSITION 1.6. Let g, be congruent to ¢ modulo S(F) for ¢ =17, 0
or 6. Then Lie algebras 7, and %, given by o, are the same as by a:

.9‘,,1 '9‘09 gal=ga (0'=’L',(0,0),
g-cvl e?-ca ’ agcal = gca (0 = T’ (0) ’
for

and Lo, € S (F) Xe ', hence & is a subalgebra of £, for any a.

1.7‘

Remarks. Let o, = a(w)s (¢ = 7, w, §) for some non-vanishing function
a(w)e C=(W). Put X =37, f(v,w)d, €T and Y = >, g(w), ¥, then

LXO'U. = a(w)LXG ’

Lo, = —— 3 Q.)wgwo,  (mod #(F)) .
a(w) ==

Hence, if we consider analogously Lie algebras J,, for g,, these are ex-
actly the same as those for ¢. However, if the function a(w) is not con-
stant, Lyo, %= 0 (mod #(&F)) for Ye %/, and so &%’ is not a subalgebra of
&, or Z,. To avoid this difficulty, we have two ways. One way is to
replace %’ by the Lie subalgebra %, of Z,, (¢ = 7, 0, ) which is isomorphic
to %’ under the Lie algebra homomorphism ¥. Here ¥ is defined for Y =
3. 8w, e £ as U(Y) = Y — (n,a(w) (5. 0.0)g), € .., where n, =
n and n, = n, = 2; I, is defined in Lemmata 1.2 and 1.3 (¢ =7, 0); I, =
2205,,1 + 2% 0,0,. Then we get that L,,,0, € S(F), and that &, is a
direct sum of 7, = J,, and Z,.

The second way which we take in the following is to use coordinate
transformations +,:

% = a(w)x, ,
Yei (% = X, 2=gi<n,
L—Ua=wa,
—_ () xi=xiy
X, = alw)x; , .
T A L N R R F
o "z = awz,
wa=wa5
W, = w, 1=sa=9

Then we get



182 YUKIHIRO KANIE

:kTaEd-’_Cl/\"'/\dxn’ jwaE.Zn:d-’—ct/\dyi,
V0, = dz — 3. 3.d%, (mod #(#)) .

Moreover we get that L,(v¥e,) e #(F) for

Y= gwp, = gmice (, =0o6w,).

In fact, for ¢ = ¢

o EmN_ 1 o & (G.0)@) g
ax = d('&") T a(w) %+ %2, a*(w) 4.

then

«p:"ra=dfc,A---/\da-cnm,z%‘(@dwa/\dm---/\dxn,
« w

Ay = dx, A S Q;L)dw, AdE A --- A dR,

+ X Z/; @,2.0)a ;2(8"“)(‘9/’“) dw, N dw, N\ dx, A\ --- N\ dX, .

Hence
Ly(y¥ra) = ird(izo) + diy(iro)
= -3 8D gax o pds, o+ d(mD O gam noo A ds,)
=0 (mod S#(F)) .
We get similarly the assertion for ¢ = » and 4.

1.8. Property (A). Denote by U(M) the Lie algebra of all vector
fields on a smooth manifold M. Let B(M) be a Lie subalgebra of (M)
defined by local conditions such that we can define a Lie subalgebra B(U)
of A(U) for any open subset U of M. We say that B(M) has the property
(A) for an open set U, if ry(B(M)) = ry(B(U’)) for any open set U’ such
that U c U’. Here ry is the restriction mapping onto U.

Then we get the following similarly as for the transitive case.

ProposITION 1.7. The Lie algebras 7, for ¢ = 0,7,0 and 6 have the
property (A) as subalgebras of U(V) for sufficiently many open sets (such
as in Proof).
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Proof. For any open set U, the Lie algebra 7 (U) is a module over
C>(U). And the Lie algebra 7 ,(U) is isomorphic to C*(U) because of
Lemma 1.4 (i) and (ii).

For any simply connected open set U, we get, by Lemma 1.3 (i), a
function H on U for any Xe 9 (U) such that X = X, on U.

Let U be a simply connected open set whose closure is a compact
manifold. Let X be partially unimodular, then we get, by Lemma 1.2 (vi),
an (n — 2)-form e € 2(F) on U such that X = X[a] on U. Q.E.D.

1.9. Commutators in 7, and %Z,.

PropostTioN 1.8. (i) Let p > 2. The Lie algebras 7, and £, are
perfect for ¢ = 0,7, w and 6. Moreover there hold equalities:

j—l,:[ﬁ_a,g-,] [ ] (02090),
g-a:‘[yoaya] [Jca,yca]_[gca’j—ca] (O‘"-—“T,Cl)).

(i1) Let p = 1. The Lie algebra 7. is abelian, and %., 7 and & are
perfect. Moreover

€7—r—__‘[y—cr’tyﬂcr =[gcnycr]'

Proof. (i) Using the fact that [¥/,7,]C J, and &' = [¥, %], it
is sufficient to show that 9, =[9,,7,] for ¢ = 0,7, » and 6.

Case of 7. Let X = f(v, w)d,, then X = [9,, h(v, w)d,], where
h(v, w) = L f(v, wdv, .

Case of .. Any function f(x, w) can be written as f = {x,, g},;, where
g(x, w) = J‘OM f(x, wydx; .

Hence we get the assertion of the proposition by Lemma 1.2 (vi).

Case of 7, Similarly any function H(x,y, w) can be written as H =
{x,, G}, where

Glx, 3, w) = [ Hx, 3, wdy, -

Hence the assertion follows from Lemma 1.3. (i) and (v).

Case of 7 ,. For afunction k(x,y, w) independent of 2z, the assertion
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can be reduced to Case of 7, by Lemma 1.4 (ii) and (iv). Hence we may
assume that k is written as & = zh for some function he C=(V). Put

g= | hay,
then we get
k = ((xlz: g)) + ((xlg’ Z)) .

(ii) By Lemma 1.2 (i) and (ii), we get that 9, = C=(W)3,, and X¢
.. can be written as X = f(w)d, + x,g(w)d, for some f, ge C*(W). Q.E.D.
ProrositioN 1.9. Put m, = 3,2,2 and 4 for ¢ = 0,7,0 and 6 respec-

tively. 1If a vecior field Xe 7, satisfies j™(X)(0) = 0, then there exists a
finite number of vector fields X, ---, X,, € I, such that

X=3 (X Xo] and FE)O=0 G=1---,2).

Here, the case where ¢ = ¢ and p = 1 is excluded.

Proof. For ¢ = 0, this is Proposition 1.4 in [4].

For ¢ =z, by Lemma 1.2 (vi), we get this proposition similarly as
Proposition 4.7 in [3].

Let 0 = w. By Lemma 1.3 (i) and (v), it is sufficient to show that
any function H written as

H = [] zteyr [] wieG(a, 3, w)
i=1 a=1
with >3, (4, + m;) + >3, 2, = 4 can be decomposed as
H= 1; {F'i, Fi«w}

with j?F,(0) =0 for i=1,---,2r.

If >,6,22 or >, m, =2, the assertion follows from similarly as
Proposition 2 in [2]. So we may assume that >, 4, <1 and >, m, < 1.
Hence >, 2, = 2, and we may write H as H = w,w,G. Put

K = jyl G(x7 yr w)dyl ’
0

then we get that j°K(0) = 0 and H = {x,w.w,, K}.
Let ¢ = 4. By Lemma 1.4 (i), (ii) and (iv), it is sufficient to show that
any function fe C~(V) with j*f(0) = 0 can be written as
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f = ZZ:{ ((gn gi+r)) ’

and j'(g))(©0) =0fori=1,---,2r

If 3,f = 0 for any «, this is reduced to Proposition 2.7 in [3]. If 0,,..f
= 0, this is reduced to the case where ¢ = w. So we may assume that
f is written as f = zw,g for some «. Put

Y1
h = JO gdyl ’
then we get

f = (x2w,, b)) + (x:h, zw,)) . Q.E.D.

Note. The case where p =1 and ¢ = z,cr is pathological. So we
exclude this case in §2 ~ §5, and treat the case in §6.

§2. Vector fields with polynomial coefficients

2.1. Grading of Lie subalgebra 7, N A. Denote by R[V] the algebra
of all polynomials in the variables v, ---,v,, w,, - -+, w,. The vector field
X=>7,fv,wo, + 32,8, w0, on V is said to be with polynomial
coefficients, if f,(v, w) and g.(v, w) are in R[V] (=1, ---,p,a=1,.-.,9).
Such vector fields form a Lie subalgebra % of 2(V), and we get Lie sub-
algebras 7, N U of 7, and &, N A of &, for g = 0, 7, cr, w, co and 4. Put
I, =37 ,v0, for ¢ =0,7,cr,0 and cw, and I, = 20,,,,00,.1 + D 3% U0,
Then, we get

Leg,NYU (6 =0,cr,co,b),
Le(J.,\7,)NnA (¢ =r,0).
Put J =>%,w0,€¥, then we have a natural grading of J, N A as
follows.
LemMA 2.1. (i) Let ¢ = 0,z,¢r,0 or co. For any n= —1 and m =
—1, put
T (n,m)={XeT,N AL, X]=nX [J,X] =(@m+ )X}
={X=>7,f(v,wd,eT,,f; are homogeneous polynomials
of degree n+ 1in v, ---,v,, and

of degree m + 1 in wy, ---,w,},

then the Lie algebra 7, N A is decomposed as
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T, NA= 3 T.(,m).

iz -1
(ii) For any n = —2 and m = —1, put
Tn,m)={Xe7,NYA; I, X] =nX, [/, X] =(m+ )X},
then the Lie algebra 7, N A is decomposed as
T, NA= 3 Tunm.

nz-2,mz-1

Moreover, under the isomorphism §, (7, N A} = R[V], and T ,(n, m)

is isomorphic to
T on, m} = {fe R[V]; f is weighted homogeneous of degree n+ 2 in
Xiy 9 Xpy Y1y "3 Yns 2 and Of degree m + 1 in Wy wq} ’

where deg x, = degy, = degw, =1 and degz = 2.
(i) Let ¢ = 0,7z, cr, 0, co or 6, then

[T(n,m), 7,0, m)CT(n+n,m+m+1),

where I (n,m) =0 for n or m< —2 (6 #6), and T ,(n,m) =0 for n <
—3orm<L —2.

2.2. Subalgebras %B,. For ¢ =0, r,cr, o and cw, put
%, = Z f«r(", m) ’

n+ms -1
and put
By = 2. T (n, —1) + >, T,n,0).
ns -1

n=s0
Then these B, are finite-dimensional subalgebras of 7, N A for all a.
Our aim of this section is to show that any derivation of 7, or %, is
determined on the subalgebra B,.

Lemma 2.2. Let ¢ = 0,7, cr,0,co or 6. If a derivation D of T, is zero
on B,, then D is zero on 7, N .

LemmA 2.3. Let ¢ = 0,7,cr,0,co or 6. If a derivation D of %, is zero
on 9B,, then D is zero on &, N 2.

The proof of these two lemmata will be given in §24 ~ 2.6. Here
we remark the following proposition which easily follows from Propositions
1.3 and 1.4 in [3], Proposition 1.5 in [4], and Proposition 1.9.
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ProposiTion 2.4. Let ¢ = 0,7, c7,w,c0 or 8. If a derivation D of T,
or &, is zero on B,, then D is zero on J, or &, respectively.

2.3. Here we summarize the facts which will be applied later. Put

T, ={XeT,; 0,X]=001=ZLa=<q)},
Tw)={Xes,;[0,X]1=001=ZLi<p)}.

LEmmA 2.5. Let ¢ = 0,7, cr, 0, co or 6.

(i) Let XeWV). If[9,X]=0fori=1,-..,p, then X is independent
of the variables v, - - -, v,, that is, Xe T (w).

(ii) Let Xeg,. If [X,Y]=0 for any Ye 7, ,(n, —1) with n < —1,
then X is in 7 ,(w), and moreover X is in C=(W) for ¢ = 6.

(i) Let Xe2, If [X,Y]e¥ for any Ye T ,(n, —1) with n < —1,
then X is in 7 (w) + Z’.

(Gv) Let Xe g ,(w). If [X,1] =0, then X =0.

(v) [7.(),Z]=0.

(vi) Let Xe%'. If [X,Y] =0 for any Ye 7 ,(n,0) with n < —1, then
X=0.

(vii) Let 0 =7 or w. Let Xe 7 (w) or 7(w). If [X, 7,0, —1)] =0,
then X = 0.

Proof. For ¢ + 6, this lemma follows similarly as Lemma 1.1 in [4].
For ¢ = 6, it is enough to note Lemma 1.3 (iii) or (iv), and Lemma 2.1 (ii).
We can prove (vii) similarly as (iv), by using vector fields x,3; (i # j)
or x0,, — y.0,, instead of I, or I, respectively. Q.E.D.

2.4.

Proof of Lemma 2.2. Our proof is similar to the proof of Proposition
2.1 in [4] (the case of ¢ = 0), and consists of following four steps.

Step 1. D is zero on 7 ,(v) N A

Step 2. D is zero on 7,(0,0).

Step 3. D is zero on > ,<_1 Y mz-17 (N, M).
Step 4. D is zero on 7, N .

We can prove Step 1 similarly as the corresponding transitive cases
(see [2] and [3]).

Let ¢ = cr,co and 4. Then I, is in J,. So, by using the grading
Sin Oomz1 T (n, m)) of 7, N 9, we can prove Step 4 by the induction on
n, similarly as Lemmata 3.4 and 5.9 in [3].
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Step 2. Let Xe¢7,0,0). By Lemma 2.1, we get
[7.(n —-1),X]C 7,n,0 and [[,X]=0.
Applying D to these formulae, we get by the assumption
[T,(n, -1, DX)]=0n< —1) and [I,DX)]=0.
Hence Lemma 2.5 (i) and (iv) imply that D(X) = 0.
Step 3. The proof is carried out by the induction on m. When m is
nonpositive, the assertion holds by the assumption. Assume that D is

ZET0 ON D <1 Dimsi_1Z .(n, m) for some k> 0. Clearly it is enough to
show that D(X) = 0 for the case where X is written as

X=wh... wquY’
where >, 4, =k + 1 and Ye 7 ,(n, —1) with n £ —1. There is an index
B with 2, > 0. Apply D to
X = n'[w,l,, w;'X],
then D(X) = 0 because w;'Xe 7 ,(n,k — 1) and w,I, € 7,0, 0).
25. Case of 6 =7 or o. Let ¢ =7 or w. For Step 3 we can prove
it similarly as above by noting the following equalities: (for 1, > 0),
fo,=wp .- wHo, = [w;lfaj, xjwﬂai] C#D =1,
X = w{l PP wfj’an = [w;lX, wﬁ(xiai _— yiai)] ,} (0 _ )
Y=w}... wz”ay, = [wp_lYa wﬂ(yiai — x,0,)]

We can prove Step 2 and Step 4 similarly as above by elementary
calculations. However, here we give a simple proof by using some facts
about graded Lie algebras (see Singer-Sternberg [8], for definitions).

Facts. (a) There are natural isomorphisms

g—a(‘—la —1) = U, Fa((), —1) = ga and .7,(k, _1) = gy‘) s
where g, = 3U(U), g, = 30(U) and g is the k-th prolongation of g,.

®) g, =1[U, gl

(¢) The adjoint action of 7,00, —1) on T ,(k, —1) is the natural action
of g, on g¢®, and is irreducible (the irreducibility is due to H. Weyl [10]).

Step 2. It is enough to show that D(w X) = 0 for any X e 7,(0, —1).
By Fact (b), we get vector fields Y, e 7,(—1, —1) and Z,e 7,1, -1) (1 <@
< r) such that X = >,[Y,,Z]. So w X is written as
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wX=> Y, Z].
i=1

Hence D(w,X) = 0, because w,Y; € 7 ,(—1,0) and Z, ¢ 7,(1, —1).

Step 4. Decompose 7, N A as 7, N A = > oy Ozt 7.(k, m)). The
proof is carried out by the induction on k. The assertion for 2= —1
holds by Step 3. Assume that D is zero on >, ., Conz1 7 .(n, m)) for
some £>0. Let XeJ (k,m). Applying D to [0, X]e T (k — 1, m), we
get that D(X) € 7 ,(w). Thus we get the mapping D, = D|,, i n, of T ,(k, m)
to 7 ,(w), and we want to show D, = 0.

There are the natural isomorphisms 7 ,(n, m) = P™*(W) ® g™, where
P™*(W) is the space of homogeneous polynomials of degree m + 1 in the
variables w,, ---,w,. Let Ye 7,0, —1) = g,, then we get that D[Y, X] =
[Y, D(X)], so D,oad Y= ad Yo D,, that is, the following diagram commutes:

PR(W) ® g > P (W) @ g

T

yu(k: m) — g-a(k7 m)

adY
le O ‘Dk
Y
g-,,(U)) W g_,(LU) f

Since the adjoint action of g, on g{® is irreducible by Fact (c), it is enough
to show that D;!(0) == 0.
Let ¢ =17, f(0)e P"*(W) and X = x!*9,. Then, fXeT ., (k, m) is
written as
X = [f(w)a,, (k + 2)~'x§**3,] ,

so fX e D;'(0) by Steps 1 and 2.

Let 0 = o, f(#0)e P"*(W) and X = x{*'9,,, then fXe 7 (k, m). We
want to show D(fX) = 0. Write D(fX) as D(fX) = >, (e,(w)d,, + b, (w)3,,)-
Applying D to [x,0,, — ¥.0,,, [X] = 6.(k + 2)fX (where §,, is the Kronecker’s
delta), we get

[xia:vi - yiayp D(fX)] = —ai(w)aa:z + bz(w)aw
= du(k + 2)D(fX) = 6.(k + 2)‘; (aj(w)d,, + by(w)d,,) .

For i #+ 1, we get that a,(w) = b,(w) = 0. For i =1, we get
—a, =(k+ 2a, and b = (k+ 2)b,,
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80 @; = b, = 0 because k£ > 0. Thus, D(fX) = 0. Q.E.D.
2.6.

Proof of Lemma 2.3. We need only to prove that D=0 on %’
NA. For ¢ =cr,co and §, we can prove similarly as in the proof of
Proposition 2.3 in [4] (¢ = 0), by noting Lemma 2.5 (i) and (iv) and the
fact that I, e 7,.

For ¢ =z and w, we can also prove similarly as above, by using
Lemma 2.5 (vii). Q.E.D.

§3. Derivations of .7, and #,

3.1. Derivation. Let Z be a vector field on V. We define ad Z as
ad Z(X) = [Z, X] for Xe A(V). Then we have

Lemma 3.1. For ¢ = 0,1, cr, 0, co and 0, the mapping Z — ad Z|,_ or
Z—adZ|,, of &, into D (T ,) or D (£,) respectively is an into isomor-
phism, where ¢’ = ¢ for ¢ = 0, cr, co and 8, and ¢’ = co for ¢ = 7, w.

Proof. It is sufficient to show the injectivity. Let Ze #,. Assume
that ad Z(J,) = 0. By Lemma 2.5 (iii), we can write Z as Z = X 4+ Y with
XeT (w) and Ye.#’. Then we get that X =0 by Lemma 2.5 (v) and
(iv), and that Y = 0 by Lemma 2.5 (vi). Q.E.D.

LeEmMmA 3.2. (i) Let D be a derivation of &, forc = 0,7,w or 6. Then
D7 ,)cC T,

(ii) Let D be a derivation of ., or &,, forg =t or o. Then D(J,)
c g,

Proof. This follows immediately from Proposition 1.8 and the following
general proposition. Q.E.D.

PropostiTioN 3.3. Let T be an ideal of a Lie algebra L such that
[T, Tl = T. Let D be a derivation of L. Then ID(T)C T, that is, D in-
duces a derivation D|; of the Lie algebra T.

Proof. Let XeT. Write X as X =>_,[Y,,Z] with Y,,Z,eT. So,
since T is an ideal, we get

D(X) = D(3 [¥, Z1) = SID(Y), Z] + [Y, D@ e T
Q.E.D.
3.2. Determination of P (T,).
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ProposITION 3.4. Let D be a derivation of I, for ¢ = 0,71, cr, v, co
or 6. Then there exists a unique vector field Z on V such that D = ad Z
on B,. Moreover, Z is in %,, where ¢’ = o for ¢ = 0,cr,co or 6, and ¢
=co for ¢ =t or .

The proof of this proposition will be given in § 3.3 ~ 3.4.

ProposiTiON 3.5. Let D be a derivation of I, or %, for ¢ =0,1z,cr,
o, cw or 6O, then there exists a unique vector field Z e (V) such that D
= ad Z|,, or ad Z|,, respectively. Moreover, Z is in &,, where ¢’ is as in
Proposition 3.4.

Proof. Let D be a derivation of 9,. Then by Proposition 3.4, we
get a unique vector field Ze€.%,, such that D=adZ on 3B,. Since
adZ(9,)C 9, D, =D — adZ is also a derivation of 7, and vanishes
on B,. Hence by Propositon 2.4, we get that D, = 0, that is, D = ad Z
on 7.

Let D be a derivation of .#,, then we can restrict D to J,, by Lemma
3.2, where ¢, = ¢ for ¢ = cr or cw; and ¢, =7 or w for ¢ = ¢z or cw re-
spectively. Q.E.D.

THEOREM 3.6. (i) Let ¢ = 0,cc,co or 6. All derivations of £, are
inner, that is, D (¥,) = ad ¥, = #,. Hence,

H(Z,;%,) =0.

(ii) Leto = v (px1) or o. The derivation algebra of %, is naturally
isomorphic to %,,, that is, P (¥,) ={ad Z|,,; Zc £.,} = £.,. Hence,

Hl("?v;ga) E gca/ga E Cee(W) .

(iii) Let ¢ = 0,cr,cw or 6. The derivation algebra of 7, is naturally
isomorphic to %,, that is, 9 (7 ,) ={ad Z|,,; Ze ¥,} = &,. Hence,

H(T,,T)= 2,7, =% .
(iv) Let ¢ =t (p # 1) or w. The derivation algebra of 7, is naturally
isomorphic to ¥#.,, that is, 2 (7,) ={ad Z|,,;Zec &L,} = £.,. Hence,
Hl(ya; ‘7—0) E a?ca/<y”¢7 E CW(W)Iﬂ + g’ .

Proof. This follows from Lemma 3.1 and Proposition 3.5. For the
latter half, remember that H'(L; L) = @« (L)/ad L (see e.g. §1 in [2]).
Q.E.D.
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3.3.

Proof of Proposition 3.4. It is sufficient to show the following two
lemmata. Here we can determine Z as Z = Z, + Z,, where Z, and Z, are
given in the lemmata below.

LemmA 3.7. Let De De(7,). Then there exists a vector field Z, e 7.
such that D = ad Z, on 9 ,(n, —1) with n < 0.

Proof. By using Poincaré lemma with parameters, we can get the
assertion similarly as in the corresponding transitive cases (see Lemma 5
in [2] and Propositions 3.2 and 5.5 in [3]). Q.E.D.

LemMA 3.8. Let De D (7 ,). Assume that D =0 on 7 ,(n, —1) with
n < 0. Then there exists a unique vector field Z, on V such that D = ad Z,
on B,. Moreover, Z, is in &’.

Proof. (i) Let ¢ 6. Let Xe 7 ,(—1,0). Since [X, 7,(—1, —1)] =
0, we get [DX),7.(—1, —=1)] =0, so D(X)e T (w) by Lemma 2.5 (ii).
Hence we get the linear map D’ = D|, s, of 7,(—1,00= W*Q U to
T (w) = C*(W)® U, which commutes with ad X for X¢ 7,0, —1). Thus
we get the following commutative diagram: for X e sl{(U) or 8p(U) (¢ = =,
¢t or o, ce respectively)

7 ,(—1,0) —ax 7 .(-1,0)

R |

W*QU —— W*QU

1®adX
lDI Q iDI

Since w,9; are basis of 9 ,(—1,0), we get by Schur’s lemma
Dwd) = hw);, (Q=is=p,lsa=gq

for some functions A (w)e C*(W). Here we remark that we can show
this fact also by simple calculations. In fact, apply D to

w,o;, = [waaj, xjai] (¢ =1(G+#j)o=co),
and
waa.l‘¢ = [waa:tj’ xja:u - yiaw ) waaw = [waayj’ yjaw - xiazj] (0 = o, CG)) .

Let Z, be a vector field on V such that D =adZ, on B,. Since
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[Z,, 7 ,(n, —1)] = 0 for n < —1, we get that Z,¢ %/, by Lemma 2.5 (i), (iv)
and (vii). Write Z, as Z, = Y, g.(w)d,, then

[Z;, w.3,] = g.(w)3, 1£i<p,12a=<9).

Hence, g.(w) must be equal to A (w) for all «.

(ii) Let ¢ =6. By Lemma 1.4 we get the derivation D of C=(V)
such that Do# = #oD. Take bases {1} of T,(—2, =1, {x;, ¥.}agism Of
We want to show that D(w,) = h (w), D(w.x,) = h(w)x, and D(w,y,) =
h (w)y, for some functions h(w)e C=(W).

Since (., 1)) = (W, %)) = (., y)) =0, we get that (D(w,), 1) =
(Dw,), x,)) = (Dw,), y)) = 0, so by Lemma 2.5 (ii), Dw,) e C=(W). Put
k. (w) = D(w,).

Putf,; = D(w.x,). Apply D to (w.x;, 1)) = (w.x;, x,)) = 0 and (w,x., ¥,))
= §,;W,, then we get that 9.f,, =9, f., =0 and 9,,f.;, = 6;;h(w), so that
fo = h(W)x, + ho(w) for some functions h,eC=(W). Apply D to
Z, wx)) = —w,x;, then by Proposition 2.1 (ii)

~fu = (T}, R (W)x; + how))) = —h(W)x;, — 2h. (W) ,

hence we get that h,, = 0, that is, D(w,x;) = h(w)x,.

Similarly we get that D(w,y;) = h.(w)y..

Let Z, be a vector field on V such that D = ad Z, on B,. Since 1’ =
., ¥ = 0, + x0,, % = —0,, easily we get that Z,e 7 (w) + #’. Similarly
we get Z,e.%’, since [I,, Z,] = 0. Write Z, as Z, = 3, 8,(w)d,, then

(2. 1) = [ 8w0,, wad,| = g, = &.(wy
hence, g (w) must be equal to A (w) for all a. Q.E.D.

§4. Lie algebras 7 ,(M, #) and %,M, #), and their derivations

4.1. Structures on leaves. Let M be a (p + g)-dimensional manifold
and & a codimension g foliation on M. Around any point M, there is
a distinguished coordinate neighbourhood (U;wvy, ---, v, wy, - -+, w,), for
which a plate represented as w, = constant, - - -, w, = constant in U is a
connected component of L N U for some leaf L of & (see e.g. [7] for de-
finitions).

Let (M, %) be the Lie algebra of all leaf-tangent vector fields on
M, then by [4], the derivation algebra of (M, #) is isomorphic to the
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Lie algebra £(M, #) of all locally foliation-preserving vector fields on M.
Let 2(M) be the exterior algebra of all differential forms on M, and
I (M, F) be its ideal defined by

IM, F) ={ac QM); (X, X;, --+) = 0 for X, e (M, F)}
= {@e€ Q(M); tfu = 0 for every leaf L of #},

where ¢, is the inclusion mapping of L in M. Then, we get the following
lemma similarly as Lemma 1.1.

LEMMA 4.1. (i) The ideal S(M, F) is Ly-stable for X ¢ (M, F), and
iy-stable for Xe T (M, F).
(ii) The ideal #(M, F) is a differential ideal.

DEeFINITION 4.2. A p-form r on M is called a partially unimodular
structure on (M, ), if (fr = 0 for every leaf L of &, that is, ¢fr is a
volume form on L. Then we get dr e #(M, F).

DerFiNITION 4.3. Let p = 2n. A 2-form o on M is called a partially
symplectic structure on (M, %), if dw e £(M, F) and (fo is of rank 2n for
every leaf L of &#.

DErFINITION 4.4. Let p=2n+ 1. A 1-form 6 on M is called a par-
tially contact structure on (M, F), if (¢(6) N\ (dcf0)" + 0 for every leaf L
of #.

These 7, w and 6 are called partially classical structures, and we get
their normal forms as follows.

ProPOSITION 4.5. Let z,w or 6 be a partially unimodular, symplectic,
or contact structure on (M, F) respectively. Then we can take distinguished
coordinates (U; vy, - - -, v,, Wy, - - -, W,) around any point of M such that on U

t=dy A\ -+ Ady,
0=>3dv, A dv,., (mod £ (M, F)) .
i=1

n
0= dv2n+1 - Z; Ui+'ndvi
i=

Proof. At first choose distinguished coordinates (U; v, - -, v, wy, -+,
w,), then by similar arguments to the proof of Darboux’s theorem for the
variables v,, - - -, v,, we get the above normal form up to a multiplicative
factor depending on the variables w,, -..,w,. But this factor does not
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vanish anywhere, so we can take the coordinate transformation +, as in

§1.7. Q.E.D.

4.2. Lie algebras 7 , (M, F) and ¥, (M, F). Let r be a partially uni-
modular structure on (M, &#). A vector field X e (M, &) is called partially
conformally unimodular, if Lyr is congruent to ¢r modulo #(M, F) for
some function ¢ € C~(M)*, where C~(M)* is the space of functions which
are constant on each leaves of &#. Moreover, if the function ¢ is zero,
X is called partially unimodular. Then by Lemma 4.1, we get two Lie
subalgebras of (M, %):

T(M,F)={XeT M, F); Lyr € F(M, F)},
T oM, F) = {Xe T (M, F); Lyt = ¢r (mod S (M, F))
for some ¢ € C=(M)"} .

Let o be a partially symplectic structure on (M, #). A vector field
Xe T (M, #) is called partially conformally symplectic, if Lyw is congruent
to ¢o modulo £(M, F) for some function ¢<c C~(M)*. Moreover, if the
function ¢ is zero, X is called partially symplectic. Then by Lemma 4.1,
we get two Lie subalgebras of 7 (M, #):

T M F)={XeT(M, F); Lywe (M, F)},
T (M, F)={XeT(M,F); Lyo = ¢ (mod £ (M, F))
for some ¢ € C~>(M)"}.

Let 6 be a partially contact structure on (M, ). A vector field X¢
T (M, #) is called partially contact, if Ly is congruent to ¢¢ modulo
F(M, F) for some function ¢ e C*(M). Such vector fields form the Lie
subalgebra 9 (M, %) of 9 (M, #) by Lemma 4.1.

These Lie algebras (M, %), 7 (M, F), T (M, F), T (M, F), T . (M, F)
and 7 (M, F) are called of partially classical type (see Remark in § 1.5).

Similarly as above, we can define Lie subalgebras of #(M, #): for

6 =1 Or o,
LM, F)={Xe XM, F); Lyge #(M, F)},
LM, F) = {Xec LM, F); Lyc = ¢o (mod I (M, F))
for some ¢ e C~(M)"},
and
LM, F) = {Xe LM, F); Lyf = ¢6 (mod # (M, F))
for some ¢ e C*(M)}.
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Then by Lemma 4.1, we get that 7 ,(M, #) is an ideal of %,(M, %) for
every o, and these Lie algebras 7 ,(M, #) and £, (M, F) are defined by
classes of partially classical structures modulo #(M, %).

If we take distinguished coordinates such as in Proposition 4.5, vector
fields in 7, (M, F) or &, (M, F) for ¢ = 1, cr, 0, co and 6 can be described,
in local, similarly as Lemmata 1.2 ~ 1.4 (see Remarks in §1.7).

4.3. Derivations.

LemmA 4.6. Let U be an open subset of M, and Xe &%, (M, F) for ¢ =
0,7, cr,w,coorf. Assumethat [X,Y] = 0on U for any Ye 7 ,(M, F) with
its support contained in U, Then, X =0 on U.

Proof. Let P be a point of U, and fix a distinguished coordinate
neighbourhood (U’; v,, - - -, Uy, Wy, - - -, w,) around P such as in Proposition
4.5. Take a neighbourhood U” of P such that U” < U’ N U. Let Y’ be
in 7 ,(n, —1) (n £ 0) with respect to the fixed coordinates. Foro¢ = 0,7, 0
and 6, we get by Proposition 1.7 a vector field Ye 7 ,(M, %) such that
Y =Y’ on U” and the support of Y is contained in U. Then we have
that [X, Y] = 0 on U, by the assumption. By Lemma 2.5, we have that
X =0 on U”, in particular at P. Hence we get that X =0on U. Q.E.D.

From this lemma, we get the following proposition similarly as Prop-
osition 2.4 in [3].

ProrosiTioN 4.7. Let D be a derivation of I ,(M, F) or £, (M, F) for
d=0,7,ct,0,co or §. Then, D is local.

ProposITiON 4.8. Let D be a derivation of 7, (M, %) for ¢ =0,7,0
or 0. Then D is localizable (see §1.2 in [3] for definitions).

Proof. This follows from Proposition 1.2 in [3] and Propositions 1.7
and 4.7. Q.E.D.

4.4.

ProrosiTiON 4.9. Let D be a derivation of T (M, #) or &, (M, F) for
0=0,7,cr,0,coor . Then there exists a unique vector field Z on M such
that D = ad Z on 9 ,(M, #) or &, (M, F) respectively. Moreover, Z is in
L AM, F), where ¢’ is as in Proposition 3.4,

The proof of this proposition will be given in §4.5. Here we get
Main Theorem similarly as Theorem 3.6:
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THEOREM 4.10. (i) Leto = 0, cr,cw or 6. All derivations of &£ (M, F)
are inner, that is, e (L, (M, F)) = ad X, (M, F) = Z (M, F). Hence
HY(2 (M, F); £,(M, F)) = 0.
(ii) Let 6 =7 (p # 1) or w. The derivation algebra of %,(M,F) is
naturally isomorphic to %, (M, F), that is,
Do (LM, F)) = {ad Z|.,01,5); Z€ L (M, F)} = L.(M, F) .
Hence,
H(Z (M, 7); £ (M, 7)) = £.,(M, F)|£ (M, F) .
(iiil) Let ¢ = 0,cr,co or 6. The derivation algebra of 7 (M, F) is
naturally isomorphic to &, (M, F), that is,
Do (T (M, F)) = {24 Zlyar.ry; Z€ LM, F)) = LM, F) .
Hence,
H(7 (M, #); 7 (M, %)) = £ (M, #)|T (M, F) .
(iv) Let o =7 (p # 1) or w. The derivation algebra of 7 ,(M,F) is
naturally isomorphic to %.(M, F), that is,
D (T, M, F)) ={ad Z|,,01,5y; ZE€ Loe(M, F)} = Z..(M, F) .
Hence,
H(T (M, 7); T (M, F)) = £ ..M, F)|T (M, F) .
4.5.

Proof of Proposition 4.9. (a) Case of T, (M, %) (¢ =0,7,0,6). Take
a distinguished coordinate neighborhood system {(U*; i, ---, v, wi, - --
wi)ies on (M, F) such as in Proposition 4.5.

Let D be a derivation of 7 ,(M, #). Since D is localizable (Proposi-
tion 4.8), the derivation D'e P« (7 ,(U%)) can be defined for all 1€ 4 in
such a way that D(X)|y. = DN(X|y») for all Xe 7 (M, #). Then by Prop-
osition 3.5, there exists a unique vector field Z* on U? for any 1€ 4 such
that D* = ad Z%|,, 3. On the other hand, since D is local, we get that
D yagpge = D*|paque, 80 Z* = Z* on U* N U*. Hence there is a vector field
Z on M such that Z=Z* on U’ for all 2e 4 and D = adZ|,, . More-
over, we have Ze % (M, F), because Z*c L (U F|y) for all 1€ A.

)
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() Case of T ..(M, F) (¢ = r,w). Let D be a derivation of 7 ,.(M, F).
Restrict D to 7, M, #), then we get the derivation D’ = D|,, 4, of
T (M, #) with values in 7. (M, #). Similarly as Proposition 4.8, we
can show that I is localizable. So for any open set U, we can define
the derivation D}, of 7 ,(U, #|,) with values in (U, #|,) in such a
way that r,o D' = Dyor,. If U is sufficiently small, 7 ,(U) is perfect, and
so D7 (U)) € 9 ,(U). Then by Proposition 3.5, we get a unique vector
field Z, € #,,(U) such that D, = ad Z;, on ,(U). Similarly as (a), there
is a vector field Ze¢ %, (M, #) such that Z|, = Z, and D' =adZ on
T (M, F).

For any Xe 7, (M, #) and all Ye 7 (M, F), we get

[D(X), Y] = DX, Y)) — [X, D(Y)]
= [Z X, Y] ~ [X, (2, Y]]
=[[Z, X], Y].

Then by Lemma 4.6, we get that D(X) = [Z, X], hence D =adZ on
T (M, F).

(c) The proof for the case of %,(M, #) is similarly obtained as in
(b). Q.E.D.

§5. Partially exactness of differential forms

5.1. Partially exactness. In this section, we treat only the case
where ¢ = 7 or w. Recall that r and w are partially closed, that is, dr, dw
c S(M, ). Let n. = n(=p) and n, = 2.

DerFINITION 5.1. Let ¢ be 7 or o.

(i) Let ge C~(M)*. We call o partially semi-exact with respect to
#, if there exists an (n, — 1)-form & on M such that go is congruent to de
modulo 4 (M, F).

(i) ¢ is called partially exact, if ¢ is partially semi-exact with respect
to constant functions on M.

(iil) ¢ is called partially non-exact, if ¢ is not partially semi-exact
with respect to any function ¢(#0)ec C~(M)*.

Easily from the definition, we get the following proposition.

ProposITION 5.2. (1) Assume that ¢fo represents a non-zero class of
H"«(L; R) for each leaf L of . Then, ¢ is partially non-exact.

(ii) If all leaves of & are compact, then any partially unimodular
structure ¢ on (M, F) is partially non-exact.
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Lemma 5.3. (i) Let ¢ C(M)”. There exists o vector field Xe
T oM, F) such that Lyo is congruent to ¢ modulo (M, F), if and only
if o is partially semi-exact with respect to ¢.

(i1) o is partially non-exact, if and only if 7. (M, F) = 7 (M, F).

(i1i)) If o is partially semi-exact with respect to a non-vanishing func-
tion ¢ € C=(M)?, then ¢ is partially exact.

Proof. (i) Proof on the “only if” part. Let X be a vector field such
that Lyo = ¢o (mod # (M, #)). Put « = iyo, then by Lemma 4.1,
doe = diyo = Lyo — iydo = Lyo = ¢o (mod # (M, F)) .

Proof on the “if” part. Let « be a form on M such that da = ¢o
(mod £ (M, #)). By the partial nondegeneracy of ¢, there exists a unique
vector field Xe 9 (M, #) such that iy¢ = @ (mod £ (M, %)). Then

Lyo = diyo = da = ¢o (mod .# (M, F)) .

(ii) This follows from (3).
(iii)) From the assumption, there is an (n, — 1)-form « such that ¢o
= da (mod #(M, #)). Put = 1/¢p € C~(M)”. Then

diWa) =dy A\ a + vda = yda = Ygo = o (mod A (M, F)) ,
because dv € £(M, F). Q.E.D.

5.2. The mapping @. Denote by @, the mapping which assigns to X ¢
Z.(M, F) the function ¢e C*(M)* such that Lyo = ¢o (mod £ (M, F)).
Then, by factoring 7 ,(M, ) and Z.(M, F), we get the mapping @’ and
@ as follows:

ch(M, 'gé_)
1projection D,
Hl(g—a(M’ 'gz-); qu(M, g’_)) ; °'fca(zid; g#_)/ya(M, ‘974.")

@I
lproj ection
Q

H(Z (M, 7); £ (M, F)) = Z.(M, F)|£ (M, F)

C>(M)” .
Since the kernel of @, is Z,(M, &), the mapping @ is injective. Hence
we get

LEmMA 5.4. (1) @ is a zero map, if and only if ., (M, F) = £ (M, F).
(ii) If @ is a zero map, then o is partially non-exact.
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Proof. (ii) Since 7, (M, F) = T .,(M, F) N L (M, F), then T, (M, F)
= 7 ,(M, ), so we get the assertion by Lemma 5.3 (ii). Q.E.D.

LEMMA 5.5. Let ¢ be partially semi-exact with respect to a function
¢ € C=(M)*. Then the image of @ includes the ideal ¢-C~(M)* of C=(M)”.

Proof. By Lemma 5.3 (i), there is a vector field Xe 7, (M, #) such
that Lyo = go (mod S(M, F)). Let ¢ € C=(M)", then

Lyyo = ¥Lyo + d¥ N iye = VvLyo = Yo (mod £ (M, F)) .

Hence vXe 7, (M, F) C £,.(M, F), and O(4X) = ¢, that is, sC=(M)* C
Im®. Q.E.D.

LEMMA 5.6. Let ¢ be partially exact. Then

(i) @ is surjective, hence @ is the isomorphism.

(ii) The inclusion map y of T .(M,F) into L. (M, F) induces the
isomorphism 1, of I ..M, F)|T (M, F) onto £ (M, F)|&L (M, F).

Proof. (i) This follows from Lemma 5.5.

(ii) Since Z,(M,F) N T .M, F) = T (M, F), then 73, is injective.
Let Xe %, (M, F)\Z., (M, #). Then there is a function ¢(+0)e C~(M)"
such that Lyo = o (mod F(M, F)). Similarly as in the proof of Lemma
5.5, we get a vector field Ye 7 ,,(M, &) such that Lyo = ¢o (mod # (M, F)).
Put Z=X—-YeZ, (M, %), then L,6 = Lyoc — Ly,o = 0(mod #(M, F)), so
Zec L, (M, F). Thus, 5(Y) represents a class of X, that is, 5, is surjec-
tive. Q.E.D.

THEOREM b5.7. Let ¢ be t or w.

(i) Assume that C*(M)* = R and ¢ is not partially exact, then
H\(Z,(M,F); £,M,F)) =0,
H(T (M, F); T (M, F)) = LM, F)|T M, F) .

(i1) Assume that ¢ is partially exact, then

H(Z (M, F); £ (M, F)) = T (M, F)|T (M, F) = C(M)" .
H{(T (M, F); 7 (M, F)) = C~(M)* + £.(M, F)|T (M, F) .

Proof. Recall that =7'(0) = &£ (M, #)|7 ,(M, F). (i) The assumption
implies that @ is a zero map. (ii) This follows from Lemma 5.6 (i) and
(i1). Q.E.D.
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5.3.

ExampLE 1. Let M = R?*% and the foliation &% on M be given by
p-planes parallel to the coordinate p-plane. Then C*(M)* = C~(RY. Let
t=dx, A\ - Ndx, (p=n) and o = > 7., dx; A\ dy, (p = 2n), then ¢ and
o are partially exact. In fact,

e = dxdx, A - Adx,) and o= d(ﬁ xidyi> .

ExamMpLE 2. Let M be the product of manifolds X and Y. Consider
the product foliation % ,,: M = |J,cx{x} X Y. Then C=(M)"r = C=(X).
Assume that Y admits a volume form r or a symplectic form . Let =
be the projection of M onto Y. Then, n*r or z*w is a partially unimodular,
or symplectic structure on (M, ¥ ,,) respectively. Moreover, z*o(c = 7, ®)
is partially exact, or non-exact, if and only if ¢ is exact or not respectively.

ExampLE 3. Consider the foliation &, on R® = {(x,y,2)} as R' =
{2 =0} U User,e=21{2 = ¢€°~%}, and a partially unimodular and symplectic
structure r = dx A dy on (R, %#,). Then C*(R’)”"t = R and 7 is partially
exact. In fact, r = d(xdy).

ExampPLE 4. Consider the linear foliation %, on the 2-dimensional
torus T° = R?*/Z* with a slope 4. If 2 is a rational number, C~(T%)"* =
C>(S?) and any partially unimodular structure on (7% %)) is partially
non-exact by virtue of Proposition 5.2 (ii). If 2 is irrational, C=*(T%** = R
and any partially unimodular structure z is also partially non-exact. In
fact, suppose that = d¢ (mod 4 (1% £ ,)) for some function ¢e C=(T%.
Since ¢fr = 0 for every leaf L of &#,, we can easily show that the func-
tion ¢f¢ increases or decreases infinitely along the leaf L. But this con-
tradicts the periodicity of ¢.

We can modify this example to get linear foliations of codimension
1 of the 3-dimensional torus T° such that C=(7T%)* = R and any partially
symplectic structure on (7%, &) is partially non-exact.

ExampLE 5. Let M = {(x,y)e R*; x < 1 and x* + y* > 1/4}. Consider
the foliation #: M = | J,»1. L,, where L, = {(x,y) € M; x* + ¥* = r*}. Using
polar coordinates (r,8), we get that C~(M)* = C>((1/2, «©)) and the form
r = df is a partially unimodular structure on (M, #). Let 2 be the sub-
space of C=((1/2, 0)), consisting of functions which vanishes on the open
interval (1/2,1). Since the leaves L, are compact only for r < 1, easily
we get
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[N

7

ProrositioN 5.8. Let ¢ € C°((1/2, 0)). Then, t is partially semi-exact
with respect to ¢, if and only if the function ¢ belongs to K.

On M X R, we get the foliation: M X R = ,.,, L, X R, and the
partially symplectic structure df A dz which is partially semi-exact with
respect to ¢ e 1.

§6. Properly outer derivations
6.1. In the following we treat the case where ¢ = and p = 1. By
Lemma 1.2, we get the isomorphisms

T.=C(W) and 7, =C>(W)+ C>(W)I,
where we omit the index 1 of x;, and 9,; I = I, = xd. Hence

. NA=R[W = _Z__L T(—1,m)= go PY(W),

To N U= RIWR + RIWI = 3} 5 7(n,m)
n=-1mz-—
= mZE]OP"‘(W) + 2;0 P~ (W)I.
Then we get the following lemma similarly as Lemmata 2.2 and 2.3.

LemMA 6.1. Let D be a derivation of I, or %.. Assume that D =0
on Yuimz1 T on,m). Then D=0 on T, NAor L. N A respectively.

Here we get for Qe (£,)

LemMMA 6.2. Let D be a derivation of &,.. Assume that D(X) = 0 for
X=208,0, and JA<a<q). Then D=0on £ N A
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Proof. At first we show that D=0 on 7. N A =3, T(—1, m),
by the induction on m. When m is negative, the assertion holds by the
assumption. Assume that D=0 on (-1, k) (k<m—1,m=0). Let
XeJ.(—1,m), and define the vector fields Ye 7, and Ze¢ ¥’ as D(X) =
Y+ Z

Apply D to [0,,X]e T (—1,m — 1), then we get that Y and Z are
with constant coefficients.

Apply D to (m 4+ 1)X = [J, X], then we get

m+1)NY+2)=[J,)Y+Z]=0—-Z,

hence Y=2Z=0, so D(X) =0. Thus D=0 on 7. N 9.
We can show that D =0 on %’ N U, similarly as Last Step of the
proof of Proposition 2.3 in [4]. Q.E.D.

6.2.

LEMMA 6.3. Let D be a derivation of I, or %,. Then there exists
a unique vector field Z on V such that D =adZ on 3, .ns<-1 T (0, m).
Moreover, Z is in %,..

Proof. Let De D (T,.) or Der (¥,.). Since I, = [7,., Z.] and f(w)d
= [f(w)9, I1, then we get that D(7) C 7., similarly as Proposition 2.3.
Define functions g,g,€ C*(W) as D@®) = g(w)d and D(wyo) = (g.(w) +
wgw) for 1<a<q Put Z, = —gw) + 3., 8.w)3,. e T, + &, then
we get

[Z,, w,9] = g.(w)d + w,gw)d = D(w,J) .

Let D, = D — ad Z,, then D, is a derivation of ., and D,(d) = D,(w,d)
= 0. Apply D, to 9 =[0,I] and w,d = [w,d, I], then we get easily that
D(I)e 7. Put Z,= D(I), then [Z, I| = Z, = D,(I) and [Z,, 3] = [Z,, w,0]
= 0.

Thus we get a vector field Z = Z, + Z,€ &%,, such that D = adZ on
Danims-1 7 o, M).

To prove the uniqueness of Z, it is sufficient to show that a vector
field Z on V is zero, if [Z,4] = [Z,I] = [Z, w,0] = 0. Q.E.D.

6.3.

ProrositioN 6.4. Let D be a derivation of 7, or %,.. Then there
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exists a unique vector field Z on V such that D = ad Z on ,. or %, re-
spectively. Moreover, Z is in Z,..

Proof. We can prove this for #,. similarly as Proposition 3.5, by the
following lemma.

LemmA 6.5. If a vector field Xe 7, satisfies j3(X)(0) = 0, then there
exists a finite number of vector fields Y, € %,. and Z,¢ 7,. (1 < i < r) such
that X = 3771 [Y,, Z)] and j(Y.)(0) = j(Z,)(0) = 0.

Moreover, for Xe 7., we can take vector fields such that Y,c I . and
Z,e T, or &

Proof. It is enough to remark the formulae

wf(w)d = [f(w)s, w.xd] = [fw)., 27'wd]l, (=a=gq)

and
gw)l = [g(w)o., w,x] . Q.E.D.

We return to the proof of Proposition 6.4 for 7,. We get that D
= 0 on 7, similarly as for #,. by the lemma above. So it is enough to
show that D(X) = [Z, X] for X = f(w)I, where Z is obtained in Lemma 6.3.

Apply D, = D — ad Zto [0, X] = f(w)o e 7, and [I, X] = 0, then easily
we get D(X) = 0, that is, D(X) = [Z, X]. Q.E.D.

From Proposition 6.6, we get

THEOREM 6.7. (i) The derivation algebra of 7, is naturally iso-
morphic to %,., that is, D (T ,,) = ad ¥, = ¥,. Hence,

H(T (.; T ) = L) T . = UW) .
(ii) Al derivations of %,. are inner. Hence,
H'(%..;%.)=0.
6.4.

LEmMA 6.8. Let D be a derivation of .#,.. Then there exists a vector
field Z on V such that D(X) = [Z, X] for X =8 and 3,, and D(J) = [Z, X]
(mod 3), where 3 = R-3 is the center of &.. Moreover, Z is in .+ R-1
and is unique modulo 3.

Proof. Let D be a derivation of #,. Define the functions f,(w) and
fw) in C=(W) as D@.) = f(w)d + 25, 85w)3,. Apply D to [0,,9,] =0,
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then we get that 4,f, = 0d,f, and 6,8} = 09,87 for 1< @, 8,7 < q. Then
there are unique functions f and g'e C~(W) such that f, = a.f, g = 0.8"
and f(0) = g'(0)=0for1 <o,y <q. PutZ = —f(w) — 3¢, g w).cZ,
then [Z,,6,] = D(@.,).

Let D,=D — ad Z,, then D, is a derivation of .#, and D,@®,) = 0.
Apply D, to [0, J] = 0,, then we get that D,(J) is with constant coefficients.
Define the constants ¢ and b 1 < e < q) as D(J) = ad + >, b9,. Put
Zy, = >, b, ¥, then D(J) = [Z,,J] + a0 and [Z,,3,] = 0.

Let D, = D, — ad Z,, then we get that D,3,) = 0, Dy(J) = a9, and D,
€9a (¥,). Apply D, to [3,0,] = [0, JJ] = 0, then easily we get that D,()
can be written as D,(0) = cd for some constant ce R. Put Z, = —cxd =
—cle 7, then we get that [Z,,0] = cd = D,©@) and [Z,,5,] = [Z,, J] = 0.

Thus we get a vector field Z = Z, 4+ Z, + Z, satisfying the conditions
of the lemma.

To prove the uniqueness of Z, it is enough to show that vector fields
Z on V must be in 3 if [Z,d] = [Z,0,] = 0 and [Z, J] 3. Q.E.D.

6.5. Outer derivations.

DerFinNITION 6.9. Let & be a Lie subalgebra of (V).

(i) A derivation D of & is called natural outer, if there exists a
vector field Z¢ ® on V such that D = ad Z on &, and there are no such
vector fields in &,

(ii) A derivation D of ®& is called properly outer, if there are no
vector fields Z on V such that D = ad Z on ©.

Let ac R. Define a linear map D* of %, to itself, as D*(fd,) = a(9.f)d
and D*(fd) = 0 for any function fe C=(W).

LemMA 6.10. (i) D° is a derivation of &., and
(ii) D is properly outer for a # 0.

Proof. (i) Let f and ge C~(W). Since [fd, gd] = 0, [fd., g0] = f(3.8)9
and [fd,, g9,] = f(0.8)9, — g(0,f)3.,, we can easily check the derivation
property of D<.

(i1) Let Z be a vector field on V such that D* = ad Z on &.. Since
D) = D%9,) = D«(w,0) = 0, then we get easily that Z is in the center 3.
However, this contradicts that [Z, J] = D*J) = gad # 0. Q.E.D.

LEMMA 6.11. Let D be a derivation of .. Assume that D(@) = D(,)
=0(1<La=<q) and D(J) = qade 3, then D= D* on £, N 2.
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Proof. Since D*©) = D%0,) = 0 and D%J) = qad = D(J), so D, = D
— D is a derivation of #, such that D,©) = D,@,) = D,(J) = 0. Then
by Lemma 6.2, we get that D, =0, that is, D =D* on &, N %. Q.E.D.

6.6.

ProrosiTiON 6.12. Let D be a derivation of .. Then there exists a
vector field Z on V and a constant a € R such that D = ad Z 4+ D* on Z..
Moreover, Z is in &%, + R-1, and is unique modulo 3.

Proof. Let De D (¥.). Then by Lemmata 6.8 and 6.11, we get a
vector field Z and a constant a such that D=adZ + D* on %. N .
Hence by Lemma 6.5, we get similarly as Proposition 6.4 that D = ad Z +
D* on Z.. Q.E.D.

THEOREM 6.13. The derivation algebra @ (¥.) has the 2-dimensional
subspace of outer derivations, and the 1-dimensional one of natural outer
derivations. Hence,

H(Z ;%)= R®DR.

6.7. Since 7, is abelian and 7, = C=(W), then all non trivial deriva-
tions of J, are outer, and the derivation algebra Z..(J",) is naturally
isomorphic to the space Zin (C~(W), C=(W)) of all linear maps of C=(W)
to itself.

LEMMA 6.14. Let D be a derivation of 9 .. Then there exists a vector
field Z on V such that D(X) =[Z,X] for X=06 and wo (1l < a < Q).
Moreover, Z is in ¥,. and is unique modulo 7 ..

Proof. Let De 2 (7,). Define the functions f, f, € C*(W) such that
D@) = f(w)o and D(w,d) = (f((w) + w.f(w))d for 1 < a < q. Put

Z = _xf(w)a + Zfa(w)aa € gcr ’

then we get

{[Z, d] = f(w)a = D) ,
[Z, w,3] = (f(w) + w.f(w))d = D(w,3) .

Let D, = D — ad Z, then D, is a derivation of 7, and D,(?) = D\(w.9)
= 0. Let a vector field X on V which satisfies [X,d] = [X, w,d] =0
(1 £ a < g), then easily we get that Xe.J.. Hence, Z is unique modulo
T .. Q.E.D.

Here we summarize results for Qe (77,);



LIE ALGEBRAS OF VECTOR FIELDS 207

THEOREM 6.15. (i) All derivations of . are outer, and the derivation
algebra D (7,) is isomorphic to the linear space ZLin (C*(W), C=(W)).
Hence,

H(T ., 7)) = Zn(C~(W), C=(W)) .

(ii) The space of natural outer derivations of J . is isomorphic to
C=(W)-I+ &".

(iil) Any linear map ¢ of C=(W)® to C=(W) defines a properly outer
derivation D, of . such that D,@) = D,(w,d) = 0, and D,(fd) = ¢(f)d for
fe C>(W)®, where C>(W)? is the subspace of C=(W) consisting of functions
whose 1-jets vanish at the origin.

6.8.

Remark. Since any one of J,,7,, %, and %,, does not satisfy the
property (A), I don’t know the way to localize their derivations in general.
However in some examples of (M, #,r), we can determine the structure
of these Lie algebras and their derivation algebras. I will discuss such
examples elsewhere.
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