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TENSOR PRODUCTS OF POSITIVE DEFINITE
QUADRATIC FORMS, V

YOSHIYUKI KITAOKA

Our aim is to prove

TaeEoREM. Let L be a positive lattice of E-type such that [L:L] < oo
and L is indecomposable.

(i) If L= L, ®L, for positive lattices L,, L,, then L,, L, are of E-type
and [L,: L, [L,: L) < o and L, L, are indecomposable.

(ii) If L is indecomposable with respect to tensor product, then for
each indecomposable positive lattice X we have

1) LIIX=LRY implies X =Y for a positive lattice Y,

@) If X=®'LQ®X" where X’ is not divided by L, then O(L ® X) is
generated by O(L), O(X") and interchanges of L’s, and

(8) L® X is indecomposable.

We must explain notations and terminology. By a positive lattice
we mean a lattice on positive definite quadratic space over the rational
number field Q. Let L be a positive lattice and put

m(L) = mei? Q(x)
x#0

where @Q( ) is a quadratic form associated with L. Set (L) =
{xeL|Qx) =mL)}. If ML M)=DL)RQMM) (={x&y|xe (L),
ye M(M)}) for any positive lattice M, then L is called of E-type. Lis
a submodule of L spanned by I(L). If L = L, ® L, implies rank L, or
rank L, = 1, then we say that L is indecomposable with respect to
tensor product. O(L) denotes the orthogonal group of L. If a positive
lattice X is isometric to L ® K for a positive lattice K, then X is, by
definition, divided by L. These notations and terminology will be used
through this paper.

In §1 we prove a theorem about weighted graphs. In § 2 we improve
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a result in [4] and in § 3 the above theorem is proved. In §4 examples
of a lattice L as in the theorem are given.

§1.

In this section we define a weighted graph and prove a fundamental
theorem in this paper.

DerinNiTION. Let A be a finite set and [, ] be a mapping from A X A
into {¢|0 < ¢ < 1} such that

(i) [a,d'] =1 if and only if a = o/, and

(ii) [a,d] = [@/, a] for a,a € A.

Then we call (4,[,]) or simply A a weighted graph.

Let A be a weighted graph. A is called connected unless there exist
subsets A;, A, of A such that A=A, U A,, A, N A, =¢ and [a,a] =0
for any a,€ A, (i =1,2). If A= U A, (disjoint) satisfies

(i) A, is connected, and

(ii) [a,b] =0if ac A, be A, and i #j,
then each A, is called a connected component of A. Let A, B be weighted
graphs. For (q, b), (o/, ') e A X B we define [(a, b), (¢, b')] by [a, a']-[b, ¥].
Then A X B becomes a weighted graph. If there exists a bijection ¢ from
A on B such that [a, o] = [0(a), ¢(a)] (a, a’ € A), then we say that A, B
are isometric and write ¢: A = B.

LEmMa 1. Let A, B, C be weighted graphs and assume that A = {e}}.,
and g: A X B= A X C. Take any element be B and fix it. Define f,€ A,
c,eC, g, €A, b;eB by

ale, b) = (fi,c) and a(gy, by) = (fi, c)) .
Then we have [e;, e;] =0 if b, + b.
Proof. Set a,, = [e;, e,]. Then a,; = a;, and

(0) a,; = [fi, fille, )] .

Fix any integer & (1 < k < n) and define €, € A, b, € B by a(e, b,) = (f., c,)
1<s<n). Put S={s|b,#b}. If S+ ¢ then we take integers u, m
such that

Qun = max e, and f,=f, meS.
¢l

If a,, = 0 can be shown, then the lemma will be proved. Assume a,, = 0
and put b, = b/, e,, = e¢,. Then we have



POSITIVE DEFINITE QUADRATIC FORMS 101

o-(ep’ b/) == (fln cm) ’ 4 * b.

Since o(e;, b) = (f;, ¢,), we have

( 1) aip[bﬁ bl] = [ft: fk][cis Cm] ’
(2) aip[b5 b/] = [Ci’ cm] if fz - fk ’
(3) Unplb, O] = [fu, fi] -

Hence f, = f. implies

Qym = [fu’ fm][cm Cm] by (O)
= [fm fm][cuy Cm]
= ampaup[by b/]2 by (2)’ (3) .
(4) Aym = ampaup[b’ b/]2 .
Suppose f, = f.. Then o(e,, ') = (fi, cn) = (f, ¢,) implies a,, > a,,.
Hence we have
0 < Qym = ampaup[b9 b,]2 by (4)
< Cunla,[b, BT
< Qup -

This yields a,,[b, b')* = 1 and [b, ] = 1. This contradicts b == b’. There-
fore we get f, +# f.. Suppose pe S; then a,, < a@,, holds by definition.
Hence we have

0 < QAym = ampaup[b’ b,]2 by (4)
< @y pQunlb, O]
é aum .

This implies [b, b'] = 1 and it contradicts & = b’. Hence we get p& S and
by definition of S there exists an integer t such that o(e, b) = (fi, ¢,)-
On the other hand (e, b) = (f,, c,) holds. Hence we get f, =1, ¢, = ¢,
and by (2)

atp[b’ bl] = [Cn cm] s
and by (1)
( 5 ) [b7 b,] = [fp) fk][cpy cm] .

From these follows
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[cm cm] = [C,, cm]
= a,,[b, b']

= atp[fp, fk][cp’ C‘m] *

If [c,, cn] # 0, then a,[f,,f.] =1 and this contradicts f, # f,.. Hence we
have [c,, ¢,] = 0 and [b, '] = 0 by (5) and [f,,f.] =0 by (3), and a,, =
[fus FullCu, €]l = [fe, fullCus €] = 0. This contradicts our assumption a,, #*
0. Thus we have proved a,, = 0. Q.E.D.

THEOREM 1. Let A, B, C be weighted graphs and assume that A =
{e}r-, is connected and ¢: A X B= A X C. Take any element be B and
put a(e;, b) = (f,, ¢,). Then we have

Az=z{ole,D]1<i<n={fll<i<n X{&|l<i<n}.

Proof. Put C, = {c,|k satisfies f, = f} for 1 < i< n, and denote by
C, a connected component of C; which contains ¢, Suppose [e,, e;] =
[f., filles, ¢;] = 0. We will show C. = C,. Since [e, e,] + 0, Lemma 1 implies
that there exists an element e, € A such that o(e, b) = (f;, c;). Hence we
have f, = fi, ¢, = ¢; since a(e, b) = (f,,c,). By definition of C, we have
¢, =c,€C,; and hence c; ¢ C~',; since c; € C', and [c;,¢] 0. Thus we have
proved 6,- N 6’, # ¢. Take any element xe C~'i N (~7,; then there exists u
such that x = ¢, and f, = f; since x€ C,. Take any ye C’, such that [y, x]
# 0. Then y can be written y = ¢, with f, = f;. [e,, e.] = [f., fellcu, c] =
[f., f:llx, ¥] # O yields that o(e,, b) = (f,, c;) for some s. From f,=f, =f,
le,, ¢.] = [cs, c.] # O follows that y = ¢, = ¢, e C, since ¢, = xeC,, ¢,e C,
and C, is a connected component of C,, Thus we have shown that if
[x,y] # 0 for xe C, N C,, ye C,, then ye C, holds. This implies C, < C,
and similarly G, c C‘, and hence C~'¢ = 6’1 if [e;, e;] = 0. Since A is con-

nected we get C~'1 = ... = C‘,, Take any s,t(1 <s,t<n). From c,¢ C~',
= C, C C, follows that there exists i such that ¢, = c; and f, = f,. Hence
(fs’ ct) = (fw ci) = a(eia b) holds. Q.E.D.
§2.

Let L be an indecomposable positive lattice which satisfies the fol-
lowing condition (A’).

(A’) For any given positive lattices M, N and for any isometry ¢ from
L® Mon L® N which satisfies that ¢(L® m) = L& n(me M, ne N) implies
m = 0, n = 0, there exists a finite subset {v, - -, v,} of L (depending on
M, N, ¢) such that



POSITIVE DEFINITE QUADRATIC FORMS 103

(1) each v, is primitive in L and a submodule spanned by {v;, - - -, v,}
of L is of finite index in L,
(2) putting M,, = {me M|o(L ® m) C v, ® N},
N,,={neN|e7'(L&®n)C v,® M},
we have rank M,, = rank N,, = rank M/rank L, and
3 Q. ® M,)) = Qv ®N,).
Through this section the above L is fixed.

LemMA 2. Let M, N,o,v, M,,, N, be those as in the condition (A’).
Then M, N are isometric and they are divided by L, and ¢(L @ M,,) = v, Q N.

Proof. By definition M,,, N,, are direct summands (as modules) of
M, N respectively, and o(L® M,) Cv,®N, ¢ (LON,) Cv,® M and
rank (L ® M,,) = rank (v, ® N), rank ¢"'(L ® N,,) = rank (v, ® M) imply
o LO®OM,) =v,®N and ¢-(L® N,,) = v; ® M since they are direct sum-
mands in L ® N, L ® M respectively. This implies that M, N are divided
by L. From (8) follows (v, ® M,)) = v, ® N,, since they are direct sum-
mands of LQN. Hence we can define an isometry p;: M, = N, by
(v, ® m) = v; ® p(m) for me M,,. For m,c M,, m;e M; we show B(m,, m,)
= B(u(m,), p,(m;)) where B stands for bilinear forms associated with
quadratic modules.

B(v;, v))B(m;, m;) = B(v; ® m;, v, ® m,)
= B(a(v; ® m,), a(v; ® m,))
= B(v; ® p(m.), v; ® p,(my)
= B(v,, UJ)B(#i(mi)s ﬂj(mj)) .

Hence we have B(m,, m;) = B(u,(m,), p;(m;)) if B(v,v,) + 0. Suppose
B(v;, v;) = 0, then we have

B(L® M,,L® M,) = Bo(LY M,),s(L R M,))
= B(v; ® N, v; ® N)
=0,
B(L® 1(M,), L® p(M,)) = BLRN,, LR N,)
= B(e(L®N,), s (L® N,))
= B(v;, @ M, v, ® M)
=0.

Hence B(M,, M,) = B(p(M,,), p(M,)) = 0 follows. Thus we have proved
B(m,, m;) = B(pm,), pm,)) for m,e M,,, m;e M,. By (1) we can choose
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a subset of {v,, - -+, v,}, say {v,, ---, v,}, so that it is a basis of QL. Then
dL® M,) = v,® N implies that > *., M,, is a direct sum and [M: > ., M, ]
< oo. Hence a linear mapping p from QM to QN defined by p (3 7., m,)
= >, u(m;) (m,e M,,) becomes an isometry from QM on QN. We have
only to show (M) = N. Take a basis {e;} of L and put

n 3
€; = Zl a;V;, U= Zl bie; (ay,b,;€Q).
7= i=

>or . bua; = d;; (Kronecker’s delta) is obvious. Take any element m =
nym;(m,eQM,) of M and put ¢(v; ® m) = v, ® ny (n;,€ QN); then
ny, = p(m,) follows and
ole. ® m) = (3 auyp, ® mi)
17

= ; e, ® (; akjb“n,i) .

Since g(e, ® m) e L& N, we get >, , a,,bn;; € N. Summing up with respect
to k, we have

ﬂ(m) = Zﬂ(mi) =3 n;eN.

Thus w(M) C N is proved. Since discriminants of M, N are equal, we
have (M) = N. Q.E.D.

LEMMA 3. Let K, X, Y be positive lattices and assume that K is inde-
composable and ¢: K@ X = K® Y. Then there exist submodules M,, M of
X and N, N of Y such that

(i) M,M,N,N are direct summands of X,Y respectively and
[X: M, | M], [Y:N, | N]< oo, and

d(KQM)=KQN,, d(K®M)=K®N,

(ii) if (KQ@m)=KQ@n(me M, ncN), then m =0 and n =0, and
(ill) there exist orthogonal decompositions

t t
M°=¢‘=L1Mo'i’ No=i_l_1]vo,i
such that ( KQM,)=KQ®N,, 1<i<t) and

01K®M0,.~ =a,® B

where a, € O(K), B;: M,, = N, ,.
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Proof. Suppose that m,, - - -, m, are linearly independent elements of
X so that there exist elements n,€ Y such that e(K® m,) = KQn, We
may assume that r is maximal. Then we put M = Z[m, ---,m,]+, N =
Zny - -,n,)+ and M, = M+, N,= N+. Clearly (i), (i) are satisfied. (iii)
follows from Lemma 1 in § 3 in [2]. Q.E.D.

LemMa 4. L ® L is indecomposable and O(L ® L) is generated by O(L)
and an interchange of L’s.

Proof. Take an isometry ¢ of L@ L. Suppose that there exist x,y
€L, x+# 0 such that ¢(L®x) = L®y. Supposing K=X=Y=0L in
Lemma 3, a submodule of L corresponding to M of X in Lemma 3 is {0}
since its rank (< rank L) is divided by rank L by Lemma 2. Hence
we have ¢ e O(L) ® O(L) by Lemma 3. Suppose that there are no such
elements x,y in L. Then, by Lemma 2, there is an element ve L such
that

oL®L,)=vQ®L,

where L, = {xe L|o(L® x) C v® L}. Since rank L, = 1, there is an ele-
ment z such that L, = Z[u]. Then po(L® u) = LQ v holds where pe
O(L® L) is defined by u(x®y) =y & x(x,yc L). Hence poe O(L) X O(L)
follows as above. The indecomposability of L ® L is proved quite similarly
as in the proof of Lemma 4 in [4]. Q.E.D.

LeEmmA 5. @™ L is indecomposable provided that the orthogonal group
O(@™ L) is generated by O(L) and interchanges of L’s and that @™ 'L is
indecomposable.

Proof. The proof is identical with that of Lemma 5 in [4].

THEOREM 2. Let X be an indecomposable positive lattice. Then we
have

(1) for any positive lattice Y, L X =LQ® Y implies X = Y,

(ii) if X=Q'L® X’ where X’ is a positive lattice which is not
divided by L, then O(L ® X) is generated by O(L), O(X’) and interchanges
of L’s,

(iii)) L ® X is indecomposable.

Proof. We induct on rank X. In case of rank X = 1 our assertion

is obvious. Suppose rank X =k + 1. Let Y be a positive lattice and
o L®X=L®Y. Let M, M (resp. N,, N) be submodules of X (resp. Y)
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as in Lemma 3 for K=L. If M = X (resp. M, = X), then X = Y follows
from Lemma 2 (resp. Lemma 3). Hence we may assume M, = {0}, M + {0}.
Lemma 2 implies M = N. Hence we may assume M = N = | K, where
K, is indecomposable and suppose K, = @ L® K; where K; is not
divided by L. Since rank K; < rank M < k, the inductive assumption
implies that L ® K, is indecomposable and O(L ® K,) is generated by O(L),
O(K;) and interchanges of L’s, identifying K, and ®" L ® K]. Hence,
noting LOAM=L®N= | L®K,, asin 2 in [4] for any basis {u,, - - -, ©,}
of L we have

o(L®Mu,)=ui®N, 0-1(L®Nui)=ui®M’
a(ui ® Mui) = U, ® Nu,: ’

where

M, ={meM|oL®m)C u,Q N},
N, = {neN|o(L®n) C u,® M} .

Now X =M, | M, Y= N, | N are proved quite similarly as in the proof
of Theorem in §1 in [3]. This is a contradiction since X is indecom-
posable. Thus (i) is proved. Let X be a positive lattice as in (ii). Assume
that there exists an isometry ¢ € O(L @ X) which is not contained in a
subgroup of O(L ® X) generated by O(L), O(X’) and interchanges of L’s.
Suppose that there exist x,ye X such that ¢(LQ® x) = LQy. We define
M, M,N, N as in Lemma 3 for K =L, Y= X. Then X = M, | M holds
as above. Since M, # {0} and X is indecomposable, we have X = M, and
Lemma 3 implies 0 € O(L) ® O(X). If X is divided by L, that is, t > 1,
then O(X) = OL® (®'L® X)) is generated by O(L) and O(X’) and
interchanges of L’s since ®‘'L ® X’ is indecomposable and rank ®'-'L
® X’ < k. Thus ¢ is contained in a subgroup generated by O(L), O(X’)
and interchanges of L’s in O(L ® X). This is a contradiction. Therefore
there exist no such elements x,y. Hence from Lemma 2 follows that £ > 1
and there exists non-zero ve L such that ¢(L & X,) = v® X where X, =
{xeX|o(L®x) C v® X} by the assumption on L. Define y e O(L® X)
by m(x®@y®2) =yQx®2z (x,yeL,ze @ L®X’); then po(L®X,) =
LOv®®'L®X'. If there exist xe X,, yev® X 'L ® X’ such that
x# 0 and go(L®x) = L®y, then po e O(L® X) must be contained in a
subgroup generated by O(L), O(X’) and interchanges of L’s as above. This
is also a contradiction. Repeating this operation we get, as in 1.6 in [4],
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et "t F‘ZU(L® Xv,u-,v""') =LOv® - - QU X ’
where p; € O(L ® X) is defined by

#J(x1®"'®xj®"'®xt+l®y)
=280 6, - Rux,,,Qy (x;eL,ye X).

If there exist xe X, .. o, yev® -+ ® X’ such that x = 0 and g, -
to(L® x) = L&y, then p,,, -+ o is contained in a subgroup generated
by O(L), O(X’) and interchanges of L’s. This is a contradiction. Hence
Lemma 2 yields that v® .- ® v"" ® X’ is divided by L. This contradicts
the assumption on X’. Thus the proof of (ii) is completed. Let X be a
positive lattice as in (ii). Then O(L ® X) = O(®'*' L) ® O(X’) has been
proved as above. To complete the proof of (iil) we have only to show that
®*** L is indecomposable by virtue of Lemma 3 in [4]. Since X is inde-
composable, ®‘L is also indecomposable. By virtue of (ii) O(®**'L) is
generated by O(L) and interchanges by L’s. Hence Lemma 5 implies that
®**! L is indecomposable. Q.E.D.

Remark. By (i), (iii) and Theorem in 105:1 in [5] L& X =LY
implies X =~ Y for any (not necessarily indecomposable) positive lattices
XY

§3.

Through this section we fix any positive lattice L of E-type such that
[L: Z] < o and L is indecomposable.

LemMMA 6. Let M, N be positive lattices and assume ¢: LQ M = L& N.
Then for each me M(M) we have o(LQ® m) = F® G, where F,G are sub-
modules of L, N respectively and m(F) = m(L), and m(G) = m(N).

Proof. Let X be a positive lattice. For x,ye M(X)/x, we put [x,y]
= | B(x, ¥)|/m(X). Then IM(X)/+ becomes a weighted graph and X is in-
decomposable if and only if IM(X)/+ is connected. Put A = M(L)/=*,
B = M(M)|+, C = JM(N)/£. Since L is of E-type, we have M(L Q@ M) =
ML) Q@ M(M), UL N) = ML) ® M(N) and ¢ induces an isometry from
A X Bon A X C. By Theorem 1 there exist subsets F/ < A, G’ C C such
that ¢(A, m) = (F’, G’). Denoting by F,, G, submodules of L, N spanned
by F' € M(L)/+, G < M(N)/+ respectively, we have o(L R m) = F,® G,
and m(F,) = m(L), m(G,) = m(N). Put F=QF, N L, G = QG, N N; then
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[F: F], [G: G)] < oo, m(F) = m(L), m(G) = m(N) and o(L® m), FQ G are
direct summands of L& N. Hence o(L® m) = F® G follows. Q.E.D.

TrEOREM 3. If L = L, ® L, for positive lattices L,, L,, then L, L, are
of E-type, [L,: L], [L,: L,] < oo and L,, L, are indecomposable.

Proof. Define 6 OL,QL,QL,) by c(xR@yR2)=xQ2zQ@y (xeL,
y,2€L,). For each me I(L,) (L, L) ® m) = (L, ® m) ® L, holds. Ap-
plying Lemma 6 in case of M = N = L,, we have m(L, ® m) = m(L).
From Proposition 2 in [1] follows that L, ® m is of E-type. Hence L, is
of E-type. Similarly L, is of E-type. (L) = M(L,) @ M(L,) implies
[L: L), [L,: L] < o and L,, L, are indecomposable since [L:[] < oo and
L is indecomposable. Q.E.D.

THEOREM 4. Assume that L is indecomposable with respect to tensor
product. Then L satisfies the condition (A’) in §2.

Proof. Suppose that L is decomposable and L =L, | L, (L, L, # 0).
Each xe (L) is contained in L, or L,, If (L) N L, = ¢, then (L) C
L, and hence Lc L, and rank L < rank L, This is a contradiction.
Hence we have (L) N L, ++ ¢ (i = 1,2) and then L spanned by (L) is
decomposable. This contradicts our assumption on L. Thus L is inde-
composable. Set IM(L) = {*v, ---, +v,}. We show that the condition
(A’) is satisfied for the subset {v, ---, v,} of L by induction with respect
to rank M. The first condition of (A’) follows from our assumption on L.
Let M, N be positive lattices and suppose that for ¢: L M = L& N,
dL®m)=L®n(meM,neN) implies m =0, n=0. Since L is of E-
type, we have o(IM(L) ® M(M)) = PUL) ® PMN) and hence oL M) =L
®N. Put M+ = M/, Nt = N, M” = M'* ( {0}), N” = N’ (+ {0}); then
we have [M: M’ | M"], [IN:N’' | N"] < 0, s(LQ® M) = LQ® N’ and o(L
® M) =LQ®N" by virtue of [L:L] < oo. Assume M’ = 0; then the
inductive assumption implies rank M, = rank N,, = rank M’[rank L and
rank M), = rank N, = rank M" [rank L, where

M, ={meM|eo(L®m) Cv,®N'},
N,,={neN|eco'(L®n)Cv,® M}, and

M, N}. are defined similarly for M"”, N”. Moreover M,, N, are defined
similarly for M, N; then M,, © M;, | M, and N,, O N;, | N, are obvious.
Hence rank M,, > rank Mfrank L holds. Take any i(1<i<m) and a
subset S of {v, ---, v,} such that S contains v, and S is a basis of QL.
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We may assume i=1, S={v,---,v,} (n=rankL). Then o(L® M,) C
v; ®N and o(L® 37, M,) C > vy v, ® N imply that > 7, M,, is a direct
sum. Thus we have rank M > >, rank M,, > > »,rank Mjrank L =
rank M and hence rank M, = rank M/rank L. Hence rank M,, = rank M/
rank L for each i and similarly rank N,, = rank Njrank L hold. From this
follows that QM,, = QM,, | QM,, and @QN,, = QN,, | QN,, and hence
Qv ® M,)) = o(Q(v, ® M) | Qv,® M;)) = Qv,® N;)) | Qv; ® N;) =
Q; ® N,,). Thus the condition (2), (3) are shown if M’ =~ 0. Suppose
M’ = 0; then [M:M], [N: N] < co hold. For each me M(M) Lemma 6
implies o(L ® m) = F® G where F, G are submodules of L, N respectively
and m(F) = m(L). By the assumption on L we get rank F' or rank G = 1.
rank G = 1 implies (L ® m) = L® n for some ne N and it contradicts
our assumption on ¢. Hence we have F' = Z[v] for ve I(L).

Thus for each m e PU(M) there exists ve M(L) such that ¢(LQ m) C v
& N.

Take any v, € M(L) and fix it. For n e M(N) suppose c(v @ m) = v,@ n
for ve ML), me M(M). Since o(L® m) C v; ® N for v, M(L) as above,
v, must be equal to v, and hence o(L&® m) C v, ® N, me M,, and m(M,)
= m(M). Therefore v, ® n = a(v@® m) e o(L ® M,,) C v, ® N holds for each
ne M(N). Thus we get v, @ NC o(LR M,) C v, ® N. From [N: N] < oo
follows rank M,, = rank N/rank L, m(M,,) = m(M) and [Mv,:M,,,] < oo,
Similarly rank N,, = rank M/rank L follows.

For each me M(M) N M,, = M(M,,) we put ¢(v,@m)=v,®n(ne
M(N)). Then we have ¢ (L ® n) C v, ® M by ¢~ (v, ® n) = v, ® m. Hence
ne N,, follows. Conversely ne IM(N) N N,, = M(N,,) implies ¢7(v; ® n) =
v, @m for me M) and ¢(L®m) C v, @ N by o(v; ® m) = v, ® n. Hence
we have me M,, and o(v; ® M(M,,)) = v, ® TUN,). [M,,: M,), IN,:N,]1<
oo yield ¢(Q(v; ® M,,)) = Q(v; ® N,,). This completes the proof of Theorem
4. Q.E.D.

Theorem 2, 3, 4 yield Theorem at the begining of this paper.

§4.
In this section we give examples of positive lattices in Theorem.

ProposITION. Let L = Zle, ---,e,] be a quadratic lattice and put
ca,, = B(e, e;). Assume that

©) ca;€Q, c>0,

(1) (Z.l,;=1and1—Zj¢7;|a”|20f0ri=1,"',n,
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(2) for any non-empty subset S of {1,2, - - -, n}
BISI—1> > layl.
1,j€S
iEg

Then L is a positive lattice of E-type and L = L.

Proof. By scaling we may suppose ¢ = 1 without loss of generality.
Let M be a positive lattice with m(M) = 1. Take any non-zero element
x=271,8ueclL®M. Putb,;=a;la, if a;; #0, =0 if a;; =0, and
S = {ilu; # 0} (+ ¢). Then we have

Q(x) = Z az‘jB(ui, uj)
= Q) + %z a.,2B(u,, u,)

=2, Qu) + % iZ;] @i (QUbiyu: + uy) — Qu) — Q(uy)

= zeZS (1 - ]%Eq Iau|> Qu) + —;— JL‘;S la,| @(byu; + uy)

J#i

> 18| — 2 layl
1,J€S
i#]

>1.

Hence L is positive and m(L)ym(M) > m(L® M) >1. mL) <1, mM)=1
imply m(LQ M) =1 and m(L) = 1. If Q(x) =1 and hence x ¢ IM(L ® M),
then b,u, + u, =0 and hence u, = +u, for i,jeS with i+ j, a; +* 0.
Suppose S=S, U S, and a;,;, =0 if i€ §,, jeS;; then x = ics, e, @ w)
+ Cjesse;® u,;) is an orthogonal sum and xe€ IM(L&® M) implies that
one of them must vanish. Thus we have S, or S, = ¢ and then u, = +u,
for i,j € S. Therefore x should be e® u, for ec L, i€ S. By definition L
becomes a lattice of E-type and m(L) = 1 implies (L) O {e;} and hence
L =L. Thus we complete the proof. Q.E.D.

Remark. If a, =1, |a,| < 1/n (i # j), then the conditions (1), (2) are
satisfied and M(L) = {*e,]1 <i < n}. In this case it is easy to see
whether L is indecomposable or not. Suppose that L is indecomposable
and L =L, ® L,. Then from our theorem follows that L,, L, are of E-type
and MM(L) = M(L,) @ (L), L, = L, and [IM(L;)| = 2rkL,. Hence we can
take minimal vectors as a basis of L, and then the matrix (B(f,, f;)) cor-
responding to L, where {+f} = {+e}, is a tensor product of matrices
corresponding to L, by their minimal vectors. Thus it is also easy to see
whether L is indecomposable with respect to tensor product or not.
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