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TENSOR PRODUCTS OF POSITIVE DEFINITE

QUADRATIC FORMS, V

YOSHIYUKI KITAOKA

Our aim is to prove

THEOREM. Let L be a positive lattice of E-type such that [L:L] < oo
and L is indecomposable.

( i ) If L = Lj (x) L2 for positive lattices Lu L2, then Lu L2 are of E-type
and [Li9. LJ, [L2:L2] < oo and LUL2 are indecomposable.

(ii) If L is indecomposable with respect to tensor product, then for
each indecomposable positive lattice X we have

(1) L®X=L®Y implies X s Y for a positive lattice Y,
(2) If X=®*L®Xf where Xf is not divided by L, then O(L® X) is

generated by O(L), 0{Xf) and interchanges of L's, and
(3) L (x) X is indecomposable.

We must explain notations and terminology. By a positive lattice
we mean a lattice on positive definite quadratic space over the rational
number field Q. Let L be a positive lattice and put

m{L) — min Q(x)

where Q( ) is a quadratic form associated with L. Set Ti(L) =
{x € LI Q(x) = m(L)}. If 9K(L <g> M) = Έl{L) ® 2R(Λf) (={x ® y | x e SK(L),

y e 3K(M)}) for any positive lattice M, then L is called of £J-type. L is

a submodule of L spanned by Wl(L). If L ^ Lι® L2 implies rank Lx or

rank L2 = 1, then we say that L is indecomposable with respect to

tensor product. O(L) denotes the orthogonal group of L. If a positive

lattice X is isometric to L ® K for a positive lattice K, then X is, by

definition, divided by L. These notations and terminology will be used

through this paper.

In § 1 we prove a theorem about weighted graphs. In § 2 we improve
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a result in [4] and in § 3 the above theorem is proved. In § 4 examples

of a lattice L as in the theorem are given.

§1

In this section we define a weighted graph and prove a fundamental

theorem in this paper.

DEFINITION. Let A be a finite set and [, ] be a mapping from A x A

into {*|0 < t < 1} such that

( i ) [α, a'] = 1 if and only if a = a\ and

(ii) [a, α'] = [a\ a] for α, af e A,

Then we call (A, [, ]) or simply A a weighted graph.

Let A be a weighted graph. A is called connected unless there exist

subsets Au A2 of A such that A = Ax U A2, At Γ) A2 = φ and [a19 a2] — 0

for any at e A* (i = 1, 2). If A = U A* (disjoint) satisfies

( i ) Â  is connected, and

(ii) [a, b] = 0 if a e Aέ, 6 6 A^ and ί =£ j,

then each A* is called a connected component of A. Let A, £ be weighted

graphs. For (α, 6), (α', i ^ e A x ΰ w e define f(α, 6), (α', &')] by [α, α'] [b, V].

Then A x B becomes a weighted graph. If there exists a bijection σ from

A on J5 such that [α, α;] = [σ(a), σ(a')] (a, a1 e A), then we say that A, B

are isometric and write σ: A ^ B.

LEMMA 1. Let A, B, C be weighted graphs and assume that A = {βjjf.j

and σ: A X JB ̂  A X C. Take any element be B and fix it Define ft e A,

Ct e C, gtJ e A, btj eB by

σ(ei9 b) = (fi9 ct) and σ(gij9 btj) = (/„ c3) .

TΛen w e Λai e [ei9 e3] = 0 i/ 6^ =ffc 6.

Proof. Set a^ = fe, e^]. Then ai3 = a^ and

(0) α^I

Fix any integer ^ (1 < k < ή) and define e[ e A, 6S e β by σ(^, 6S) = (/fc, cs)

(1 < 5 < n). Put S = {s\bs Φ b}. 1£ S Φ φ, then we take integers u, m

such that

aum = max αίs and fu=fh, me S .
ses

If fl« = 0 can be shown, then the lemma will be proved. Assume aum Φ 0

and put bm = b', e'm — ep. Then we have
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σ(ep, V) = (fk, cm), b'Φb.

Since σ(et, b) = (flt c{), we have

( 1 ) alp[b,b'] = [fi,fk][ci,cm],

( 2 ) alp[b,b'] = [Ci,cJ i£ft=ft,

(3) amp[b, b'] = [fM,fk].

Hence fu — fk implies

aum = [fu,fm][Cu, Cm] by (0)

= α^α.,16, 612 by (2), (3) .

( 4 ) aum = ampaup[b, V}2 .

Suppose fp = /fc. Then σ(ep, b') = (/fc, cm) = (/;, cm) implies αMm > apm.

Hence we have

0 < aum = ampaup[b, bj by (4)

< aumaup[b, bj

This yields aup[b, bj = 1 and [6, V] = 1. This contradicts b Φ b;. There-

fore we get fp Φ fk. Suppose p e S; then aup < aum holds by definition.

Hence we have

0 < aum = ampaup[b, bj by (4)

< ampaum[b, Vf

< aum .

This implies [6, &'] = 1 and it contradicts b Φ b'. Hence we g e t p § S and

by definition of S there exists an integer t such that σ(et, b) = (fk, cp).

On the other hand σ(et9 b) = (ft, ct) holds. Hence we get fk = ft, cp — ct

and by (2)

atP[b, b'] = [ct, cm] ,

and by (1)

(5) [6,61 = [/

From these follows



102 YOSHIYUKI KITAOKA

[cP, cm] = [ct, cm]

= atp[b, V]

= atp[fp9 fk][cP9 cm] .

If [cP, cm] Φ 0> then atp[fp9fk] = 1 and this contradicts fp Φ fk. Hence we

have [cp, cm] = 0 and [6, &'] = 0 by (5) and [fm9fk] = 0 by (3), and aum =

[fu,fm\[Cu, cm] = [fk,L][cu, cm] = 0. This contradicts our assumption aum Φ

0. Thus we have proved aum = 0. Q.E.D.

THEOREM 1. Let A, B, C be weighted graphs and assume that A =

{eji.i is connected and σ: A X B ^ A X C. Tαfce any element beB and

put σ(eί9 b) = (/ί? c*). TΛβn ẑ e have

A ^ {σ(e,, &)|1 < i < ή\ = {ft\l < i < n] X {c«|l < i < n} .

Proo/. Put C4 = {ck\k satisfies fk = /4} for 1 < i < n9 and denote by

Ci a connected component of Ct which contains cit Suppose [ei9 e j =

[fi9 fj][Ci, Cj] Φ 0. We will show Ct = Cs. Since [eί9 e,] Φ 0, Lemma 1 implies

that there exists an element ete A such that σ(et9 b) = (fi9 cό). Hence we

have ft = fu ct = cό since σ(et, b) = (ft9 ct). By definition of Ct we have

Cj = cte Ci and hence cό 6 Ct since ct 6 Ct and [ĉ , cj 9̂  0. Thus we have

proved Ct (Ί C5 Φ φ. Take any element xe Ct Π Cj; then there exists u

such that x = cu and /tt = /̂  since xe C^ Take any y e Cj such that [y, x]

f̂c 0. Then y can be written y = cfc with /fc = / ;. [eM, efc] = [/M, /fc][cM, cfc] =

[ft, fj][x, y]Φ0 Yields that σ(es, b) = (/., cfc) for some s. From / . = / • = /*,

[cs, cM] = [cfc, c j =7̂  0 follows that y = ck = c, 6 C* since ctt = x 6 C<, c, e Ĉ

and Q is a connected component of Ct. Thus we have shown that if

[x, y] Φ 0 for x e Ci Γ) Cj, y e Cj9 then y e Ct holds. This implies C5 C Ct

and similarly Ct c C7 and hence Cέ = C ; if [eί? eό] Φ 0. Since A is con-

nected we get Cj = = Cn. Take any s, t (1 < s, t < ή). From ct 6 Cέ

= Cs C Cs follows that there exists i such that ct = ct a n d ^ •= /s. Hence

(Λ, ct) = (Λ, Ci) = σ(ei9 b) holds. Q.E.D.

§2.

Let L be an indecomposable positive lattice which satisfies the fol-

lowing condition (A7).

(AO For any given positive lattices M, N and for any isometry σ from

L (x) M on L ® JV which satisfies that σ(L ®m) = L®n(meM9neN) implies

in = 0, n = 0, there exists a finite subset {u1? , vm} of L (depending on

M, N, σ) such that
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(1) each υt is primitive in L and a submodule spanned by {vu , vm}

of L is of finite index in L,

(2) putting MΌi = {meM\ σ(L ® m) c ι;, ® iV},

iVυi = {neN\σ~\L® rc) c ι;, ® M} ,

we have rank Mυi = rank NVi — rank M/rank L, and

(3) σ(Q(u i ®MJ) = Q(ui(x)iVϋi).

Through this section the above L is fixed.

LEMMA 2. Let M, N, σ, vi9 Mvt9 NΌi be those as in the condition (A7).

Then M, N are isometric and they are divided by L, and σ(L ® MVi) — vt ® N.

Proof. By definition MVi, NVi are direct summands (as modules) of

M, N respectively, and σ(L® MVi) C υt ® N, σ~\L® iVβ<) C u ^ M and

rank σ(L ® Mr<) = rank (uc ® iV), rank σ"!(L ® iV^) = rank (^ ® M) imply

σ(L (x) Mυ.) = vt(8)N and σ'XL ® JVβ<) = u* ® M since they are direct sum-

mands in L® N, L ® M respectively. This implies that M, N are divided

by L. From (3) follows a(vt ® MΌt) = u< ® iV^ since they are direct sum-

mands of L ® N. Hence we can define an isometry μt: Mβ< = iVOi by

(/(^ (x) m) = vt ® ^i(i^) for 7n e Mυ.. For mt e Mi9 m3 e M5 we show B(mu mό)

= Biμiimi), μjimj)) where B stands for bilinear forms associated with

quadratic modules.

B(υi9 v^Bimi, m^ = B{vt ® mί9 v3 ® ruj)

B(L ®

ve B(mu m3)

en we have

B(L®Mυi,L(

= B(o(Vi (S> n

= B(Vi ® μt(<

= B(ι;4, ^ ) S (

= B(μ((m{), μj{f

x) Λίry) = ΰ(σ(I

= B(Vι ί

= 0 ,

T D / _ — 1,

= 0 .

m4), yj ®

B(vt,

)N)

DM)

Vj) Φ 0. Suppose

Mυ))

Ô\ AT \\

Hence B(Mυi, Mv) = B{μt{Mv^ μj(MVj)) = 0 follows. Thus we have proved

B{mu mj) = B{μi{mi), μjimj)) for m* e M^, m, e Mry. By (1) we can choose
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a subset of {υu , vm}, say {vl9 , u j , so that it is a basis of QL. Then

σ(L ® Mυi) = Vi® N implies that Σ?-i MΌt is a direct sum and [M: Σ?-i M J

< oo. Hence a linear mapping μ from QM to QN defined by μ(Σli=imt)

= Σ?-i Mi(mi) (mi e Mυt) becomes an isometry from QM on QN. We have

only to show μ(M) — N. Take a basis {ef} of L and put

7i n

et = Σ α ^ ϋ J > u i = Σ ^^ej (αii> ^ij e Q)

Σ ί - i &α«fĉ  = δiS (Kronecker's delta) is obvious. Take any element m =

Σ?-i Ίni {™>i € QMWί) of M and put σ(vj ® mt) = vt ® nH {njt 6 QN); then

nu = (̂/Wi) follows and

σ(ek ® m) = σ

Since

to &, we
s ® m)
have

6 L(> we

-

=

get

Σ
us
Σ

€ iV. Summing up with respect

/*0Λ) = Σ M^) = Σ ntie N.

Thus μ(M) a N is proved. Since discriminants of M, N are equal, we

have μ(M) = N. Q.E.D.

LEMMA 3. Let K, X, Y be positive lattices and assume that K is inde-

composable and σ\K®X= K® Y. Then there exist submodules Mo, M of

X and No, N of Y such that

( i ) Mo, M, No, N are direct summands of X, Y respectively and

[X: Mo _L M], [Y: No J_ N] < oo, and

σ(K®M0) = K®N0, σ(K®M) =

(ii) if σ(K® m) = K® n(meM,ne N), then m = 0 and n = 0, and

(iii) there exist orthogonal decompositions

Mo = i MOιί , iV0 = i N0>i

that σ(K® MOf<) = K®NOtί (1 < i < <

: MO f < s
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Proof. Suppose that ml9 , mr are linearly independent elements of

X so that there exist elements nteY such that σ(K ® mt) = K<8) nt. We

may assume that r is maximal. Then we put M — Z[mu , m r ]
x , N =

Z[nu , nr\
L and Mo = M-1, iV0 = iV-1-. Clearly (i), (ii) are satisfied, (iii)

follows from Lemma 1 in § 3 in [2]. Q.E.D.

LEMMA 4. L (x) L is indecomposable and O(L (g) L) is generated by O(L)

and an interchange of Us.

Proof. Take an isometry a of L®L. Suppose that there exist x9 y

eL, x Φ 0 such that σ(L (g) x) = L (g) y. Supposing K = X = 7 = L in

Lemma 3, a submodule of L corresponding to Λf of X in Lemma 3 is {0}

since its rank ( < rank L) is divided by rankL by Lemma 2. Hence

we have σ e O(L) (x) O(L) by Lemma 3. Suppose that there are no such

elements x, y in L. Then, by Lemma 2, there is an element v e L such

that

σ(L ® Lv) = v (x) L ,

where Lv = {xe L|σ(L(x) x) C u(x)L}. Since rankL υ = 1, there is an ele-

ment u such that Lv = Z[w]. Then μa{L® u) = L®υ holds where μe

O(L (g) L) is defined by μ(x®y) = y® x(x, y e L). Hence μσ e O(L) <g) O(L)

follows as above. The indecomposability of L (x) L is proved quite similarly

as in the proof of Lemma 4 in [4]. Q.E.D.

LEMMA 5. ®m L is indecomposable provided that the orthogonal group

O((x)m L) is generated by O(L) and interchanges of Us and that ® m - 1 L is

indecomposable.

Proof. The proof is identical with that of Lemma 5 in [4].

THEOREM 2. Let X be an indecomposable positive lattice. Then we

have

( i ) for any positive lattice Y,L®X^L®Y implies X = Y,

(ii) ίfX=®tL®Xr where Xf is a positive lattice which is not

divided by L, then O(L ® X) is generated by O(L), 0{Xf) and interchanges

of Us,

(iii) L (x) X is indecomposable.

Proof. We induct on rank X. In case of rank X = 1 our assertion

is obvious. Suppose rank X — k + 1. Let Y be a positive lattice and

σ : L ® X = L® Y. Let Mo, M (resp. No, N) be submodules of X (resp. Y)
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as in Lemma 3 for K = L. If M = X (resp. Mo = X), then X ^ Yfollows
from Lemma 2 (resp. Lemma 3). Hence we may assume Mo Φ {0}, Mφ {0}.
Lemma 2 implies M = N. Hence we may assume M — N = _L K\ where
Kt is indecomposable and suppose Kt = ®rt L ® ϋΓ/ where K is not
divided by L. Since rank Iζ < rank M < k, the inductive assumption
implies that L® Kt is indecomposable and O(L ® iQ is generated by O(L),
O(K-) and interchanges of L's, identifying Kt and ®n L ® if/. Hence,
noting L ® M ^ L ® i V = J _ L ® J K ί , as in 2 in [4] for any basis {ul9 , un}
of L we have

σ(L ®MJ = ut®N, σ~ \L ® JYJ = M< ® M,

where

Now X = Mo J_ M, Y = iVo J_ N are proved quite similarly as in the proof
of Theorem in § 1 in [3]. This is a contradiction since X is indecom-
posable. Thus (i) is proved. Let X be a positive lattice as in (ii). Assume
that there exists an isometry σ 6 O(L (8) X) which is not contained in a
subgroup of O(L ® X) generated by O(L), O(X') and interchanges of L's.
Suppose that there exist x,y eX such that σ{L® x) = L®y. We define
Mo, M, iV0, J\Γ as in Lemma 3 for K = L, Y = X Then X = Mo _[_ Λf holds
as above. Since Mo Φ {0} and X is indecomposable, we have X = Mo and
Lemma 3 implies σ e O(L) ® O(X). If X is divided by L, that is, ί > 1,
then O(X) = O(L® ( ^ ^ L ® X7)) is generated by O(L) and O(X7) and
interchanges of L's since 01'1 L® Xf is indecomposable and rank®*"1^
®X'<k. Thus σ is contained in a subgroup generated by O(L), O(X')
and interchanges of L's in O(L ® X). This is a contradiction. Therefore
there exist no such elements x, y. Hence from Lemma 2 follows that t > 1
and there exists non-zero veL such that σ(L® XΌ) = i;® X where Xυ =
{x e X| σ(L ® x) c u ® X} by the assumption on L. Define μ2 e O(L ® X)
by μ2(x ®y®z) = y®x®z (x,yeL,ze ®ί~1 L ® XO; then μ2σ(L ® Xw) =
L® u®® ί " 1 L®X / . If there exist xeXV9 y e v® Θ''1 L® X! such that
x Φ 0 and μ2α (L ® x) = L ® y, then /̂ 2σ 6 O(L ® X) must be contained in a
subgroup generated by O(L), O(X') and interchanges of L's as above. This
is also a contradiction. Repeating this operation we get, as in 1.6 in [4],
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μt+ί μ2σ(L ® X,,...,, ) = L ® v ® ® iΛ'' ® X7 ,

where ^ e O(L ® X) is defined by

= *, ® ® x, ® ® s t + 1 ® y (x,eL,ye X') .

If there exist x e X,,,...^...,, y e ι> ® ® X' such that x Φ 0 and μί+1

μ2σ(L® x) = L®y, then μt + i - - μtf is contained in a subgroup generated

by O(L), O(X') and interchanges of Us. This is a contradiction. Hence

Lemma 2 yields that υ ® ® ι/""' ® Xf is divided by L. This contradicts

the assumption on X'. Thus the proof of (ii) is completed. Let X be a

positive lattice as in (ii). Then O(L®X) = O((g)t+1 L) ® O(X0 has been

proved as above. To complete the proof of (iii) we have only to show that

(x)ί+1L is indecomposable by virtue of Lemma 3 in [4]. Since X is inde-

composable, ®*L is also indecomposable. By virtue of (ii) 0{®t+ι L) is

generated by O(L) and interchanges by L's. Hence Lemma 5 implies that

® ί + 1 L is indecomposable. Q.E.D.

Remark. By (i), (iii) and Theorem in 105:1 in [5]

implies X = Y for any (not necessarily indecomposable) positive lattices

X,Y.

§3.

Through this section we fix any positive lattice L of E-type such that

[L:L] < 00 and L is indecomposable.

LEMMA 6. Let M, N be positive lattices and assume σ:L® M ^

Then for each m e $R(M) we have σ(L®m) = F® G, where F, G are sub-

modules of L, N respectively and m(F) = m(L), and m(G) — m(N).

Proof. Let X be a positive lattice. For x,y€$Jl(X)l±, we put [x,y]
= \B(x9y)\lm(X). Then Ti{X)j± becomes a weighted graph and X is in-
decomposable if and only if Tt(X)/± is connected. Put A = SK(L)/±,
B = Wl(M)l±, C = m(N)l±. Since L is of iJ-type, we have 9K(L ® M) =
m(L) ® 1IJl(M), m(L ® N) = Tim ® m(N) and σ induces an isometry from

A X B on A X C. By Theorem 1 there exist subsets Ff C A, G' c C such

that σ(A, m) = (F'9 G'). Denoting by FQ9 Go submodules of L, N spanned

by Ff C 2R(L)/±, G' c 2W(iV)/± respectively, we have σ(L ® m) = Fo ® Go

and 77I(JP0) = /n(L), m(G0) = m(N). Put F = QF0 Γ) L, G = QG0 Π ΛΓ; then
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[F: Fo]9 [G: Go] < oo, m(F) = m(L), m(G) = m(N) and σ(L®m)9 F® G are

direct summands of L ® N. Hence σ(L ® m) = F® G follows. Q.E.D.

THEOREM 3. If L ~ Lx® L2 for positive lattices Lί9 L29 then Ll9 L2 are

of E-type, [L^LJ, [L2:L2] < oo and Ll9L2 are indecomposable.

Proof. Define σ e 0{Lx ®L2®L2) by σ(x® y® z) = x® z® y (xeLl9

y9ze L2). For each m e Tt(L2) σ((Lx ® L2) ® m) = (Lj ®m)®L2 holds. Ap-

plying Lemma 6 in case of M = N = L2, we have m(Lx ® m) = m(L).

From Proposition 2 in [1] follows that Li® m is of ίJ-type. Hence Lx is

of £-type. Similarly L2 is of £-type. Wl(L) = TtiL,) ® Wl(L2) implies

[L^.Li], [L2:L2] < oo and Ll9L2 are indecomposable since [L:L] < oo and

L is indecomposable. Q.E.D.

THEOREM 4. Assume that L is indecomposable with respect to tensor

product. Then L satisfies the condition (A7) in § 2.

Proof. Suppose that L is decomposable and L = Lx _[_ L2 (ΣΊ> A =£ 0).

Each Λ; e W(L) is contained in Lj or L2. If 3W(L) flL, = ^, then SK(L) C

L2 and hence L C L2 and rank L < rank L2. This is a contradiction.

Hence we have 2K(L) Γ) L̂  φ φ (i = 1, 2) and then L spanned by Wl(L) is

decomposable. This contradicts our assumption on L. Thus L is inde-

composable. Set 9K(L) = {±u1? , ±vm}. We show that the condition

(AO is satisfied for the subset {vί9 , ym} of L by induction with respect

to rank M. The first condition of (A') follows from our assumption on L.

Let M9 N be positive lattices and suppose that for σ: L® M = L® N9

σ(L ® m) = L® n (meM,neN) implies m = 0, n = 0. Since L is of £J-

type, we have σ(Wl(L) ® W(M)) = Tt(L) ® Wl(N) and hence σ(L ® M) = L

® ft. Put iίfJ- = M7, iV-1 = N'9 M" = M7-1- ( # {0}), iV" = iV^ ( ^ {0}); then

we have [M: M J_ M"]9 [N: N' J_ N"] < oo, ^(L®M') = L®N' and σ(L

®M") = L®N" by virtue of [ L : L ] < o o . Assume M' Φ 0; then the

inductive assumption implies rank Mf

Vi = rankN'v. = rank M ;/rankL and

rank Λf£ = rank N"t = rank M7//rank L, where

M ; = {m 6 Af71 (7(L®m)c v^N'} ,

iV; = {72 e JV7 \σ~\L ®ή)dvί® Mf} , and

M"o N"t are defined similarly for M"9 N". Moreover MVi9 NVi axe defined

similarly for M9 N; then MVi D Mf

Vi J_ M"% and iVuf D iV^ J_ iV^ are obvious.

Hence rank MΌi > rank M/rank L holds. Take any i (1 < ι < m) and a

subset S of {i7j, , vm} such that S contains vt and S is a basis of QL.
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We may assume i = 1, S — {υu , ι;n} (n = rank L). Then σ(L ® Mr t) C

ϋt (x) N and σ(L ® 2]?«i MVi) C Σ J β l ^ ® N imply that Σ?=i Mυί is a direct

sum. Thus we have rank M > 2]?=i rank MVi > 2?-i rank M/rank L =

rank M and hence rank Mυi = rank M/rank L. Hence rank Mυ. = rank Λf/

rank L for each £ and similarly rank Nυ. — rank iV/rank L hold. From this

follows that QMυi = QM^ J_ QAf£ and Q2V,4 = QN'υi _[_ QN'V[ and hence

a{Q{Vi ® MJ) = σiQiVt ® M'J ±_ Q(v, ® M%) = Q(^ ® I\Q _L Q(u, ® iVQ =

Q(vt Θ Nvt). Thus the condition (2), (3) are shown if Mr Φ 0. Suppose

Mf = 0; then [M: M], [iNΓ: iV] < co hold. For each me2K(M) Lemma 6

implies σ(L (x) m) = F ® G where F, G are submodules of L, N respectively

and m(F) = m(L). By the assumption on L we get rank F or rank G = 1.

rank G = 1 implies σ(L® m) — L®n for some ne N and it contradicts

our assumption on σ. Hence we have F = Z[v] for v e 2JΪ(L).

Thus for each m e Wl(M) there exists v e 2K(L) such that σ(L ® m) a v

®iV.

Take any υt e 2K(L) and fix it. For ne $Jl(N) suppose σ(v®m) = υt®n

for v 6 2R(L), m 6 2ft(Λf). Since σ(L (x) m) C ^ (g) iV for ι;, € 3K(L) as above,
Vj must be equal to υt and hence σ(L ® m) C ι;4 ® iV, n e M7Ji and m(MVι)

= m(M). Therefore ^ ® n = o (f ® m) e σ(L ® Mυi) c υt ® N holds for each

n 6 3K(iV). Thus we get vt ® ft c σ(L ® Mυί) dv^N. From [iV: iV] < oo

follows rankM^ = rank iV/rank L, m(MVι) = m(M) and [M^ M J < oo.

Similarly rank NΌi — rank M/rank L follows.

For each me Wl(M) Π Mv. = ^ ( M ^ ) we put σfa ® m) = ^ ® n (ne

aW(iV)). Then we have σ'XLΘή) (Z υt ® ikf by σ " 1 ^ ®n) = vi®m. Hence

n- e iVΌί follows. Conversely n e Έi(N) Π iVϋf = Wl(NVi) implies σ " 1 ^ ® n) =

vt® m ΐoτ me Wl(M) and σ(L ® m) c ι;€ ® iV by σ(^ ® m) = Vi® n. Hence

we have m e MΌi and σ(^ ® m(MJ) = υt ® 2R(2Vβ<). [Mβ |: M,J, [2Vβ<: Λfj <

oo yield a(Q(Vi ® Mυί)) = Q(vt ® NΌi). This completes the proof of Theorem

4. Q.E.D.

Theorem 2, 3, 4 yield Theorem at the begining of this paper.

§4.

In this section we give examples of positive lattices in Theorem.

PROPOSITION. Let L = Z[eu - , en] be a quadratic lattice and put

caυ — B(eί9 βj). Assume that

(0) c, atJ eQ, c > 0 ,

(1) au = 1 and 1 - ΣJΦI \aυ\ > 0 for i = 1, , n,
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(2) for any non-empty subset S of {1,2, - - , ή\

#|S |-1> Σ |α,,|.
i,jes

iΦj

Then L is a positive lattice of E-type and L = L.

Proof. By scaling we may suppose c = 1 without loss of generality.

Let M be a positive lattice with m{M) = 1. Take any non-zero element

x = 2 ? β l et ® ut 6 L ® M. Put 6O = α^/|α^| if α o ^ 0 , = 0 if atj = 0, and

S = {i\ Ui Φ 0} (Φ φ). Then we have

Q(x) = 2

Δ iΦJ

= Σ Q(ud + ^Σ\<hA (QibtjUt + u}) - Q(ut) -
2 iΦj

= Σ (i - Σ Kl) Qdί*) + 4- Σ Kl Q(6«Mi +
ie-s \ jes / 2 ί.yes

jφi iΦj

Σ

Hence L is positive and m(L)m(M) > m(L ® M) > 1. m(L) < 1, τn(M) = 1

imply m(L ® M) = 1 and m(L) = 1. If Q(x) = 1 and hence x e SK(L ® M),

then δ̂ Wi + u3 = 0 and hence κf = ±w^ for i,j e S with £ 9^7, α^ =̂ 0.

Suppose S = Sj U S2 and α f i = 0 if i e Su j e S2; then x = (Σie-sx ^ ® wj

+ (Σye^2 e ^®^) is a n orthogonal sum and x e 3R(L ® Λf) implies that

one of them must vanish. Thus we have Sλ or S2 = φ and then κf = ±uό

for ί, y e S. Therefore x should be e® ut for e e L, ie S. By definition L

becomes a lattice of i£-type and m(L) = 1 implies 3K(L) D {e*} and hence

L = L. Thus we complete the proof. Q.E.D.

Remark. If α« = 1, |α^ | < 1/n (ί =^7), then the conditions (1), (2) are

satisfied and 9K(L) = { ± ^ | 1 < ί < n}. In this case it is easy to see

whether L is indecomposable or not. Suppose that L is indecomposable

and L = 2^ ® L2. Then from our theorem follows that Ll9 L2 are of i?-type

and SJί(L) = m{L,) ® 3K(L2), L, = L, and |50i(L,)| = 2r^L,. Hence we can

take minimal vectors as a basis of Lu and then the matrix (B(fί9 f3)) cor-

responding to L, where {±/J = {±et}9 is a tensor product of matrices

corresponding to Lt by their minimal vectors. Thus it is also easy to see

whether L is indecomposable with respect to tensor product or not.
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