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CUSP FORMS OF WEIGHT 3/2

HISASHI KOJIMA

Introduction

In this paper we deal with the problem (C) in § 4 of [4]. Let Ik be

the Shimura mapping in [4] of Sk(4N, χ) into ®k^(N\ χ2) (see p. 458). The

problem (C) can be stated as follows: J3(/) is a cusp form if and only if

ζf9 h} — 0 for all he U, where U is the vector space spanned by every

theta series of SZ(4N, χ) associated with some Dirichlet character.

Further, Niwa [2] proved that 22V can be taken as N' under the as-

sumption that k ^ 7; that is Ik(Sk(4N, χ)) g ©fc-i(2iV, χ2).

§ 1 and § 2 are preparatory sections. In § 1 we show a characteriza-

tion of integral modular cusp forms by means of the holomorphy of cer-

tain Dirichlet series. In § 2 we shall extend Niwa's result to the case,

where the weight k/2 is not less than 3/2. In particular, we show that

J3(S3(4iV, χ)) S @2(2iV, χ2) there.

In § 3, by using those results in § 1 and § 2, we prove the following

theorem.

THEOREM. // N is odd and square-free. Then the following two state-

ments are equivalent

(A) I3(f) is a cusp form.

(B) For every odd Dirichlet character -ψ , (f,h(z: Ψ)) = 0.

where h(z; ψ) is a theta series associated with ψ defined in Lemma 3.1 in

§3.

Moreover, as an application of the above theorem we obtain the fol-

lowing:

THEOREM. If N is odd and square-free and if χ4, (defined in § 3), is

trivial, then J3(S3(4iV, χ)) g ©2(2iV, χ2).

This theorem gives a partial answer to the problem (C) in [4].
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§ 1. A characterization of cusp forms

Let N be a positive integer and let χ be a Dirichlet character modulo

N. Put

Γ0(N) = { £ *) e SL2(Z)\c = 0 (mod iV)} .

We consider an integral modular form f(z) satisfying f(γ(z)) = χ(d)(cz +

d)kf(z) for all γ = (* J ) 6 Γ0(N). We denote by ®k(N, χ) the space of inte-

gral modular forms of Neben-type χ and of weight k with respect to Γ0(N)

and by ©*(2V, χ) the subspace of cusp forms in ®k(N, χ). In § 2 and § 3 we

shall treat modular forms of half integral weight. As the definition of

such modular forms and their basic properties, we may refer to Shimura

[4].

Let f(z) = 2]~=1 ane(nz) be the Fourier expansion of fe ®k(N, χ) at oo,

where e(z) = exp (2πίz) and let ψ be a Dirichlet character. We now form

the Dirichlet series

Then we can prove the following theorem.

THEOREM 1. Suppose that N is square-free. Then the following two

statements are equivalent to each other:

(A) f(z) is a cusp form.

(B) For every Dirichlet character ψ, L(s; /, ψ) is holomorphic at s = k.

To prove this theorem, we need some preparations. Let L(s, φ) be

the Dirichlet L-function associated with a Dirichlet character φ. The fol-

lowing lemma is well-known.

LEMMA 1.1. If φ is trivial, then L(s, φ) is a simple pole at s = 1. If

φ is non-trivial, then L(s, φ) is holomorphic at s = 1 and L(l, φ) Φ 0.

Next we state some properties of Eisenstein series (cf. [1]). Let χx

(resp. χ2) be a character modulo Mx (resp. M2) with χ = χ^ . And let {χu

χ2, £} be a triplet satisfying £MXM2\N and the following condition:
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(*) If k = 2 and both χx and χ2 are trivial, Mί = 1 and M2 is square-

free. If otherwise, #! and χ2 are primitive.

We consider the sequence {an(χu χ2)}n=i determined by

(1.1) L(s, Xι)L(s - k+ l,χ2) = Σ VniXu ldn~s.
7i = l

Let E(z:χuχ2) be the modular form associated with the Dirichlet series

(1.1). We summarize well-known facts as the following lemma (cf. [1]).

LEMMA 1.2 (Hecke). Consider triplets {χu χ2, £} satisfying the condition

(*). Then modular forms E(£z:χuχ2) are linearly independent and

where ©fc(iV, χ) denotes the vector space spanned by the above modular

forms over C. Moreover, E(£z: χu χ2) is an eίgenfunction of Hecke operators

T(ή)((n, N) = 1) and E(£z: χίf χ2)T(ή) = an(χu χ2)E(£z: χu χ2).

Here we note that {an(χu χ2)}Γ=i has the following property:

If an(χu χ2) = aM, Xi)((n, N) = 1), then Xt = χ{(i = 1,2).

Now we can give a proof of Theorem 1. It is easy to derive (B)

from (A) (cf. [3]). Next we assume (B). For the simplicity, we suppose

that k > 2 or if k = 2, χ is non-trivial. We can put

(1.2) /(2) = Σ <* ϊΛ,

where g(z) is a cusp form.

If {χu χ2} is fixed, it is sufficient to verify

(**) - c{i: χu χ2) = 0 for every £(£MM\N) .

We shall prove this by means of induction with respect to the number t

of prime factors of £. First we consider the case t = 0. By virtue of

(1.2), we have

L(s:f, lNχ2) = Σ c(l: χί, χ0L(s, l ^ χ 2 χ 0 ^ - k + 1, lN%ώ

+ L(s:g,lNχ2),

where 1^ is the trivial character modulo N. If (χί, χ2) φ (χu X2), then

L(s, lNχ2χ[)L(s — k + 1, lNχ2χ!2) is holomorphic at s = k and, if otherwise,

L(s, lNχ2χ[)L(s — k + 1, livfoxO has a simple pole at s = k. Since both
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L(s:f,lNχ2) and L(s: g,lNχ2) are holomorphic at s = k, we have c(l:χιχ2)

= 0. Therefore (**) holds for t = 0.

Next suppose that (**) holds for t = 0,1, , n — 1 and n. We set

ί = p£, where I = 1 or pxp2 •••/>„ and pup2, -,pn are primes. Put L =

NlβM1M2 and ψ = l^χ2. By (1.2) and the assumption of the induction,

we see

Now

(1.3)

L(β:/,ψ)

we have

L(s:E(£z:

I
χ 2 ) ,

Γ

Ψ)

Σ
Ci» & ) , Ψ1)

• Xi? Λ2/MS -C'V^ 2 . Zi, ̂ 2Λ

- k + 1

Since L(s, E{l'z\ χί, χθ, Ψ) = ψ(^)(^)"i(β, ΨxO^(s - * + 1,

xί, χθ, Ψ) is holomorphic at 5 = k. So we obtain c(£ :χu χ2) = 0. Therefore

we see that (**) holds for t = n + 1. This completes the proof of Theo-

rem 1.

§ 2. A complement to a result of Niwa [2]

First we recall the results of Niwa [2], Let N be a positive integer

and let χ be a Dirichlet character modulo 42V. For an odd integer k( ̂  3),

define by k = 2λ + 1 and put Zl(*) = χ(*)illL\\ We define £ on Rz by

Λ(*i, * 2 , *3) = (*i - ίx2 - x*Y exp (( - 2/JV)(2Λ?

We also define θ(z, g) on § X SL2(i?) by

0(2, £) = Σ Xi(*iy3-*)/4 exp (2πί(ulN)(xl - ^

where 2 = w + ιu, L = Z 0 iVZ 0 (N/4)Z and

« m /α

c J/x = Ί α

\6
Then we have

θ(σ(z), g) = t{d)(^)j(σ, zfθ{z, g)

for every σ = l " j j 6Γ0(4N). Here the Petersson inner product
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F(g)=\ vk'%z,g)F(z)^

is well-defined, where F(z) e SkUN, x ( — ) ) and D0(4:N) is a fundamental

region for Γ0(4N). The following lemma is due to [2] and [6].

LEMMA 2.1. The function F(g) has the following properties:

(1) F(g)( 6 C°°(SL2(R))) is an eigenfunction of the Casimίr operator Dg,

that is, DgF = λ(λ - ΐ)F, where

(2) F(g(cosβ

\ \—sin 5 COS0
and

(3) F(χg) =

We define two functions ?Γ(^) and Φ(ẑ ) (M; = ξ + J27 e © by

and

φ(w) = ψ( - l/2Nw)(2Ny(- 2Nw)~2λ.

Before stating our result, we recall the definition of the Shimura mapping.

Let W be the isomorphism of sJϊN, x(—)) onto Sk(4N, χ) defined by

G(z) = W(F(z)) = F ( - l/42\fe)(4iV)-fc/4(- iz)'m

for all F(z) e SkUN, χ(=-j\ Then G(z) has the Fourier expansion

oo

G(z) — Σ d(n)e(nz)
71 = 1

at oo. Determine the sequence {A(τι)}~=1 by the relation

(ή)n- = Us-λ + l,χι) ^

where G(2) = Σn=i a(ή)e(nz). We can define the Shimura mapping Jfc(/? ^ 3)

by



116 H. KOJIMA

UG(z)) = ± A(ή)e(nz) for G(z) e Sk(4N, χ).
l

Shimura [4] showed Ik(Sk(4N, χ ) ) ^ © * - ! ^ ' , f) for some Nf and he also con-

jectured that 2N is taken as N\ Now we define another mapping ϊk of

Sk(4N, χ) into C~(£) by ϊk(G(z)) = Φ(w), where G(z) = W{F{z)). Then,

under the condition k ^> 7, the above conjecture was proved by Niwa [2]

as follows.

THEOREM. If k ^ 7, 2/ιeλz Φ(u ) belongs to ©fc_!(2iV, χ2)

c = ^

Now we shall prove the following:

THEOREM 2. If k^ 3, tfierc Φ(w) belongs to ®k.1(2N9 χ
2) and Φ(w) =

7,(G(2:)) = dk(G(z)). Moreover, if h ^ 5, J/ierc Φ(zι ) δeZo^s ίo ©fc.1(2iV, χ2).

Proo/. First we prove that Φ is holomorphic on φ. Though our

method is adaptable to all the cases, we assume k — 3 for the simplicity.

By virtue of Lemma 2.1 and by the invariance of the Casimir operator

Dς, we have

Now Φ(u ) has the Fourier expansion

#(">) = Σ αmfe) exp (2τri
m=-oo

at oo. So αm0?) is a solution of the differential equation

(2.2) {J£l + A -A + (_ 4πW + toniΛ^?) = 0 .

I dη η dη J

Therefore, we obtain

(bm exp ( - 2πmη) + cmum{rj), if m Φ 0,

where

[bo + cQη *, iΐ m = 0 ,
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exp (— 2πmη)\ η~2 exp (4πmη)dη , if m > 0 ,

exp (— 2πmη)\ η~2 exp (4πmη)dη , if w < 0 .

By integration by parts, we have the following asymptotic behaviors of

(2.3) \um(η)\ ̂  (4πm - π)-1 exp ( - 2πmη)\ exp ((4πm - π)η)

n — π)\

for n > 0,

(2.3)/ ujy) = - exp (2πmη)l4πmvf + tfm(ί7) for m < 0 ,

where |αm( 9) | ^ exp (2πmη)(l/8π2 \m2\ rf + 15/32π3 |m3| ^4)

Moreover we have

(2.3)" 7]Φ{w) = O(? + tf-OC? > 0 and η > oo)

uniformly in f. Since

ί\ 2 |Φ(^)l 2 dξ= Σ |βm(9)IY,
J 0 m=-co

we obtain from (2.3)"

(2.4) M ^ I

where M is independent of m and 27. Hence, by (2.3) and (2.3)', we have

cm — 0(m > 0) and bm = 0(m < 0). Consequently, we see

CO

Φ(w) = 2 6, exp (— 2πmη) exp (2πimξ)
(2.5) "- 1

00

+ Σ cu_m{η) exp (— 2πίmξ)Σ
l

By (2.4), we have | αm(l/1 m |) | ^ M(l + m2). Hence we obtain bm =

O(mυ) (m-> 00) and c_m = O(mv) (τn-> 00) for some v > 0. We see that

Φ{iη) has the following asymptotic behavior:

(2.6) Φ(iv) = \°(7}) ( ^ + °°h for a l l , > 0 ,
w [O(^0 (7 -> 0), for some μ>0,

(see pp. 158-159 in [2] and [4]). In particular, we see ao(η) = 0. Hence

we see
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(2.5)' Φ(w) = Σ 6m exp ( - 2πmη) exp (2πimξ)
lΣ

m = l

+ Σ C-mU.Jy) exp ( - 2πimξ).
m = l

By virtue of (2.6), Φ(ίη) rf'x belongs to L^R*) for a sufficiently large i > 0.

Let Ω(s) be the Mellin transformation of Φ(iη), that is

Here we note that Φ(iτf) is a function with bounded variation on all com-

pact sets of R+ and Φ(ίη) = ll2(Φ(i(rj + 0)) + Φ(i(η - 0))) for all η > 0. Hence

the Mellin inversion formula gives

(2.7)
2πι

On the other hand, by the same computations as those of [2], we have

Ω(s) = c(2π)-sΓ(s)L(s, Xι) £

where G(^) = ΣίΓ-i cι(n)e(nz) and c ^ 0. Consequently, we obtain

Therefore, by (2.5)', to prove the holomorphy of Φ(w) it is sufficient to show

that c_w = 0(m ^ 1). We assume c_moΦ 0 and c_m = 0 for all m(< τn0).

Then, by (2.5/ and (2.5X7, we see

(2.8)
= ΣM - 6») exp ( - 2πnη)IHmQ(y),

where Hmo(η) — exp(— 2πm0η)l4πm0η
2.

We note that the series of both sides of (2.8) are uniformly conver-

gent on [1, oo). Set t = e x p ( - 2πη) {η > 0). The right hand side of (2.8)

equals
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By virtue of (2.3/, we see that the left hand side of (2.8) converges to cmQ

as η —> + oo. Hence we have

lim ί-77^ (log t)2 Σ « - 6,)ί(n-W0)} = c_mo(Φ 0).
t>0

This is a contradiction and we obtain the holomorphy of Φ(w). Since the

remainders of our assertions can be proved in the same manner as that

of [2], we omit the proof.

§ 3. Shimura mapping in the case of weight 3/2

First we shall prove the following:

THEOREM 3. Let N be odd and square-free and suppose k = 3. Then

the following two statements are equivalent:

(A) Φ(w) is a cusp form.

(B) < G(z), h(z: ψ) > = 0 for every Dirichlet character ψ with trivial

}r, where < , > denotes the Petersson inner product.

To show this, we prepare two lemmas.

LEMMA 3.1. Let χ be a Dirichlet character modulo N. Define v e {0,1}

by χ(- 1) = ( - l)υ. Then h(z: χ) = 1/2 Σ ί U — χ(m)mve{m2z) belongs to

G2υ + 1(4iV2,χ0, where χ' =

Proof. If χ is primitive, this lemma was proved by Shimura [4]. If χ

is not primitive, we set χ — lLφ, where L is square-free and φ is the primi-

tive character associated with χ. Clearly L and the conductor of φ are

coprime. Then we can prove the above lemma by means of induction with

respect to the number of prime factors of L. We may omit the details of

the proof. (Recalling that G3(4N, χ) — 0 if χ(— 1) = — 1, we assume χ(—1)

= 1.)

LEMMA 3.2. Let ψ be a character modulo M. Define L(s, ψ) by

L(s, ψ) = L(s: Φ, ψ) = Σ Ψ(n)A(ή)n-s.
n = l

If χΦ ψ1? then L(s, ψ) is holomorphίc at s = 2, and if otherwise, L(s, ψ) has

a simple pole at s = 2. Furthermore, in the latter case (χ = ψj , Res,=2 L(s, ψ)

equals d < G, h(z: ψ) > for some c\Φ 0).

Proof. The method of the proof is the same as that of [4]. For a
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constant σ > 0, we have

(3.1) Γ Γ G(z)h(z: ψ)ys'1dxdy
Jo Jo

= (4π)-sΓ(s) Σ ψ(m)a(m2)rrϊ-2s,
m=l

where s e C(Re s > σ) and v is defined by ψ( — 1) = (— l)v. Set M =

lc.m(4M2, 42V). We define J3(z, s) by £(0,5) = G(z)h(z:ψ)ys+ί. By virtue

of Lemma 3.1, we see

), s) = (.Σ±}ψχ(dXcz + dy-»\cz + d f-^'Biz, s)

for every γ = ί £ ^ j e Γ0(M). Hence the left hand side of (3.1) equals

f £(*> β){ Σ (~W(d)(cz + d)1-!^ + dp-^« | * ^ . ,

where Γ = Γ0(M) and D is a fundamental region for Γ0(M). Hence we

obtain

L(2s — v, Φ(w), ψ)

= L(2s - v - λ + 1, ψZl) Σ Ψ(^M^2)n-25+y

= l ί ^ Γ ί β ) " 1 f Bfe s)L(2s - v - i + l, ψXι)2 JD

x f Σ wfflfiz + dy->\cz+dι .-1- Λ**^..

Now it is easy to see

L(2s - v - λ + 1, ψχ.) Σ ψχ,(d)(c2 + d)»-"| cz+d Γ ^
CS)

= 4 Σ' n)ι-\Mim + nf-1"2 8.4 Σ ψχi

We set 0(2:, s) by

Φ , s) = Σ ' ΨXi(n)(Mmz + riγ-v\Mmz + Tip"1- .

The following lemma is well-known (see Shimura [5]).

LEMMA 3.3. c(z, s) is holomorphic at s = 2, Ϊ/ ψχt is non-trivial, c(z, s)
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has a simple pole at s = 2 and Ress=2 c(z, s) = d'y'1 for some d\Φ 0), if

otherwise.

Using the Lemma 3.3, we obtain Lemma 3.2. By Theorem 1, Theorem

2 and Lemma 3.2, we can easily prove Theorem 3 and we may omit the

details of the proof.

Let N be odd and square-free and let χ be a character modulo 4N.

We define the isomorphism φ of (Z/4NZ)X onto (Z/4Z)xχ(Z/NZ)x by φ(a)

= (α, a) for all a e (Z/4iVZ)x. Define χ4 by χ4(α) = χ{φ'\a, 1)) for all a e

(Z/4Z)X. Under the above notations, we can prove the following theorem

as an application of Theorem 3.

THEOREM 4. Suppose that χ4 is trivial. Then I3(S3(4N, χ)) g ©2(2iV, χ2).

Proof. Let {/•,/•, ,/J be a base of S3(4N, χ) over C with Tg(pF)ft

= wPfiQ. ̂  i ^ n)((p, 4iV) = 1). By Theorem 3, it is sufficient to show

</i, h(z: ψ)> = 0 for all characters ψ with ψ = χx and for all i. Now as-

sume </<0, h(z: yjϊ0)y φ 0 for some ψ0(modM) and some ί0. We set M —

£.c.m(4N9 4M2). Then we have

fu, h(z:ψ0)}

= </tβ, (T3^(p2))* Λ(

= </*., ϊ(p2)ΆM

χ(p2)h(z:

., Hz: ψo)y

for all primes p with (/?, M) = 1.

By the above assumption, we obtain w(

p

ίo) = χi(p)(jp + 1 ) for all primes

p((p, M) = 1). Therefore, by the definition of the Shimura mapping, we

see T(p)IΛ(fJ = Xi(p)(p + 1)7,(/J for all primes p((p, M) = 1). Here we

note that 73(/ίo) is not a cusp form. So we see that /3(/io) is a modular

form associated with the Eisenstein series of ©2(2iV, χ2). By virtue of

Lemma 1.2, we have χ^pXp + 1) = φ(p) +pφ\p) for all primes p((p, M) = 1),

where φ (resp. φ;) is a Dirichlet character modulo Mx (resp. M2) and MiM2

is a divisor of 2iV. So we have χi(p) = φ(p) for almost all primes p. On

the other hand, the conductor of χ2 is a multiple of 4 and that of φ is

odd. This is a contradiction and we obtain the theorem.
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