K. Shih Nagoya Math. J. Vol. 76 (1979), 153-171

CONSTRUCTION OF ARITHMETIC AUTOMORPHIC FUNCTIONS FOR SPECIAL CLIFFORD GROUPS

KUANG-YEN SHIH

An important problem in the theory of arithmetic automorphic functions is to construct, for a reductive algebraic group over Q which defines a bounded symmetric domain, a system of canonical models [2], [6], [18]. For the similitude group of a hermitian form over a quaternion algebra whose center is a totally real field, this is solved by Shimura [17], and for the similitude group of a hermitian form with respect to an involution of the second kind of a central division algebra over a CMfield, by Miyake [8]. In this paper, we show that this also can be done for the special Clifford group of a quadratic form Q over a totally real algebraic number field. (We have to impose certain conditions on the signature of Q in order that G defines a bounded symmetric domain, see 1.1.)

That this is possible is suggested by Satake's works [11], [12]. Instead of his symplectic embeddings, we introduce in § 3 an embedding of G into a reductive group G of Shimura type. We then show that (§ 4) the system of canonical models constructed by Shimura for G gives rise to a system of canonical models for G. Here we adopt the technique employed by Shimura in [17, § 6] (see also [2, § 5]).

Conversations with Stephen Kudla have been very helpful in this research. The author also would like to thank the University of Maryland for its hospitality.

Notation

We refer to [1], [3], [5] and [9] for general information concerning quadratic forms. For the definition of the Clifford algebra C of a quadratic form Q on a vector space V over a field F of characteristic $\neq 2$, see Chapter II of [1]. The subalgebra E of C consisting of all even

Received November 29, 1978.

elements is called the *even Clifford algebra*. By the main involution ι on E, we mean the one induced by the identity mapping on V. This is called the main anti-automorphism in Chevalley's book. Let M be the matrix of Q with respect to a basis of V. We call $(-1)^{n(n-1)/2} \det M$ a signed discriminant of Q, where $n = \dim V$. All signed discriminants of Q form a square class in F^{\times} , the multiplicative group of F.

For a number field F, F_A^{\times} denotes the idele group of F, and F_{ab} the abelian closure of F. For $c \in F_A^{\times}$, let [c, F] be the image of c in Gal (F_{ab}/F) under the Artin map. We use F_{∞}^{\times} and F_0^{\times} to denote the infinite and finite part of F_A^{\times} respectively. The identity component of F_{∞}^{\times} is denoted by $F_{\infty+}^{\times}$, and the closure of $F^{\times}F_{\infty+}^{\times}$ in F_A^{\times} is denoted by F_c .

For an algebraic group G over Q, G_A denotes the adelization of G. We use $G_{\infty} (=G_R), G_0$ to denote the infinite and finite part of G_A respectively. The identity component of G_{∞} is denoted by $G_{\infty+}$.

1. Preliminaries

The purpose of this section is to introduce the notions those are needed in the subsequent discussions.

1.1. Let F be a totally real algebraic number field of degree g, V a (p+2)-dimensional vector space over F, where $p \ge 1$, and Q a nondegenerate quadratic form on V. Denote by E the even Clifford algebra of Q and ι the main involution on E (see Notation). Define an algebraic group G over Q whose Q-rational points are

$$G_{q} = \{g \in E^{\times} | gVg^{-1} = V\}$$
.

In Chevalley's terminology [1], G_q is the special Clifford group of Q. For $g \in G_q$ put $\nu(g) = gg'$. Then $\nu(g) \in F^{\times}$, see [1, II.3.5]. The semi-simple part of G is

$$G^u = \{g \in G | \nu(g) = 1\},\$$

which is simply connected. The Q-rational points of G^u form the spin group (or the "reduced Clifford group" in Chevalley's terminology) of Q over F.

Let τ_1, \dots, τ_g be the g distinct embeddings of F into R. Denote the completion of F at τ_{ν} by F_{ν} , $V_{\nu} = V \otimes_F F_{\nu}$, and Q_{ν} the extension of Q to V_{ν} . We assume the signature of Q_{ν} is either (p, 2) or (p + 2, 0), so that the quotient of G_R^u modulo a maximal compact subgroup has the structure

of a bounded symmetric domain. By rearranging the τ_{ν} 's, we shall assume that the signature of Q_{ν} is (p, 2) when $\nu \leq r$ and (p + 2, 0)otherwise. We exclude the case r = 0, i.e. the case where G_R^u is a compact group, from our consideration. By [9, 101: 8], the image of G_Q under ν is the set of all $x \in F^{\times}$ which is positive at $\tau_{r+1}, \dots, \tau_g$.

1.2. Throughout this subsection, let V be a (p+2)-dimensional vector space over R, and Q a quadratic form of signature (p, 2) on V. Take an orthogonal basis e_1, e_2, \dots, e_{p+2} of V so that

(1.2.1)
$$Q(e_{\nu}) = \begin{cases} 1 & \text{if } \nu = 1, \cdots, p \\ -1 & \text{if } \nu = p + 1, p + 2. \end{cases}$$

A basis of the even Clifford algebra E of Q is given by

$$e_{_{
u_1}}e_{_{
u_2}}\cdots e_{_{
u_{2k}}} \qquad \left(
u_1 <
u_2 < \cdots <
u_{_{2k}}, \; k=0,1,\cdots,\left[rac{p}{2}
ight] + 1
ight).$$

Let Gpin (Q) (resp. Spin (Q)) be the special Clifford group (resp. spin group) of Q over R. Put $j = e_{p+1}e_{p+2} \in E$, and let

$$K = \{g \in \operatorname{Spin} (Q) | gj = jg\}.$$

Then K is a maximal compact subgroup of Spin (Q). Furthermore, every maximal compact subgroup of Spin (Q) is obtained this way. Now fix an orthogonal basis e_1, e_2, \dots, e_{p+2} of V satisfying (1.2.1) and let K be the corresponding maximal compact subgroup of Spin (Q). It is possible to introduce two complex structures on the quotient Spin (Q)/K. We fix one as follows.

Let g be the linear span of $\{e_{\nu_1}e_{\nu_2}|\nu_1 < \nu_2\}$ in *E*. For $x, y \in g$, $[x, y] = xy - yx \in g$. Therefore, with this bracket operation g becomes a Lie algebra. This is the Lie algebra of Spin (Q), see [1, 2.9]. Let \mathfrak{k} be the linear span of $\{e_{p+1}e_{p+2}\} \cup \{e_{\nu_1}e_{\nu_2}|\nu_1 < \nu_2 \leq p\}$, and \mathfrak{p} the linear span of $\{e_{\nu}e_{p+1}|\nu \leq p\} \cup \{e_{\nu}e_{p+2}|\nu \leq p\}$. Then

$$\mathfrak{g} = \mathfrak{k} + \mathfrak{p}$$

is the Cartan decomposition of g corresponding to the maximal compact subgroup K. Now $j = e_{p+1}e_{p+2}$ is in the center of \mathfrak{k} , and the restriction J of $\frac{1}{2}$ ad (j) to \mathfrak{p} is a linear transformation with $J^2 = -\mathrm{id}$. Identifying the tangent space of Spin (Q)/K at K with \mathfrak{p} , we use J to define a complex structure on Spin (Q)/K. (Another structure is given by -J.) The complex manifold Spin (Q)/K can be realized as a bounded domain X_p in C^p :

$$X_p = \{(\pmb{z}_1,\,\cdots,\pmb{z}_p)\in \pmb{C}^{\,p} \,|\, \sum_{
u=1}^p |\pmb{z}_
u|^2 < rac{1}{2}(1+|\sum_{
u=1}^p \pmb{z}_
u|^2) < 1\}\;,$$

see for example [10, 3.5].

Let

$$\operatorname{Gpin}^+(Q) = \{g \in \operatorname{Gpin}(Q) | \nu(g) > 0\}$$

be the identity component of Gpin (Q). For $g \in \text{Gpin}^+(Q)$, define the action of g on $X_p = \text{Spin}(Q)/K$ to be that of $(\nu(g))^{-1/2}g \in \text{Spin}(Q)$.

1.3. Let z be a point of X_p . Then there is an orthogonal basis e_1, e_2, \dots, e_{p+2} of V satisfying (1.2.1) so that z corresponds to the maximal compact subgroup

$$K_z = \{g \in \operatorname{Spin}(Q) | gj = jg\},\$$

where $j = e_{p+1}e_{p+2}$, and so that j (instead of -j) determines the given complex structure of X_p . This element j of E is uniquely determined by these properties. We shall refer to it as the *complex structure of* X_p at z. We have j' = -j and $j^2 = -1$.

The **R**-linear span of K_z in E is

$$Y_z = \{x \in E \mid xj = jx\}.$$

By [11, Proposition 2], ι induces a positive involution on Y_z . It is obvious that $R[j]^{\times}$ is contained in Gpin⁺ (Q), hence in the center of Y_z . Also it can be verified in a straightforward way that z is the only fixed point of $R[j]^{\times}$ on X_p .

1.4. Let $V, Q, E, G, G^u, V_\nu, Q_\nu$ etc. be as in 1.1. Denote the completion of E, G and G^u at τ_ν by E_ν, G_ν and G^u_ν respectively. For $\nu > r$, the signature of Q_ν is (p + 2, 0) and G^u_ν is compact. For $\nu \le r$, the signature of Q_ν is (p, 2) and $G_\nu \cong \text{Gpin}(Q_\nu), G^u_\nu \cong \text{Spin}(Q_\nu)$. For each $\nu \le r$, we fix once and for all an orthogonal basis of V_ν with respect to Q_ν so that (1.2.1) holds for Q_ν . Such a (ordered) basis determines uniquely a maximal compact subgroup K_ν of G^u_ν and a complex structure on G^u_ν/K_ν as described in 1.2.

We have an isomorphism

(1.4.1)
$$G_R \cong \prod_{\nu=1}^{s} G_{\nu} .$$

Let K be the maximal compact subgroup of G_R^u corresponding to $\prod_{\nu=1}^r K_{\nu} \times \prod_{\nu=r+1}^g G_{\nu}^u$ under the above isomorphism. We then fix a complex structure on G_R^u/K via the homeomorphism

$$G^u_{\mathbf{R}}/K \cong \prod_{\nu=1}^r G^u_{\nu}/K_{\nu}$$

induced by (1.4.1). We denote the bounded symmetric domain G_R^u/K by X. This domain is equivalent to the product of r copies of X_p .

The identity component of G_R is

$$G_R^+ = \{g \in G_R | \nu(g) \text{ is totally positive} \},\$$

which is isomorphic to $\prod_{\nu=1}^{r} \operatorname{Gpin}^{+}(Q_{\nu}) \times \prod_{\nu=r+1}^{g} G_{\nu}$ under (1.4.1). We define the action of $G_{\mathbb{R}}^{+}$ on $X \cong X_{\mathbb{P}}^{r}$ component-wise.

1.5. Let Θ be a representation of F equivalent to $\sum_{\nu=1}^{r} \tau_{\nu}$. Define the reflex (F', Θ') of (F, Θ) as in [17I, 1.1]. Put $\lambda = \det \Theta'$. Then λ is a homomorphism of F'^{\times} to F^{\times} . Extend λ to a homomorphism of F'_{A} to F_{A}^{\times} , still denoted by λ . Denote by λ^{*} the composite of $\lambda: F'_{A} \to \lambda(F'_{A})F_{c}$ with the natural mapping $\lambda(F'_{A})F_{c} \to \lambda(F'_{A})F_{c}/F_{c}$. Then λ^{*} is a surjective continuous open homomorphism [17 II, Lemma 2.5]. Denote by ℓ^{*} the infinite abelian extension of F' corresponding to the kernel of λ^{*} . Then

(1.5.1)
$$\operatorname{Gal}\left(\mathfrak{k}^*/F'\right) \cong \lambda(F_A'^{\times})F_c/F_c = \lambda^*(F_A'^{\times}) .$$

Let $\nu^*: G_A \to F_A^{\times}/F_c$ be the composite of $\nu: G_A \to F_A^{\times}$ with the natural homomorphism $F_A^{\times} \to F_A^{\times}/F_c$. We put

$$\overline{\mathscr{G}}_{+}=\{g\in G_{A^+}|
u^*(g)\in\lambda^*(F_A'^{ imes})\}$$
 .

For $g \in \overline{\mathscr{G}}_+$, define $\rho(g)$ to be the element of Gal (\mathfrak{l}^*/F') corresponding to $\nu^*(g^{-1}) \in \lambda^*(F'_A)$ under the isomorphism (1.5.1). Then ρ is a continuous homomorphism of $\overline{\mathscr{G}}_+$ to Gal (\mathfrak{l}^*/F') . We shall see that ρ is surjective and open (Proposition 7).

1.6. For $z \in X$, put

$$G_z = \{ lpha \in G_{Q^+} | lpha(z) = z \}$$

and let Y be the F-linear span of G_z in E. Identify X with r copies of X_p , and let z_1, \dots, z_r be the components of z. For each $\nu \leq r$, let $j_{\nu} \in E_{\nu}$ be the complex structure of X_p at z_{ν} , see 1.3. Then $Y_R = Y \otimes_Q R$ can be

identified with an *R*-subalgebra of $Y_{z_1} \oplus \cdots \oplus Y_{z_r}$, where

$$Y_{z_{\nu}} = \{x \in E_{\nu} | xj_{\nu} = j_{\nu}x\}.$$

Hence $Y \cap G_{Q^+}$ fixes z. Therefore $G_z = Y \cap G_{Q^+}$.

Consider the centralizer H_z of G_z in G_{q+} . First note that for $\beta \in H_z$, $\beta(z)$ is fixed by G_z . Therefore, if z is the only fixed point of G_z , then $H_z \subset G_z$. On the other hand, since $R[j_1]^{\times} \times \cdots \times R[j_r]^{\times} \subset H_{zR}$, z is the only fixed point of H_z . (See the remark at the end of § 1.3.) Hence, if $H_z \subset G_z$, then z is the only fixed point of G_z . This shows:

PROPOSITION 1. Let the notation be as above. Then z is the only fixed point of G_z if and only if G_z contains its centralizer H_z . When this is the case, z is the only fixed point of H_z .

We call z an *isolated fixed point* of G_{Q^+} on X if it is the only fixed point of G_z .

1.7. Assume z is an isolated fixed point of G_z . Let P be the Flinear span of H_z . Then $H_z = P \cap G_{Q^+}$. Obviously P is contained in Y, and contains the center of E. Now P is semi-simple because it has a positive involution. Write $P = P_1 \oplus \cdots \oplus P_t$ with algebraic number fields P_1, \dots, P_t . Then each P_k is either a totally real field or a CMfield. Since P_R contains j_1, \dots, j_r (r > 0), we see that every P_k is a CMfield.

1.8. Fix $\nu \leq r$. We introduce a complex structure on the real vector space E_{ν} by defining $\sqrt{-1}x$ to be $j_{\nu}x$ for $x \in E_{\nu}$. Since every element of Y commutes with j_{ν} , the left multiplication on E_{ν} by Y defines a 2^{p} -dimensional complex representation Ψ_{ν} of Y. The restriction of Ψ_{ν} to P_{k} together with its complex conjugation contains all the embeddings of P_{k} into C extending τ_{ν} with the same multiplicity. Actually, we can use j_{ν} to define a complex structure on P_{R} . Then modulo a zero representation $\Psi_{k\nu}$ of P_{k} in the complex vector space P_{R} . Put $m_{k} = [P_{k}: F]/2$. Then it is easy to see that there are embeddings $\chi_{k\nu}^{(i)}$, $i = 1, \dots, m_{k}$, of P_{k} into C so that $\{\chi_{k\nu}^{(i)}, \bar{\chi}_{k\nu}^{(i)} | i = 1, \dots, m_{k}\}$ coincides with the set of all embeddings of P_{k} into C extending τ_{ν} , and

$$\Psi_{k\nu} \sim \sum_{i=1}^{m_k} \chi_{k\nu}^{(i)} + (\text{zero representation})$$
.

Now let Φ_k be a representation of P_k equivalent to

(1.8.1)
$$\sum_{\nu=1}^{r} \sum_{i=1}^{m_k} \chi_{k\nu}^{(i)}$$

Let (P'_k, Φ'_k) be the reflex of (P_k, Φ_k) in the sense of Shimura [17I, 1.1]. Then each P'_k contains F'. Denote by P' the composite of P'_1, \dots, P'_k . We define a homomorphism $\eta: P'^{\times} \to P^{\times}$ by

$$\eta(v) = (\varPhi_1'(N_{P'/P_1'}(v)), \cdots, \varPhi_t'(N_{P'/P_t'}(v))) \qquad (v \in P'^{\times}) \; .$$

It can be shown that η is a *Q*-homomorphism of P'^{\times} into $H_z \subset G_{Q^+}$ [2, 3.9]. Furthermore, by [16, (4.10.4)], we have

(1.8.2)
$$\nu(\eta(v)) = \lambda(N_{P'/F'}(v)) \qquad (v \in P'^{\times})$$

Therefore $\eta(P_A^{\prime \times}) \subset \overline{\mathscr{G}}_+$.

1.9. Let V_+ be a *p*-dimensional *F*-linear subspace of *V* so that the restriction of *Q* to V_+ is positive definite at every infinite places. Denote by V_- the orthogonal complement of V_+ . Then *Q* restricted to V_- is negative definite at τ_1, \dots, τ_r and positive definite at $\tau_{r+1}, \dots, \tau_g$. The orthogonal decomposition $V = V_+ \perp V_-$ determines uniquely a point z of X (see 1.2). Take an orthogonal basis $\{e_{p+1}, e_{p+2}\}$ of V_- and put $e = e_{p+1}e_{p+2} \in E$. Then e^2 is a totally negative number in *F*. With the notation of 1.6 and 1.7, we have

$$Y = \{ \alpha \in E \, | \, \alpha \text{ commutes with } e \}$$

and

$$P=Z[e],$$

where Z is the center of E. The structure of Z is well-known, see for example [3, Satz 4.1].

Let K = F[e]. Then we can identify K with the even Clifford algebra of the restriction of Q to V_{-} . Note that K is a totally imaginary quadratic extension of F. Let $\delta \in F^{\times}$ be a signed discriminant of Q (see Notation). Then from the structure of Z, we derive the following

PROPOSITION 2. Let the notation be as above.

(i) If p is odd, then $P \cong K$.

- (ii) If p is even, and δ is not a square in K, then $P \cong K[\sqrt{\delta}]$.
- (iii) If p is even, and δ is a square in K, then $P \cong K \oplus K$.

Let $j_{\nu} \in E_{\nu}$, $\nu = 1, 2, \dots, r$, be the complex structures determined by z. Then j_{ν} belongs to the completion K_{ν} of K at τ_{ν} . Use j_{ν} to define a

complex structure on K_{ν} . The multiplication by K on K_{ν} from the left gives rise to an embedding σ_{ν} of K into C extending τ_{ν} . Let Φ be a representation of K equivalent to $\sum_{\nu=1}^{r} \sigma_{\nu}$. Denote by P' the field determined by the isolated fixed point z as in 1.8.

PROPOSITION 3. Let (K', Φ') be the reflex of (K, Φ) . Then K' coincides with P'.

This can be proved case by case according to the classification given in Proposition 2.

1.10. Assume p = 1. In this case E is a quaternion algebra over F which is indefinite at τ_1, \dots, τ_r and definite at $\tau_{r+1}, \dots, \tau_g$, see [9, 57: 9]. The involution ι coincides with the main involution of the quaternion algebra E, and

$$G_{Q} = \{ lpha \in E^{ imes} | lpha lpha' \in F^{ imes} \}$$
 ,

see [3, 5.2]. So G belongs to the type of groups investigated by Shimura in [14], [17]. The symmetric domain X can be identified with r copies of the upper half plane $\mathfrak{H} = \{z = x + iy \in C | y > 0\}.$

A decomposition $V = V_+ \perp V_-$ with a totally positive line V_+ determines an isolated fixed point of G_{Q^+} on X. Conversely, every isolated fixed point comes from such a decomposition. In fact, given an isolated fixed point z, there is a totally imaginary quadratic extension K of F and a F-linear embedding f of K into E so that $G_z = f(K^{\times})$ [14, 2.6]. But K is embeddable in E if and only if $E \otimes_F K$ is isomorphic to $M_2(K)$, [14, 2.3], i.e., if and only if Q becomes isotropic over K. And this is the case if and only if there is a F-rational decomposition $V = V_+ \perp V_$ so that K is isomorphic to the even Clifford algebra of the restriction of Q to V_- . This follows from [5, Lemma 3.1] if Q is anisotropic over F. For Q is isotropic, this can be proved in a straightforward way.

1.11. Now come back to the general case where $p \ge 1$.

PROPOSITION 4. Given any algebraic extension R of F', there is an isolated fixed point $z \in X$ so that P', the field associated with z, is linearly disjoint with R over F'.

This can be proved in a general fashion [2, Théorème 5.1]. Here we reduce the proposition to a corresponding assertion for Shimura's groups [16, 7.5]. We start with a 3-dimensional F-linear subspace W of V so

that the restriction Q' of Q to W has signature (1, 2) at τ_1, \dots, τ_r and (3, 0) at $\tau_{r+1}, \dots, \tau_g$. Let G' be the spin group of Q'. Then there is a natural embedding i of G' into G rational over Q. Let X' be the quotient of G'^u_R modulo a maximal compact subgroup. We can give X' a complex structure in such a way that i induces a holomorphic embedding of X' into X. By [16, 7.5] there is an isolated fixed point z' of G'_{Q+} on X' so that the reflex field K' associated with z' is linearly disjoint with R over F'. From the discussion of 1.10, z' corresponds to a decomposition $W = W_+ \perp W_-$. Let $V_- = W_-$ and $V_+ = W_+ \perp (W)^{\perp}$. The decomposition $V = V_+ \perp V_-$ determines an isolated fixed point z of G_{Q+} on X. In view of our choice of the complex structure on X' and Proposition 3, we see that the field P' determined by z coincides with the field K' above.

2. Main Theorem

2.1. Let ρ be the homomorphism of $\overline{\mathscr{G}}_+$ to $\operatorname{Gal}(\mathfrak{k}_*/F')$ defined in 1.4. Denote by G_{c^+} the kernel of ρ . Since the strong approximation theorem holds for G^u [4], the argument of [17II], §§ 3.2, 3.4, can be used to prove the following propositions.

PROPOSITION 5. We have

 $G_{c^+} = F_c G_{Q^+} G_A^u = the \ closure \ of \ G_{Q^+} G_{R^+} \ in \ G_{A^+}.$

PROPOSITION 6. Let $D_+ = \{x \in G_{A^+} | \nu(x) \in \lambda(F_A')\}.$

Then

$$\overline{\mathscr{G}}_{+} = G_{c^{+}}D_{+} = F_{c}G_{Q^{+}}D_{+} = F_{c}D_{+}G_{Q^{+}}.$$

2.2.

PROPOSITION 7. The homomorphism $\rho: \overline{\mathscr{G}}_+ \to \text{Gal}(\mathfrak{l}^*/F')$ is a surjective open mapping. Especially ρ induces an isomorphism of $\overline{\mathscr{G}}_+/G_{\mathfrak{c}^+}$ onto $\text{Gal}(\mathfrak{l}^*/F')$.

Proof. We follow Miyake's argument [8, Prop. 15]. Take an isolated fixed point z. Let P, P' and $\eta: P'^{\times} \to \overline{\mathscr{G}}_+$ be as in 1.7, 1.8. To show that ρ is open, it suffices to show that the restriction of ρ to $\eta(P'^{\times})$ is open. From (1.8.2) we have

(2.2.1)
$$\nu^*(\eta(v)) = \lambda^*(N_{P'/F'}(v)) \quad (v \in P'^{\times}_A)$$

Since η is continuous, and both λ^* and $N_{P'/F'}$ are open, this shows the

restriction of ν^* to $\eta(P'^{\times})$ is an open mapping from $\eta(P'^{\times})$ to $\lambda^*(F'^{\times}) \cong$ Gal (\mathfrak{t}^*/F') . Hence ρ is open.

To show that ρ is surjective, take another isolated fixed point w so that the reflex field Q' associated with it is linearly disjoint with P' over F'. This is possible in view of Proposition 4. Let $\xi: Q'_A \to \overline{\mathscr{G}}_+$ be the homomorphism determined by w. Then

$$u^*(\xi(v)) = \lambda^*(N_{Q'/F'}(v)) \qquad (v \in D'^{ imes}_{A}) \;.$$

Together with (2.2.1), this shows $\nu^*(\eta(P'_A^{\times}) \cdot \xi(Q'_A^{\times}))$ contains $\lambda^*(N_{P'/F'}(P'_A^{\times}) \cdot N_{Q'/F'}(Q'_A^{\times}))$, which is $\lambda^*(F'_A^{\times})$ because P' and Q' are linearly disjoint over F'.

2.3. Let \mathscr{Z}^* be the set of all the subgroups S of $\overline{\mathscr{G}}_+$ containing $F_cG_{R^+}$ such that $S/F_cG_{R^+}$ is open and compact in $\overline{\mathscr{G}}_+/F_cG_{R^+}$. For $S \in \mathscr{Z}^*$, $\rho(S)$ is open in Gal (\mathfrak{t}^*/F') in view of Proposition 7. We denote by k_s the finite abelian extension of F' corresponding to $\rho(S)$. Put $\Gamma_s = S \cap G_{Q_+}$. Then Γ_s acts on X discontinuously and $\Gamma_s \setminus X$ has finite volume. Recall that a model (V, φ) of $\Gamma_s \setminus X$ consists of a Zariski open subset V of an absolutely irreducible projective variety, and a Γ_s -invariant holomorphic map φ of X into V which induces a biregular isomorphism of $\Gamma_s \setminus X$ to V [171, 0.6].

2.4.

MAIN THEOREM. There exists a system

$$\{V_S, \varphi_S, J_{TS}(x), (S, T \in \mathscr{Z}^*, x \in \overline{\mathscr{G}}_+)\}$$

formed by the objects satisfying the following conditions:

- (2.4.1) For each $S \in \mathscr{Z}^*$, (V_s, φ_s) is a model of $\Gamma_s \setminus X$.
- (2.4.2) V_s is defined over k_s .
- (2.4.3) $J_{TS}(x)$, defined if and only if $xSx^{-1} \subset T$, is a morphism of V_s onto $V_T^{\rho(x)}$ rational over k_s , and has the following properties:
- (2.4.3_a) $J_{ss}(x)$ is the identity map if $x \in S$;
- $(2.4.3_b) \ J_{TS}(x)^{\rho(y)} \circ J_{SR}(y) = J_{TR}(xy);$
- $(2.4.3_c) \quad J_{TS}(\alpha)[\varphi_S(z)] = \varphi_T(\alpha(z)) \text{ if } \alpha \in G_{Q^+} \text{ (and } \alpha S \alpha^{-1} \subset T).$

(2.4.4) Let z be an isolated fixed point of G_{Q+} on X, and let P' and η be as in 1.8. Then for every S ∈ Z*, the point φ_s(z) is rational over P'_{ab}. Furthermore, for every v ∈ P'_A, one has φ_T(z)^τ = J_{Ts}(η(v)⁻¹)[φ_s(z)], where τ = [v, P'] and T = η(v)⁻¹Sη(v).

This system is unique in the sense that if $\{V'_s, \varphi'_s, J'_{Ts}(x)\}$ is another canonical system for G, then there exists, for each $S \in \mathscr{Z}^*$, a biregular isomorphism M_s of V_s onto V'_s rational over k_s such that $\varphi'_s = M_s \circ \varphi_s$ and $M_T^{\rho(x)} \circ J_{Ts}(x) = J'_{Ts}(x) \circ M_s$ for any $x \in \overline{\mathscr{G}}_+$ satisfying $xSx^{-1} \subset T$. See [17I, 3.9] for proof.

2.5. We let $G \subset E$ act on E from the right in the natural way. Consider E as a Q-vector space. Let \mathfrak{m} be a Z-lattice in E. For a rational prime p, put $E_p = E \otimes_Q Q_p$ and $\mathfrak{m}_p = \mathfrak{m} \otimes_Z Z_p$. For $x \in G_A$, we can define a Z-lattice $\mathfrak{m}x$ as usual: if x_p denotes the p-component of x, then $(\mathfrak{m}x)_p = \mathfrak{m}_p x_p$. For a positive integer c, we write $x \equiv 1 \mod_0 (\mathfrak{m}, c)$ if $\mathfrak{m}x = \mathfrak{m}$ and $\mathfrak{m}_p(x_p - 1) \subset \mathfrak{cm}_p$ for all p [17I, 0.5].

Put

$$S(\mathfrak{m},c)=F_{c}\cdot \{x\in \overline{\mathscr{G}}_{+}|x\equiv 1 ext{ mod}_{\scriptscriptstyle 0}\left(\mathfrak{m},c
ight)\}$$
 .

Then $S(\mathfrak{m}, c) \in \mathscr{Z}^*$, and every member of \mathscr{Z}^* contains some $S(\mathfrak{m}, c)$. We have

$$S(\mathfrak{m},c) \cap G_{\varrho^+} = F^{\times} \cdot \{x \in G_{\varrho^+} | \mathfrak{m}x = \mathfrak{m} \text{ and } \mathfrak{m}(x-1) \subset c\mathfrak{m}\}$$

2.6. We can extend $\overline{\mathscr{G}}_+$ to a bigger group \mathfrak{A} as in [17II, § 4], [8, § 3], and investigate a larger system of canonical models for G. These discussions are rather formal, and will be skipped here.

2.7. For $S \in \mathscr{Z}^*$, let L_s be the k_s -rational function field of V_s , and put

$$\mathfrak{L}_s = \{f \circ \varphi_s | f \in L_s\}$$
 .

The union \mathfrak{L} of \mathfrak{L}_s for all $S \in \mathscr{Z}^*$ is a field containing \mathfrak{t}^* . We call it the field of arithmetic automorphic functions on X with respect to G. For $x \in \overline{\mathscr{G}}_+$ and $f \in L_s$, $f^{\mathfrak{e}^{(x)}}$ is a function on $V_s^{\mathfrak{e}^{(x)}}$ rational over $k_s^{\mathfrak{e}^{(x)}}$. Define

$$(f \circ \varphi_s)^{\tau(x)} = f^{\rho(x)} \circ J_{ST}(x) \circ \varphi_T \qquad (T = x^{-1}Sx)$$

Then τ is a homomorphism of $\overline{\mathscr{G}}_+$ into Aut (\mathfrak{Q}/F') . This fact is equivalent to $(2.4.3_b)$. Properties $(2.4.3_c)$ and (2.4.4) can also be translated into

statements about the field \mathfrak{L} . For details see [17II, 6.2], [8, 4.2]. We have $\tau(x) = \rho(x)$ on \mathfrak{t}^* .

2.8. From the system of canonical models for G we can obtain a system of canonical models for the special orthogonal group of Q. This can be done as in [17I, 2.11]. Let G' be the algebraic group over Q so that the Q-rational points of G' form the special orthogonal group of Q over F. There is a Q-homomorphism φ of G to G' given by $v\varphi(g) = gvg^{-1}$ for $v \in V$. The sequence

$$1 {\longrightarrow} F^{\times} {\longrightarrow} G {\overset{\varphi}{\longrightarrow}} G' {\longrightarrow} 1$$

is exact. The action of G_{R^+} on X factors through G'_{R^+} , and defines a natural action of G'_{R^+} on X.

Put $F_A^{\times 2} = \{a^2 | a \in F_A^{\times}\}$ and let $\pi \colon F_A^{\times} \to F_A^{\times}/F_A^{\times 2}$ be the natural homomorphism. Define $\nu' \colon G'_A \to F_A^{\times}/F_A^{\times 2}$ so that $\nu' \circ \varphi = \pi \circ \nu$. For $g \in G'_Q$, $\nu'(g) \in F^{\times}/F^{\times 2}$ is the spinor norm of g. Let $\lambda' = \pi \circ \lambda \colon F'_A \to F_A^{\times}/F_A^{\times 2}$. Define

$$D'_+ = \{x \in G'_{A^+} | \nu'(x) \in \lambda'(F'^{\times}_A)\}$$

and

$$\overline{\mathscr{G}}'_{+} = G'_{R^{+}}D'_{+}G'_{Q^{+}} = D'_{+}G'_{Q^{+}}$$

Now consider the set \mathscr{Z}' of all subgroups S of $\overline{\mathscr{G}}'_+$ satisfying the following two conditions:

(2.8.1) S contains G'_{R^+} and S/G'_{R^+} is compact in $\overline{\mathscr{G}}'_+/G'_{R^+}$.

(2.8.2) S contains the image of some member of \mathscr{Z}^* under φ .

For $S \in \mathscr{Z}'$, let

$$\mathfrak{X}'_S = \{c \in F'^{ imes}_A | \, \lambda'(c) \in (F^{ imes} F^{ imes 2}_A / F^{ imes 2}_A) \cdot
u(S) \}$$
 .

By (2.8.2), \mathfrak{X}'_s corresponds to a class field k'_s over F'. Let \mathfrak{k}' be the composite of k'_s for all $S \in \mathscr{Z}'$. Define a homomorphism

$$\rho' \colon \overline{\mathscr{G}}'_+ \to \operatorname{Gal}\left(\mathfrak{k}'/F'\right)$$

by $\rho'(x) = [c^{-1}, F']$ on \mathfrak{t}' with an element c of $F'_A \times \mathfrak{such}$ that $\nu'(x)/\lambda'(c) \in (F \times F_A^{\times 2}/F_A^{\times 2})$. A point z of X is an isolated fixed point of G_{q+} if and only if it is an isolated fixed point of G'_{q+} . Let z be such a point and

let P' be the reflex field associated with it (cf. 1.8). Denote by $\eta': P'^{\times}_{A} \to D'_{+}$ the composite of $\eta: P'^{\times}_{A} \to D_{+}$ with $\varphi: D_{+} \to D'_{+}$. For $S \in \mathscr{Z}'$, $\Gamma'_{S} = S \cap G'_{Q^{+}}$ acts on X discontinuously, and $\Gamma'_{S} \setminus X$ has finite volume.

2.9.

THEOREM. The notation being as above, there exists a system

 $\{V'_s, \varphi'_s, J'_{TS}(x), (S, T \in \mathscr{Z}'; x \in \overline{\mathscr{G}}'_+)\}$

satisfying the conditions exactly like (2.4.1–2.4.4) under the replacement of $\mathscr{Z}^*, \overline{\mathscr{G}}_+, G_{Q^+}, V_s, \varphi_s, J_{Ts}(x), \Gamma_s, \rho(x), \eta$ by $\mathscr{Z}', \overline{\mathscr{G}}'_+, G'_{Q^+}, V'_s, \varphi'_s, J'_{Ts}(x), \Gamma'_s, \rho'(x), \eta'$.

2.10. Let \circ be the ring of integers of *F*. Take an \circ -lattice \mathfrak{m} in *V*. Define

$$S = \{x \in \overline{\mathscr{G}}'_+ | \mathfrak{m} x = \mathfrak{m}\}$$
.

Then $S \in \mathscr{Z}'$. Condition (2.8.1) is easy to see. To show (2.8.2), let o_m be the order of E generated by m [3, Satz 14.1]. Let

$$W=F_{c}\!\cdot\!\{g\!\in\!\overline{\mathscr{G}}_{{}_{+}}|\mathfrak{o}_{{}_{\mathfrak{m}}}g=\mathfrak{o}_{{}_{\mathfrak{m}}}\}$$
 .

This is a member of \mathscr{Z}^* . If $g \in W$, then $\mathfrak{m}' = \mathfrak{m}\varphi(g)$ is an o-lattice which also generates $\mathfrak{o}_{\mathfrak{m}}$. In view of [3, Satz 14.2], there exists a fractional ideal \mathfrak{a} of F so that $\mathfrak{m}' = \mathfrak{a}\mathfrak{m}$. But $\varphi(g)$ is an orthogonal transformation, so $\mathfrak{a} = \mathfrak{o}$. It follows that $\mathfrak{m}\varphi(g) = \mathfrak{m}$. Therefore $\varphi(W) \subset S$. This proves Sis a member of \mathscr{Z}' . Note that $\Gamma'_S = S \cap G'_{Q^+}$ is the unit group of \mathfrak{m} .

3. A certain embedding of G

3.1. Let W be a 3-dimensional subspace of V so that the restriction Q' of Q to W has signature (1, 2) at τ_1, \dots, τ_r , and signature (3, 0) at $\tau_{r+1}, \dots, \tau_g$. Let B be the even Clifford algebra of Q'. Then B is a quaternion algebra which is indefinite at τ_1, \dots, τ_r and definite at $\tau_{r+1}, \dots, \tau_g$. Via a natural embedding of B into E, we realize E as a left B-module. Define a symmetric bilinear form f(x, y) on E by

$$f(x, y) = \operatorname{tr}_{E/F}(xy') ,$$

where $\operatorname{tr}_{E/F}$ denotes the reduced trace of E to F. By [15, 1.6], there is a unique *B*-valued ι -hermitian form h(x, y) on E so that

$$\operatorname{tr}_{B/F} h(x, y) = f(x, y) \; .$$

Define an algebraic group G over Q whose Q-rational points are

$$G_{\mathbf{0}} = \{ \alpha \in GL(E, B) | h(x\alpha, y\alpha) = \mu(\alpha)h(x, y), \, \mu(\alpha) \in F^{\times} \} .$$

Canonical models for groups of this type were constructed by Shimura [17]. The semi-simple part of G is

$$G^{\cdot u} = \{ \alpha \in G^{\cdot} | \mu(\alpha) = 1 \}.$$

Let $i: E \to \text{End}(E, F)$ be the injection defined by xi(y) = xy $(x, y \in E)$. Then *i* defines a *Q*-rational injection of *G* into *G*. Note that $\mu(i(g)) = \nu(g)$ for $g \in G$.

3.2. Fix $\nu \leq r$. Let $j_{\nu} \in E_{\nu}$ be the complex structure of X_p at a point z_{ν} . We have $j_{\nu} \in G_{\nu}^{u}$. Hence $j_{\nu}^{\cdot} = i(j_{\nu})$ belongs to $G_{\nu}^{\cdot u}$, the completion of $G^{\cdot u}$ at τ_{ν} . Let K_{ν}^{\cdot} be the centralizer of j_{ν}^{\cdot} in $G_{\nu}^{\cdot u}$. Then K_{ν}^{\cdot} is a maximal compact subgroup. We fix a complex structure on $G_{\nu}^{\cdot u}/K_{\nu}^{\cdot}$ by requiring the differential of j_{ν}^{\cdot} on the tangent space at K_{ν}^{\cdot} act as the multiplication by $\sqrt{-1}$. We can identify $G_{\nu}^{\cdot u}/K_{\nu}^{\cdot}$ with Siegel's upper half space \mathfrak{H}_{n}^{\cdot} , where $n = 2^{p-1}$. Using the isomorphism

$$G_{\mathbf{R}}^{\cdot u} \cong \prod_{\nu=1}^{r} G_{\nu}^{\cdot u} \times (\text{compact group})$$
,

we introduce a complex structure on the quotient of G_R^{u} modulo a maximal compact subgroup. The complex manifold \mathfrak{G} thus obtained can be identified with r copies of \mathfrak{G}_n .

By our choice of the complex structure on \mathfrak{H} , we see that $i: G \to G^{\bullet}$ induces a holomorphic embedding h of X into \mathfrak{H} .

3.3. Let $\mu^*: G_A^{\cdot} \to F_A^{\times}/F_c$ be the composite of $\mu: G_A^{\cdot} \to F_A^{\times}$ with the natural homomorphism $F_A^{\times} \to F_A^{\times}/F_c$. Put

$$\overline{\mathscr{G}}_{+}^{\centerdot} = \{lpha \in G_{A^+}^{\centerdot} | \mu^*(lpha) \in \lambda^*(F_A'^{ imes}) \} \; .$$

For $\alpha \in \overline{\mathscr{G}}_+^{*}$, define $\sigma(\alpha)$ to be the element of Gal (\mathfrak{f}^*/F') corresponding to $\mu^*(\alpha^{-1}) \in \lambda^*(F'_A^{\times})$ under (1.4.1). We see that i maps $\overline{\mathscr{G}}_+$ into $\overline{\mathscr{G}}_+^{*}$ and $\sigma(i(g)) = \rho(g)$ for $g \in \overline{\mathscr{G}}_+^{*}$.

3.4. Let \mathscr{Z}^{**} be the set of all subgroups (S) of $\overline{\mathscr{P}}_{+}$ containing $F_{c} \cdot G_{R^{+}}$ so that $(S)/F_{c} \cdot G_{R^{+}}$ is open and compact in $\overline{\mathscr{P}}_{+}^{*}/F_{c} \cdot G_{R^{+}}^{*}$. For $(S) \in \mathscr{Z}^{**}$, put $\Gamma_{(S)} = (S) \cap G_{Q^{+}}^{*}$, and let $k_{(S)}$ be the class field over F' corresponding to the open subgroup $\sigma((S))$ of Gal (\mathfrak{k}^{*}/F') . The main theorem of [17] states that there exists a system of canonical models $\{V_{(S)}, \varphi_{(S)}, J_{(T)(S)}(x), (S), (T) \in \mathscr{Z}^{**}, x \in \overline{\mathscr{P}}_{+}^{*})\}$ for G. Here $(V_{(S)}, \varphi_{(S)})$ is a model of $\Gamma_{(S)} \setminus \mathfrak{H}$, and $V_{(S)}$ is defined over $k_{(S)}$.

3.5. Let $z = (z_1, \dots, z_r) \in X$ be an isolated fixed point of G_{q+} . As in 1.7, denote by H_z the centralizer of $G_z = \{\alpha \in G_{q+} | \alpha(z) = z\}$, and P the Flinear span of H_z . Let $j_\nu \in E_\nu, \nu = 1, \dots, r$, be the complex structure at τ_ν . Then H_{zR} contains (j_1, \dots, j_r) . Hence $h(z) \in \mathfrak{H}$ is the unique fixed point of $i(P) \cap G_{q+}$. Write P as the direct sum of CM-fields P_1, \dots, P_t . Then the procedure of [16, 4.5-4.9] allows one to define a certain representation Ψ_k of P_k for each $k = 1, \dots, t$. We see that Ψ_k is equivalent to the representation Φ_k given by (1.8.1). Therefore the field P' defined in [16, 4.9] coincides with the one defined in 1.8. Furthermore, if we let $\eta': P'_A \to \overline{\mathscr{G}}_+$ be defined as in [17I, (2.4.3)], then we have

(3.5.1) $\eta'(v) = i(\eta(v)) \qquad (v \in P_A'^{\times}) .$

4. Construction of models

4.1. Let \mathfrak{m} be a lattice in E, and c a positive integer. Consider

$$(4.1.1) S = S(\mathfrak{m}, c) = F_c \cdot \{ \alpha \in \overline{\mathscr{G}}_+ | \alpha \equiv 1 \mod_{\mathfrak{o}} (\mathfrak{m}, c) \}.$$

Let $\mathscr{W}_c = \{p^{-1}Sp | p \in G_A\}$ and $\mathscr{W} = \bigcup_{c=1}^{\infty} \mathscr{W}_c$. Then $\mathscr{W} \subset \mathscr{Z}^*$. Obviously, $xTx^{-1} \in \mathscr{W}$ for every $T \in \mathscr{W}$ and $x \in \overline{\mathscr{G}}_+$, i.e., \mathscr{W} is a normal subset of \mathscr{Z}^* in the sense of [17I, 3.2]. Let $U = S(\mathfrak{m}, 1)$. Then every $S(\mathfrak{m}, c)$ is a normal subgroup of U. In view of [17I, Prop. 3.11], we only have to construct a weak canonical system

$$\{V_s, \varphi_s, J_{Ts}(x), (S, T \in \mathcal{W}; x \in \overline{\mathcal{G}}_+)\}$$

relative to $\{\mathscr{W}, F, F'\}$ (see [17I, 3.2] for the definition). Actually, it suffices to construct a weak canonical system relative to $\{\mathscr{W}', F, F'\}$, where \mathscr{W}' is the union of \mathscr{W}_c with $c \geq c_0$ for some c_0 .

4.2. We shall identify G with the subgroup i(G) of G, and drop the injection *i* from now on. Define

$$(S) = (S(\mathfrak{m}, c)) = F_c \cdot \{ \alpha \in \overline{\mathscr{G}}_+ | \alpha \equiv 1 \mod_{_{0}} (\mathfrak{m}, c) \} .$$

Then $(S) \in \mathscr{Z}^{**}$. Let $S = S(\mathfrak{m}, c)$, $T = pSp^{-1}$ and $(T) = p(S)p^{-1}$, where $p \in G_A \subset G_A^{*}$. Then $T \in \mathscr{Z}^{*}$, $(T) \in \mathscr{Z}^{**}$ and $T = (T) \cap \overline{\mathscr{P}}_+$. Note that $\nu(T) \subset \mu((T))$, hence $k_T \supseteq k_{(T)}$.

We have $\Gamma_T = \Gamma_{(T)} \cap G_{Q^+}$. Therefore the holomorphic embedding $h: X \to \mathfrak{G}$ induces a rational map $h_T: \Gamma_T \setminus X \to \Gamma_{(T)} \setminus \mathfrak{G}$. For c sufficiently large (independent of p), say $c \geq c_0$, the quotient $\Gamma_T \setminus X$ and $\Gamma_{(T)} \setminus \mathfrak{G}$ are

non-singular, and h_T is injective [2, Prop. 1.15]. Assume this is the case. Take the canonical model $(V_{(T)}, \varphi_{(T)})$ for $\Gamma_{(T)} \setminus \mathfrak{H}$, and let $V_T = \varphi_{(T)}(h(X))$, $\varphi_T = \varphi_{(T)} \circ h$. Then (V_T, φ_T) is a model for $\Gamma_T \setminus X$. Let \mathscr{W}' be the union of \mathscr{W}_c for all $c \geq c_0$.

4.3. Let $x \in \overline{\mathscr{G}}_+ \subset \overline{\mathscr{G}}_+$, $U = x^{-1}Tx$ and $(U) = x^{-1}(T)x$. Then $J = J_{(T)(U)}(x)$ is a morphism of $V_{(U)}$ to $V_{(T)}^{\rho(x)}$ rational over $k_{(T)}$. Let k' be an arbitrary finite algebraic extension of k_T , and τ an isomorphism of k' into C so that $\tau = \rho(x)$ on k_T . Take an isolated fixed point $z \in X$ so that the field P' associated with it is linearly disjoint with k' over F' (Prop. 4). Then we can extend τ to an automorphism π of C over P'. We show that

(4.3.1) there is $\alpha \in G_{Q^+}$ so that $\varphi_T(z)^* = J(\varphi_U(\alpha(z)))$.

We proceed as in [17I, 6.8].

By Prop. 6, there is $e \in F_c$, $\gamma \in G_{Q^+}$, $x_1 \in D_+$ so that $x = ex_1\gamma$. Pick $d \in F'_A \times$ so that $\lambda(d) = \nu(x_1)$. Then we have $[d^{-1}, F'] = \rho(x) = \pi$ on k_T . Take an element ν of $P'_A \times$ so that $\pi = [\nu, P']$ on P'_{ab} , and put $w = N_{P'/F'}(\nu) \in F'_A \times$. Then from (1.8.2) we have $\nu(\eta(\nu)) = \lambda(w)$, where $\eta: P'_A \to \overline{\mathscr{P}}_+$ is defined as in 1.8. Note that $[w, F'] = \pi = [d^{-1}, F']$ on k_T , hence $\lambda(dw) = \nu(s)u$ with $s \in T$ and $u \in F_c$. Since $F_c = F \times F_c^2$ [17II, 2.2], and T contains F_c , we can assume $u \in F^{\times}$. Then $u \in F_+^{\times}$, because $\lambda(d) = \nu(x_1)$, $\lambda(w) = \nu(\eta(\nu))$ and $\nu(s)$ are all positive at every infinite place. Therefore, there is $\varepsilon \in G_{Q^+}$ so that $\nu(\varepsilon) = u$. Now

$$\nu(x_1^{-1}s\eta(v)^{-1}\varepsilon) = \lambda(d)^{-1}\nu(s)\lambda(w)^{-1}u = 1.$$

By the strong approximation theorem for G^u , we can write $x_1^{-1}s\eta(v)^{-1}\varepsilon$ as $m\psi$, where $\psi \in G_Q^u$ and $m \in G_A^u \cap (x_1^{-1}Tx_1)$. Put $\alpha = \gamma^{-1}\psi\varepsilon^{-1} \in G_{Q^+}$ and $t = s^{-1}x_1mx_1^{-1} \in T$. Then we have $\eta(v)^{-1} = te^{-1}x\alpha$. In view of (3.5.1) and the properties of canonical models for G at isolated fixed points, we have

$$\varphi_{T}(z)^{\pi} = \varphi_{(T)}(h(z))^{\pi} = J_{(T)(R)}(\eta(v)^{-1})(\varphi_{(R)}(h(z))) ,$$

where $(R) = \eta(v)(T)\eta(v)^{-1} = \alpha^{-1}x^{-1}(T)x\alpha = \alpha^{-1}(U)\alpha$. Now

$$J_{(T)(R)}(\eta(v)^{-1}) = J_{(T)(R)}(te^{-1}x\alpha)$$

= $J_{(T)(U)}(x) \circ J_{(U)(R)}(\alpha) = J \circ J_{(U)(R)}(\alpha)$.

Hence

$$egin{aligned} &arphi_{T}(z)^{*} = J \circ J_{\langle U
angle \langle R
angle}(lpha)(arphi_{\langle R
angle}(h(z))) \ &= J(arphi_{\langle U
angle}(lpha(h(z)))) = J(arphi_{\langle U
angle}(h(lpha(z)))) \ &= J(arphi_{U}(lpha(z))) \;. \end{aligned}$$

4.4. We show that V_T is defined over k_T . First note that if $z \in X$ is an isolated fixed point, and P' the reflex field associated with it, then $\varphi_T(z) \in V_T$ is rational over P'_{ab} . For $\beta \in G_{Q^+}$, $\beta(z)$ is an isolated fixed point with the same P' as its reflex field. Hence for any $\beta \in G_{Q^+}$, $\varphi_T(\beta(z))$ is also defined over P'_{ab} . Since $\{\varphi_T(\beta(z)) | \beta \in G_{Q^+}\}$ is dense in V_T , this shows V_T is defined over a finite algebraic extension k_1 of k_T . Take k_1 as k'in 4.3. Let x, τ, z and π be as what they stand for in 4.3. Then we have (4.3.1). This still holds if we replace z by $\beta(z)$ for any $\beta \in G_{Q^+}$. Since the points $\varphi_T(\beta(z))$ are dense in V_T , and V_T is defined over k_1 , we see that

$$(4.4.1) J^{-1} sends V_T into V_U.$$

Now take x to be the identity element. Then U = T and J = id. Hence from (4.4.1) it follows that $V_T^* = V_T$. This being true for any isomorphism τ of k_1 into C over k_T , we conclude that V_T is defined over k_T .

4.5. We have constructed, for any $T \in \mathscr{W}'$, a model (V_T, φ_T) of $\Gamma_T \setminus X$ with V_T rational over k_T . Let $T = p^{-1}Sp \in \mathscr{W}'$, $x \in \overline{\mathscr{G}}_+$ and $U = x^{-1}Tx$. Consider the members $(T) = p^{-1}(S)p$ and $(U) = x^{-1}(T)x$ of \mathscr{Z}^{**} . Then $J = J_{(T)(U)}(x)$ is a morphism of $V_{(U)}$ onto $V_{(T)}^{\rho(x)}$ rational over $k_{(T)}$. Since V_T is rational over k_T , it follows from (4.4.1) that J sends V_U onto $V_T^{\rho(x)}$. Denote the restriction of J to V_U by $J_{TU}(x)$. Then $J_{TU}(x)$ is a morphism of V_U onto $V_T^{\rho(x)}$. It is rational over k_T , because J is rational over $k_{(T)}$, a subfield of k_T .

Now it is clear that

$$\{V_{U}, \varphi_{U}, J_{TU}(x), (T, U \in \mathscr{W}'; x \in \overline{\mathscr{G}}_{+})\}$$

is a weak canonical system relative to $\{\mathcal{W}', F, F'\}$. From this, as pointed out in 4.1, we can produce a system of canonical models for G using a standard procedure.

5. Remarks

Once the canonical models V_s are constructed, we can talk about some typical problems concerning them. For example, there is the

problem of determining the zeta-functions of these varieties [6], [7]. Another one deals with the number of connected components of the real points on V_s [19]. We mention here a related fact about the actions of "negative elements" of G_q [13].

Let $\alpha \in G_Q$ be such that $\nu(\alpha)$ is negative at τ_1, \dots, τ_r . Then the element $\alpha_0 \in G_{A^+}$, whose component is α at a finite place, and 1 at an infinite place, belongs to $\overline{\mathscr{G}}_+$. The action of α_0 is given as follows: for $S \in \mathscr{Z}^*$ and $T = \alpha S \alpha^{-1}$, we have

$$J_{\scriptscriptstyle ST}(lpha_{\scriptscriptstyle 0})[arphi_{\scriptscriptstyle T}({m z})] = ar arphi_{\scriptscriptstyle S}(lpha(ar z)) \qquad ({m z} \in X) \;.$$

In view of our construction, this follows directly from the main theorem of [13].

Postscript. This work was completed in the spring of 1977. A different approach to the problem is given in Deligne [20]. When I learned of the work of Deligne, I decided to write up a short note [21] constructing canonical models in the sense of Deligne [2]. However, it has been suggested to me that it would be useful to have available a more explicit, down-to-earth construction of the canonical models in the sense of Shimura [17]. I hope this paper serves that end for the cases considered herein.

References

- [1] C. Chevalley, The algebraic theory of spinors, Columbia University Press, 1954.
- [2] P. Deligne, Travaux de Shimura, Séminaire Bourbaki 1971, Exp. 389, Lecture notes in Math. #244, Springer-Verlag.
- [3] M. Eichler, Quadratische Formen und Orthogonale Gruppen, Springer-Verlag, 1952.
- [4] M. Kneser, Starke Approximation in algebraischen Gruppen: I, J. Reine u. Angew. Math. 218 (1965), 190-203.
- [5] T. Y. Lam, The algebraic theory of quadratic forms, Benjamin, 1973.
- [6] R. Langlands, Some contemporary problems with origins in the Jugendtraum (Hilbert's problem 12), Mathematical developments arising from Hilbert problems, AMS publication (1976), 401-418.
- [7] —, Shimura varieties and the Selberg trace formula, U.S.-Japan Seminar on applications of automorphic forms to number theory (1975), 63-74.
- [8] K. Miyake, On models of certain automorphic function fields, Acta Math. 126 (1971), 245-307.
- [9] O. T. O'Meara, Introduction to quadratic forms, Springer-Verlag, 1963.
- [10] I. Satake, Holomorphic imbeddings of symmetric domains into a Siegel space, Amer. J. Math. 87 (1965), 425-461.
- [11] —, Clifford algebras and families of abelian varieties, Nagoya Math. J. 27-2 (1966), 435-446.

- [12] —, Symplectic representations of algebraic groups satisfying a certain analyticity condition, Acta Math. 117 (1967), 215-279.
- [13] K-y. Shih, Anti-holomorphic automorphisms of arithmetic automorphic function fields, Ann. of Math. 103 (1976), 81-102.
- [14] G. Shimura, Construction of class fields and zeta-functions of algebraic curves, Ann. of Math. 85 (1967), 58-159.
- [15] —, Discontinuous groups and abelian varieties, Math. Ann. 168 (1967), 171– 199.
- [16] —, Algebraic number fields and symplectic discontinuous groups, Ann. of Math. 86 (1967), 503-592.
- [17] —, On canonical models of arithmetic quotients of bounded symmetric domains, I. Ann. of Math. 91 (1970), 144-222; II, 92 (1970), 528-549.
- [18] —, On arithmetic automorphic functions, Actes, Congrès intern. Math. (1970) Tom 2, 343-348.
- [19] —, On the real points of an arithmetic quotient of a bounded symmetric domain, Math. Ann. 215 (1975), 135-164.
- [20] P. Deligne, Variétés de Shimura: Interprétation modulaire, et techniques de construction de modèles canoniques, to appear.
- [21] K-y. Shih, Existence of certain canonical models, Duke Math. J. 45 (1978), 63-66.

Department of Mathematics Ohio State University Columbus, Ohio