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CONSTRUCTION OF ARITHMETIC AUTOMORPHIC

FUNCTIONS FOR SPECIAL CLIFFORD GROUPS

KUANG-YEN SHIH

An important problem in the theory of arithmetic automorphic
functions is to construct, for a reductive algebraic group over Q which
defines a bounded symmetric domain, a system of canonical models [2],
[6], [18]. For the similitude group of a hermitian form over a quaternion
algebra whose center is a totally real field, this is solved by Shimura
[17], and for the similitude group of a hermitian form with respect to an
involution of the second kind of a central division algebra over a CM-
field, by Miyake [8], In this paper, we show that this also can be done
for the special Clifford group of a quadratic form Q over a totally real
algebraic number field. (We have to impose certain conditions on the
signature of Q in order that G defines a bounded symmetric domain,
see 1.1.)

That this is possible is suggested by Satake's works [11], [12]. Instead
of his symplectic embeddings, we introduce in § 3 an embedding of G into
a reductive group G' of Shimura type. We then show that (§ 4) the
system of canonical models constructed by Shimura for G' gives rise to
a system of canonical models for G. Here we adopt the technique
employed by Shimura in [17, § 6] (see also [2, § 5]).

Conversations with Stephen Kudla have been very helpful in this
research. The author also would like to thank the University of Maryland
for its hospitality.

Notation

We refer to [1], [3], [5] and [9] for general information concerning
quadratic forms. For the definition of the Clifford algebra C of a
quadratic form Q on a vector space V over a field F of characteristic
Φ2, see Chapter II of [1]. The subalgebra E of C consisting of all even
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elements is called the even Clifford algebra. By the main involution t on

E9 we mean the one induced by the identity mapping on V. This is

called the main anti-automorphism in Chevalley's book. Let M be the

matrix of Q with respect to a basis of V. We call (- l ) w U " 1 ) / 2 de tM a

signed discriminant of Q, where n = dim V. All signed discriminants of

Q form a square class in ί1χ, the multiplicative group of F.

For a number field F, F£ denotes the idele group of F, and Fab the

abelian closure of F. For c e F2, let [c, F] be the image of c in Gal (FabjF)

under the Artin. map. We use F£ and JFO

X to denote the infinite and

finite part of F% respectively. The identity component of F£ is denoted

by F2+9 and the closure of FXF* + in F£ is denoted by Fe.

For an algebraic group G over Q, GA denotes the adelization of G.

We use Goo (=G Λ ) , Go to denote the infinite and finite part of GA respectively.

The identity component of GM is denoted by Goo+.

1. Preliminaries

The purpose of this section is to introduce the notions those are

needed in the subsequent discussions.

1.1. Let F be a totally real algebraic number field of degree g,V a.

(p + 2)-dimensional vector space over F, where p > 1, and Q SL non-

degenerate quadratic form on V. Denote by E the even Clifford algebra

of Q and ι the main involution on E (see Notation). Define an algebraic

group G over Q whose Q-rational points are

GQ^igeE^lgVg-1^ V}.

In Chevalley's terminology [1], GQ is the special Clifford group of Q.

For geGQ put v(g) — ggc. Then v(g) e Fx, see [1, II.3.5], The semi-simple

part of G is

which is simply connected. The Q-rational points of Gu form the spin

group (or the "reduced Clifford group" in Chevalley's terminology) of Q

over F.

Let τu , τg be the g distinct embeddings of F into R. Denote the

completion of F at τv by Fv, Vv = V®FFV, and Qv the extension of Q to

Vv. We assume the signature of Qv is either (p, 2) or (p + 2,0), so that

the quotient of G% modulo a maximal compact subgroup has the structure
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of a bounded symmetric domain. By rearranging the τ/s, we shall

assume that the signature of Qv is (p, 2) when v < r and (p + 2, 0)

otherwise. We exclude the case r = 0, i.e. the case where G\ is a

compact group, from our consideration. By [9, 101: 8], the image of GQ

under v is the set of all xeFx which is positive at τr+u -,τg.

1.2. Throughout this subsection, let V be a (p + 2)-dimensional

vector space over R, and Q a quadratic form of signature (p, 2) on V.

Take an orthogonal basis el9e2, -,ep+2 of V so that

(1.2.1) Q(ev) = {
l - l

A basis of the even Clifford algebra E of Q is given by

vi O 2 < < ^2fc, A = 0,1, , ^ j +

Let Gpin (Q) (resp. Spin (Q)) be the special Clifford group (resp. spin group)

of Q over R. Put j = ep+1ep+2eE, and let

K={geSjήn(Q)\gj=jg}.

Then if is a maximal compact subgroup of Spin (Q). Furthermore, every

maximal compact subgroup of Spin (Q) is obtained this way. Now fix an

orthogonal basis eue2, •• ,e ί J + 2 of V satisfying (1.2.1) and let K be the

corresponding maximal compact subgroup of Spin(Q). It is possible to

introduce two complex structures on the quotient Spin (Q)/K. We fix

one as follows.

Let g be the linear span of {evxevi\vλ <v2} in E. For x j e g , [x,y] =

xy — yxe a. Therefore, with this bracket operation g becomes a Lie

algebra. This is the Lie algebra of Spin(Q), see [1,2.9]. Let ϊ be the

linear span of {ep+1ep+2} U {evleV2\vx < v2 <p\ and p the linear span of

{evep+1\v <p}U {evep+2\v<p}. Then

is the Cartan decomposition of g corresponding to the maximal compact

subgroup K. Now j = ep+1ep+2 is in the center of ϊ, and the restriction

J of JadO') to p is a linear transformation with J2 = —id. Identifying

the tangent space of Spin (Q)/K at K with p, we use J to define a com-
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plex structure on Spin(Q)/ϋΓ. (Another structure is given by — J.) The

complex manifold Spin (Q)/K can be realized as a bounded domain Xp in

Cp:

see for example [10, 3.5].

Let

Gpin+ (Q) = {#e Gpin (Q)K#) > 0}

be the identity component of Gpin (Q). For g e Gpin+ (Q), define the

action of g on Xp = Spin (Q)/K to be that of (v(g))~1/2g e Spin (Q).

1.3. Let z be a point of Xp. Then there is an orthogonal basis

î>̂ 2> ',eP+2 of V" satisfying (1.2.1) so that z corresponds to the maximal

compact subgroup

Kz = {ge Spin (Q)\gj=jg}9

where j = βp+iβp+a, and so that j (instead of — j) determines the given

complex structure of Xp. This element j of E is uniquely determined by

these properties. We shall refer to it as the complex structure of Xp at

z. We have j ' = — j and f = — 1.

The Jf?-linear span of Kz in E is

By [11, Proposition 2], c induces a positive involution on Y2. It is

obvious that R[j]x is contained in Gpin+ (Q), hence in the center of Yz.

Also it can be verified in a straightforward way that z is the only fixed

point of R[j]x on Xp.

1.4. Let V, Q, E, G, Gu, Vv, Qu etc. be as in 1.1. Denote the completion

of E, G and Gu at τv by Ev, Gv and G? respectively. For v > r, the

signature of Qv is (p + 2, 0) and G" is compact. For v < r, the signature

of Qv is (p, 2) and Gv ^ Gpin (Qy), G? s Spin (Qv). For each v < r, we fix

once and for all an orthogonal basis of Vv with respect to Qv so that

(1.2.1) holds for Qv. Such a (ordered) basis determines uniquely a

maximal compact subgroup Kv of Gjf and a complex structure on G^/Kv

as described in 1.2.

We have an isomorphism
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(1.4.1) GR s Πf-i G..

Let K be the maximal compact subgroup of G% corresponding to

I7Γ=i Kv X Πf=r+i G? under the above isomorphism. We then fix a complex

structure on G%jK via the homeomorphism

induced by (1.4.1). We denote the bounded symmetric domain GR/K by

X. This domain is equivalent to the product of r copies of Xp.

The identity component of GR is

GR = {geGR\v(g) is totally positive} ,

which is isomorphic to l\r

v=ί Gpin+(Qv) X Πf-r+i Gv under (1.4.1). We

define the action of GR on X ~ Xτ

v component-wise.

1.5. Let Θ be a representation of F equivalent to J]Γ=i τv Define

the reflex (F\&) of (F,θ) as in [171, 1.1]. Put λ = detθ ' . Then λ is a

homomorphism of Ffχ to Fx. Extend λ to a homomorphism of FA

X to

F2, still denoted by λ. Denote by λ* the composite of λ: F j x -> λ(F'A
x)Fc

with the natural mapping λ(FA

x)Fc -* λ(FA

x)FJFc. Then λ* is a surjective

continuous open homomorphism [17 II, Lemma 2.5]. Denote by ϊ* the

infinite abelian extension of F' corresponding to the kernel of λ*. Then

(1.5.1) Gal (Ϊ*AF') s λ(FA

x)FJFc = ^*(Fix) .

Let x̂ *: GA->F^/FC be the composite of v: GA-^F^ with the natural

homomorphism Fjf -> FJf/Fβ. We put

For ge&+, define p(g) to be the element of G a l ^ / F O corresponding to

v * ^ " 1 ) ^ λ*(FA

x) under the isomorphism (1.5.1). Then p is a continuous

homomorphism of ^ + to Gal (ϊ^/F7). We shall see that p is surjective

and open (Proposition 7).

1.6. For zeX, put

and let Y be the jF-linear span of Gz in £J. Identify X with r copies of

Xp, and let ^, , zr be the components of z. For each v < r, let j v e ίJυ

be the complex structure of Xp at zv, see 1.3. Then YR = y® Q /? can be
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identified with an 2?-subalgebra of Y2l φ φ YZr, where

YZv = {x e Ev\xjv = jvx) .

Hence Y ΓΊ GQ+ fixes 2:. Therefore Gz = Y Π GQ+.

Consider the centralizer iϊ 2 of Gz in GQ+. First note that for βeHz,

β(z) is fixed by G2. Therefore, if z is the only fixed point of Gz, then

Hz C G2. On the other hand, since R[jJi* X X R[jr]
x C fl,Λ, 2: is the

only fixed point of Hz. (See the remark at the end of § 1.3.) Hence, if

Hz c G2, then z is the only fixed point of G2. This shows:

PROPOSITION 1. Let the notation be as above. Then z is the only fixed

point of Gz if and only if Gz contains its centralizer Hz. When this is the

case, z is the only fixed point of Hz.

We call z an isolated fixed point of GQ+ on X if it is the only fixed

point of Gz.

1.7. Assume z is an isolated fixed point of G2. Let P be the F-

linear span of Hz. Then Hz = P Π GQ+. Obviously P is contained in Y,

and contains the center of E. Now P is semi-simple because it has a

positive involution. Write P = Pί® φ Pt with algebraic number

fields Pu , Pt. Then each Pk is either a totally real field or a CM-

field. Since PR contains j ί 9 -,jr (r > 0), we see that every Pk is a CM-

field.

1.8. Fix v < r. We introduce a complex structure on the real

vector space Ev by defining <f^lx to be jvx for x e Ev. Since every

element of Y commutes with jvy the left multiplication on Ev by Y defines

a 2p-dimensional complex representation Ψv of Y. The restriction of Ψv,

to Pa together with its complex conjugation contains all the embeddings

of Pjc into C extending τv with the same multiplicity. Actually, we can

use j v to define a complex structure on PR. Then modulo a zero

representation, the restriction of Ψv to Pk is equivalent to a multiple of

the representation Ψkv of Pk in the complex vector space PR. Put mk =

[Pfc: .F]/2. Then it is easy to see that there are embeddings χj^, £ = 1, , mΛ,

of Pk into C so that {χj$9%$\i = 1, , wfc} coincides with the set of all

embeddings of Pfc into C extending τvy and

ΦkV ~ ΣΓ=i ZA Ϊ + (zero representation) .

Now let Φk be a representation of Pk equivalent to
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•O 1

Let (P*',Φ£) be the reflex of (Pk,Φk) in the sense of Shimura [171, 1.1].

Then each P'k contains F'. Denote by P/ the composite of Pi, , Pk»

We define a homomorphism η:P/x—>PX by

φ) = (Φί(iVP7P,(u)), • , ΦXNr/Pl<.v))) (v € P'*) .

It can be shown that 37 is a Q-homomorphism of P / χ into Hz a GQ+

[2, 3.9]. Furthermore, by [16, (4.10.4)], we have

(1.8.2) v(v(υ)) = λ(NPΊF,(v)) (υ e P ' x ) .

Therefore η(P^) c f+.

1.9. Let y + be a p-dimensional F-linear subspace of V so that the

restriction of Q to V+ is positive definite at every infinite places.

Denote by V_ the orthogonal complement of V+. Then Q restricted to

V_ is negative definite at τu •• ,τ r and positive definite at τ r + 1, •• ,τ^.

The orthogonal decomposition V = V+ _L V_ determines uniquely a point

z of X (see 1.2). Take an orthogonal basis {ep+u ep+2\ of V_ and put

e = ep+1ep+2e E. Then e2 is a totally negative number in F. With the

notation of 1.6 and 1.7, we have

Y =z {a e E \a commutes with e}

and

P = Z[e] ,

where Z is the center of E. The structure of Z is well-known, see for

example [3, Satz 4.1].

Let K = F[e]. Then we can identify K with the even Clifford algebra

of the restriction of Q to V_. Note that K is a totally imaginary

quadratic extension of F. Let δ e Fx be a signed discriminant of Q (see

Notation). Then from the structure of Z, we derive the following

PROPOSITION 2. Let the notation be as above.

( i ) If p is odd, then P = K.

(ii) If p is even, and δ is not a square in K, then P ^ J?[VT].

(iii) If p is even, and δ is a square in K, then P = K® K.

Let jv e Ev, v = 1, 2, , r, be the complex structures determined by z*

Then j v belongs to the completion Kv of K at τv. Use jv to define a
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complex structure on Kv. The multiplication by K on Kv from the left
gives rise to an embedding σv of K into C extending τv. Let Φ be a
representation of K equivalent to 2ϋί-i σ»- Denote by P' the field
determined by the isolated fixed point z as in 1.8.

PROPOSITION 3. Let (K', Φ') be the reflex of (K, Φ). Then Kf coincides
with Pf.

This can be proved case by case according to the classification given
in Proposition 2.

1.10. Assume p = 1. In this case £ is a quaternion algebra over
F which is indefinite at τl9 ,r r and definite at rr+1, ,τ,, see [9, 57: 9],
The involution t coincides with the main involution of the quaternion
algebra E, and

see [3, 5.2]. So G belongs to the type of groups investigated by Shimura
in [14], [17]. The symmetric domain X can be identified with r copies of
the upper half plane § = {z = x + iy e C \y > 0}.

A decomposition V — V+ _[_ V_ with a totally positive line F +

determines an isolated fixed point of GQ+ on X. Conversely, every
isolated fixed point comes from such a decomposition. In fact, given an
isolated fixed point z, there is a totally imaginary quadratic extension
K of F and a F-linear embedding / of K into E so that Gz = f(Kx) [14,
2.6]. But i£ is embeddable in E if and only if E®FK is isomorphic to
M2(K), [14, 2.3], i.e., if and only if Q becomes isotropic over K. And this
is the case if and only if there is a F-rational decomposition V = V+ _]_ F_
so that if is isomorphic to the even Clifford algebra of the restriction of
Q to y_. This follows from [5, Lemma 3.1] if Q is anisotropic over F.
For Q is isotropic, this can be proved in a straightforward way.

1.11. Now come back to the general case where p > 1.

PROPOSITION 4. Given any algebraic extension R of F', there is an
isolated fixed point zeX so that P', the field associated with z9 is linearly
disjoint with R over Ff.

This can be proved in a general fashion [2, Theoreme 5.1]. Here we
reduce the proposition to a corresponding assertion for Shimura's groups
[16, 7.5]. We start with a 3-dimensional F-linear subspace W of V so
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that the restriction Q' of Q to W has signature (1,2) at τ19 , τr and

(3,0) at τ r + 1, •• , τ r Let G' be the spin group of Q\ Then there is a

natural embedding ί of G' into G rational over Q. Let X7 be the quotient

of G'R modulo a maximal compact subgroup. We can give X' a complex

structure in such a way that i induces a holomorphic embedding of Xf

into X. By [16, 7.5] there is an isolated fixed point zf of G'Q+ on Xr so

that the reflex field Kf associated with zf is linearly disjoint with R over

F'. From the discussion of 1.10, z' corresponds to a decomposition

W=W+±W_. Let V_ = W. and V+ = W+ _[_ (W)\ The decomposition

V = V+ _J_ y_ determines an isolated fixed point z of GQ+ on X In view

of our choice of the complex structure on Xf and Proposition 3, we see

that the field P' determined by z coincides with the field Kf above.

2. Main Theorem

2.1. Let p be the homomorphism of ^ + to Gal(ϊ^/F0 defined in 1.4.

Denote by Gc+ the kernel of p. Since the strong approximation theorem

holds for Gu [4], the argument of [1711], §§ 3.2, 3.4, can be used to prove

the following propositions.

PROPOSITION 5. We have

Gc+ = FCGQ+GA = the closure of GQ+GR+ in GA+.

PROPOSITION 6. Let D+ = {xe GA+ \v(x) e ̂ (F^x)}.

Then

9 + = Gc+D+ = FCGQ+D+ = FCD+GQ+ .

2.2.

PROPOSITION 7. The homomorphism p: &+ -> Gal (ί*IF') is a surjective

open mapping. Especially p induces an isomorphism of &JGC+ onto

Gal (ϊ*/F0.

Proof. We follow Miyake's argument [8, Prop. 15]. Take an isolated

fixed point z. Let P,P' and η\ PA

X -* f + be as in 1.7, 1.8. To show that

p is open, it suffices to show that the restriction of p to η(PA

x) is open.

From (1.8.2) we have

(2.2.1) v*(φ)) = J*(iW(ι;)) (i; e P'/) .

Since η is continuous, and both λ* and NPΊF, are open, this shows the
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restriction of v* to y){Pf/) is an open mapping from η(P'j?) to

Gal (Ϊ*/F7). Hence p is open.

To show that p is surjective, take another isolated fixed point w so

that the reflex field Qf associated with it is linearly disjoint with P'

over F\ This is possible in view of Proposition 4. Let ξ: Q2* -> &+ be

the homomorphism determined by w. Then

v*(ξ(v)) = λ*(NQΊF,(v))

Together with (2.2.1), this shows v^P?)-ξ(Q'f)) contains

-NQΓ/AQ'/)), which is λ*(F'A
x) because P' and Q' are linearly disjoint

over F'.

2.3. Let «Sf* be the set of all the subgroups S of f + containing

FCGR+ such that SIFCGR+ is open and compact in &+IFcGB+. For Se^Γ*,

p(S) is open in Gal (l*IFf) in view of Proposition 7. We denote by ks

the finite abelian extension of Ff corresponding to p(S). Put Γs — S Π GQ+.

Then Γs acts on X discontinuously and ΓS\X has finite volume. Recall

that a model (V,φ) of ΓS\X consists of a Zariski open subset V of an

absolutely irreducible projective variety, and a ΓVinvariant holomorphic

map φ of X into V which induces a biregular isomorphism of Γs\Xto V

[171, 0.6].

2.4.

MAIN THEOREM. There exists a system

formed by the objects satisfying the following conditions:

(2.4.1) For each Se&*9 (Vs,φs) is a model of ΓS\X.

(2.4.2) Vs is defined over ks.

(2.4.3) JTs(x), defined if and only if xSx'1 c T, is a morphism of Vs onto

V^x) rational over ks, and has the following properties:

(2.4.3α) Jss(x) is the identity map if xe S;

(2.4.3δ) Jτs(xyiy)oJSR(y) = JTR(xy);

(2.4.3C) Jτs(oc)[(ps(z)] = ψτ(Φ)) if oce GQ+ (and aSa"1 C Γ).
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(2.4.4) Let z be an isolated fixed point of GQ+ on X, and let Pf and η

be as in 1.8. Then for every S e &*, the point φs(z) is rational over

P'ab. Furthermore, for every v e PAX, one has φτ(z)τ =

where τ = [v,P;] and T = φ

This system is unique in the sense that if {Vs,ψs,JτS{.x)} is another

canonical system for G, then there exists, for each Se^?*, a biregular

isomorphism Ms of Vs onto Vg rational over ks such that φ's = Msoφs

and M£{x)oJτs(χ) = J'τs(χ)°Ms for any x e f + satisfying xSx'1 c T. See

[171, 3.9] for proof.

2.5. We let G c E act on E from the right in the natural way.

Consider E as a Q-vector space. Let m be a Z-lattice in E. For a

rational prime p, put Ep = E®Q QP and mp = m ®z Zp. For x e GA, we

can define a Z-lattice mx as usual: if xp denotes the p-component of x,

then (mx)p = vapxp. For a positive integer c, we write x = 1 mod0 (m, c)

if mx = m and xnp(xp — 1) c cmp for all p [171, 0.5].

Put

S(xn,c) = F c {xe ^ + | x Ξ Imod0(m,C)} .

Then S(m, c) e <^*, and every member of <̂f * contains some S(m, c). We

have

S(m,c) Π GQ+ = Fx-{xe GQ+ |mx = m and m(x — 1) c cm} .

2.6. We can extend §+ to a bigger group Sί as in [1711, § 4], [8, § 3],

and investigate a larger system of canonical models for G. These

discussions are rather formal, and will be skipped here.

2.7. For S e ^Γ*, let Ls be the £5-rational function field of V ,̂ and

put

2s = {f°<Ps\feLs} .

The union £ of 2S for all Se&* is a field containing ϊ*. We call it

the field of arithmetic automorphic functions on X with respect to G. For

xe&+ and feLs,f
p(x) is a function on Vgix) rational over kp

s

(x). Define

(/ o P*)rU) = fp(x) o J5Γ(x) o 9>r (Γ = x^Sx) .

Then τ is a homomorphism of ^ + into Aut(£/F0 This fact is equivalent

to (2.4.3δ). Properties (2.4.3C) and (2.4.4) can also be translated into
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statements about the field β. For details see [17Π, 6.2], [8, 4.2]. We have
τ(x) = ρ(x) on I*.

2.8. From the system of canonical models for G we can obtain a
system of canonical models for the special orthogonal group of Q. This
can be done as in [171, 2.11]. Let G' be the algebraic group over Q so
that the Q-rational points of G' form the special orthogonal group of Q
over F. There is a Q-homomorphism φ of G to Gf given by vφ(g) = gvg~ι

for υeV. The sequence

*1 >F

is exact. The action of GR+ on X factors through GR+, and defines a
natural action of GR+ on X.

Put FΓ = {a2\aeFZ} and let π: F%-+Fχ/Fχ2 be the natural homo-
morphism. Define v':G'A->F^/Ff so that ί/oφ = πov. For geGg,
vf(g)eFxlFx2 is the spinor norm of g. Let / = πoλ: F'A

X -> F^/Ff.
Define

and

Now consider the set ^Γ' of all subgroups S of ^+ satisfying the
following two conditions:

(2.8.1) S contains GR+ and S/GR+ is compact in &'+/GR+.

(2.8.2) S contains the image of some member of «2f* under φ.

For Se&\ let

% = {c € F^l^c) e (F*FΠFϊ*)

By (2.8.2), 36̂  corresponds to a class field k's over F r . Let ϊ/ be the
composite of k's for all S e £'. Define a homomorphism

by p\x) = [c1, F7] on f with an element c of F'/ such that '̂
6 (F*F2*IFZl). A point s of X is an isolated fixed point of GQ+ if and
only if it is an isolated fixed point of G'Q+. Let z be such a point and
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let P ' be the reflex field associated with it (cf. 1.8). Denote by ΎJ\P'£

-> Z>'+ the composite of η: P'/ ~> D+ with φ:D+->D'+. For Se &', Γ's =

S Γ\ GQ+ acts on X discontinuously, and Γ'S\X has finite volume.

2.9.

THEOREM. The notation being as above, there exists a system

{V's,φ's,JUx)ΛS, Te %' xe §F'+)}

satisfying the conditions exactly like (2.4.1-2.4.4) under the replacement of

&*, 9+, GQ+, Vs, Ψs, Jτs(x), Γs, p(x), η by &, r + , G'Q+, V's, φ's, JUx), Γ's, P'(x), if.

2.10. Let o be the ring of integers of F. Take an o-lattice m in V.

Define

S = {xe &'+\mx = m}.

Then S e &'. Condition (2.8.1) is easy to see. To show (2.8.2), let om be

the order of E generated by m [3, Satz 14.1]. Let

This is a member of ^ * . If ge W, then m' = κιφ(g) is an o-lattice which

also generates om. In view of [3, Satz 14.2], there exists a fractional ideal

α of F so that m/ = am. But φ{g) is an orthogonal transformation, so

α = o. It follows that m^(^) = m. Therefore φ(W) c S. This proves S

is a member of &''. Note that Γ's — S 0 G'Q+ is the unit group of m.

3. A certain embedding of G

3.1. Let W be a 3-dimensional subspace of V so that the restriction

Q' of Q to W has signature (1,2) at τu , τr, and signature (3,0) at

*V+i> •••>**• Let JB be the even Clifford algebra of Q\ Then B is a

quaternion algebra which is indefinite at τ l5 •• ,τ r and definite at τ r + 1,

• , τg. Via a natural embedding of 2? into E, we realize i? as a left JB-

module. Define a symmetric bilinear form f(x,y) on 2? by

/(x,;y) = trE/F (ocy') ,

where trE/F denotes the reduced trace of E to F. By [15, 1.6], there is a

unique B-valued ^-hermitian form h(x,y) on E so that

tτB/F h(x, y) = /(*, y) .

Define an algebraic group G' over Q whose Q-rational points are
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G'Q = {a e GL(E9 B)\h(xa, ya) = μ(a)h(x,y), μ(a) e F*} .

Canonical models for groups of this type were constructed by Shimura

[17]. The semi-simple part of G' is

Let i: E-+ End (E, F) be the injection defined by xi(y) = xy (x, y e E).

Then i defines a Q-rational injection of G into G\ Note that μ(i(g)) =

v(g) for geG.

3.2. Fix v < r. Let j v e Ev be the complex structure of Xp at a

point zv. We have j v e G". Hence 7; = i(jv) belongs to G'u
u, the completion

of Gu at τv. Let K'v be the centralizer of jl in G;w. Then K'v is a maximal

compact subgroup. We fix a complex structure on G[ujK'v by requiring

the differential of j ; on the tangent space at K'v act as the multiplication

by V —1. We can identify G'v
u/K'v with SiegeΓs upper half space ξ>w,

where n = 2P~\ Using the isomorphism

G'S = Πϊ-i G'»u X (compact group) ,

we introduce a complex structure on the quotient of G'R modulo a

maximal compact subgroup. The complex manifold $ thus obtained can

be identified with r copies of Qn.

By our choice of the complex structure on φ, we see that i:G~+ G*

induces a holomorphic embedding h of X into φ.

3.3. Let μ*:G'A-±FZlFc be the composite of M-G'A-^F^ with the

natural homomorphism JF£ —> FA/FC. Put

For α e f + , define σ(^) to be the element of Gal(i*/-F0 corresponding to

μ * ( O e Λ%F7) under (1.4.1). We see that £ maps f+ into ^ and

for ̂ e ^ + .

3.4. Let S"* be the set of all subgroups (S) of Ψ\ containing FCGR+

so that (S)/FCG'R+ is open and compact in &+IFe G'R+. For ( S ) e Γ * ,

put Γ{8} = (S) Π GQ+, and let k(8) be the class field over Fr corresponding

to the open subgroup σ((S)) of Gal(ϊ*/F'). The main theorem of [17]

states that there exists a system of canonical models {ViS),φiS),J{TnS)(x),

((S),(T) €# '* ,*€§?;)} for G\ Here (ViS),φiS)) is a model of Γ ( β )\& and

V((S) is defined over k(S>.
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3.5. Let z = (zl9 , zr) e X be an isolated fixed point of GQ+. As in
1.7, denote by Hz the centralizer of Ĝ  = {αe GQ+\a(z) = z}, and P the F-
linear span of Hz. Let jv e Ev, v = 1, , r, be the complex structure at
τv. Then HzR contains (Λ, •• ,Λ) Hence h(z)e!g is the unique fixed
point of ί(P) Π GQ+. Write P as the direct sum of CM-fields Pu ,Pt.
Then the procedure of [16, 4.5-4.9] allows one to define a certain re-
presentation ¥k of Pk for each k — 1, , £. We see that ?Ffc is equivalent
to the representation Φk given by (1.8.1). Therefore the field P' defined
in [16, 4.9] coincides with the one defined in 1.8. Furthermore, if we let
η:PΛ

x ~> 9\ be defined as in [171, (2.4.3)], then we have

(3.5.1) ?'(*) = *(?(*)) (veP?).

4. Construction of models

4.1. Let m be a lattice in E, and c a positive integer. Consider

(4.1.1) S = S(m, c) = Fc - {a e 9 + \a = 1 mod0 (m, c)} .

Let iΓc = {p-JSp|p e Ĝ } and TΓ = (JΓ-i ^c- Then TT C ̂ Γ*. Obviously,
xTx-'eiT for every Γ e i T and xe ^ + , i.e., # is a normal subset of %*
in the sense of [171, 3.2]. Let U = S(m, 1). Then every S(m, c) is a
normal subgroup of U. In view of [171, Prop. 3.11], we only have to
construct a weak canonical system

{Vs,φs, JTS{x),(S,TeiΓ;xe ^+)}

relative to {IT, F, Ff) (see [171, 3.2] for the definition). Actually, it suffices
to construct a weak canonical system relative to {#"', F, JP7}, where iΓr

is the union of Ψ\ with c > c0 for some c0.

4.2. We shall identify G with the subgroup i(G) of G', and drop the
injection ί from now on. Define

(S) = (S(m, c)) = F e {̂  e ή |α = 1 mod0 (m, c)} .

Then ( S ) e Γ * . Let Sf=S(m,c), T = pSp-1 and (T) = p(S)p'\ where
peGAaG'A. Then TeiT*, (ΓJe^r* and Γ = ( Γ ) Π ^ + . Note that

C ^((Γ)), hence kτ ^ A(Γ).

We have Γτ = P ( Γ ) Π GQ+. Therefore the holomorphic embedding
h:X-+& induces a rational map hτ: ΓT\X-+ Γ{T)\!Q. For c sufficiently
large (independent of p), say c > c0, the quotient ΓT\X and Γ{T)\!Q are
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non-singular, and hτ is injective [2, Prop. 1.15]. Assume this is the case.

Take the canonical model (ViT)9φ{T)) for Γ(T)\$, and let Vτ — φ{T)(h(X)),

φτ = φ(T)oh. Then (Vτ, φτ) is a model for ΓT\X. Let if be the union

of arc for all c > c0.

4.3. Let * e ^ + C ^ , U= x~'Tx and (£7) = x~\T)x. Then J = J(THU)(x)

is a morphism of V(I7) to Vffi rational over k{T). Let k' be an arbitrary

finite algebraic extension of kτ, and τ an isomorphism of kf into C so

that τ = p(x) on &Γ. Take an isolated fixed point ze X so that the field

P ' associated with it is linearly disjoint with kr over F' (Prop. 4). Then

we can extend τ to an automorphism π of C over P' . We show that

(4.3.1) there is a e GQ+ so that φT(z)π = J{ψu{a{z))).

We proceed as in [171, 6.8].

By Prop. 6, there is eeFC9 γeGQ+, xίeD+ so that x = ex$. Pick

deF'A
x so that λ(d) = v(xt). Then we have [d'\ F'] = p(x) = π on &Γ.

Take an element v of P^x so that π = [u, P'] on Pαδ, and put w = NP,/F,(v)

eF'A
x. Then from (1.8.2) we have v(η(v)) = λ(w), where η:PA

x->&+ is

defined as in 1.8. Note that [w, Ff] = π = [d~\Ff] on kτ, hence λ(dw)

= V(S)M with seT and we JPC. Since Fc = FXF2

C [1711,2.2], and Tcontains

Fc, we can assume u e Fx. Then u e Fx, because λ{d) = v(^), ^(u;) = v(η{v))

and ι̂ (s) are all positive at every infinite place. Therefore, there is e € GQ+
so that v(ε) = u. Now

KxΓ1*^)-^) = λ{dYιv(s)λ{w)-ιu = 1 .

By the strong approximation theorem for Gu

9 we can write x^sηiv)'^ as

mψ9 where ψ e G ^ and m e G\ Π ( Λ Γ 1 ^ ) . Put or = r " 1 ^ " 1 € GQ+ and
^ = S'^JWJCJΓ^ T. Then we have ^(u)"1 = te^xa. In view of (3.5.1) and

the properties of canonical models for G' at isolated fixed points, we have

φτ(Zy = φ{T)(h(z))π = C/(r)(jB)fe(^)"1)(9(i2)(^))) ,

where (jβ) = φXTφ)'1 = α - 1 ^ ^ ! 7 ) ^ = α-^t/V. Now

Hence



AUTOMORPHIC FUNCTIONS FOR SPECIAL CLIFFORD GROUPS 1Θ9

φτ{Zy = JoJiUHR)(ά)(<p(R)(h(z)))

= J(Ψm{a(h{z)))) = J(Ψiϋ)(h(Φ))))

= J(Ψϋ(a(z))) .

4.4. We show that Vτ is defined over kτ. First note that if z e X

is an isolated fixed point, and Pf the reflex field associated with it, then

φτ(z)e Vτ is rational over Pάb. For βe GQ+, β(z) is an isolated fixed point

with the same P' as its reflex field. Hence for any βe GQ+9φτ(β(z)) is

also defined over Pάb. Since {φτ(β(z))\βeGQ+} is dense in Vτ, this shows

Vτ is defined over a finite algebraic extension kλ of kτ. Take kx as h!

in 4.3. Let x9 τ, z and TΓ be as what they stand for in 4.3. Then we

have (4.3.1). This still holds if we replace z by β(z) for any βeGQ+.

Since the points ψτ{β{z)) are dense in Vτ, and Vτ is defined over kί9 we

see that

(4.4.1) J 1 sends Vτ into VΌ .

Now take x to be the identity element. Then U' = T and J = id. Hence

from (4.4.1) it follows that Vf = Vτ. This being true for any isomor-

phism τ of kx into C over kτ, we conclude that Vτ is defined over &Γ.

4.5. We have constructed, for any TeΨ*', a model (VT9 φτ) of ΓT\X

with y r rational over kτ. Let T = p-ίSpeΨ%\ xe&+ and U = xΎx.

Consider the members (T) = p'\S)p and (U) = x'\T)x of ^Te*. Then

J = J(T)(U)(x) is a morphism of V(Z7) onto Vffi rational over A(Γ). Since

y r is rational over kT9 it follows from (4.4.1) that J sends V^ onto V/(ΛJ).

Denote the restriction of J to V^ by Jτu(x). Then Jτu(x) is a morphism

of Vff onto V/(a:). It is rational over kT9 because J is rational over kiT)9

a subfield of kτ.

Now it is clear that

{VU9 Ψu9 Jτu{x\ (T, Ue Ψ*') x e W+)}

is a weak canonical system relative to \iV'', JP, F ;}. From this, as pointed

out in 4.1, we can produce a system of canonical models for G using a

standard procedure.

5. Remarks

Once the canonical models Vs are constructed, we can talk about

some typical problems concerning them. For example, there is the
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problem of determining the zeta-functions of these varieties [6], [7],
Another one deals with the number of connected components of the real
points on Vs [19]. We mention here a related fact about the actions of
"negative elements" of GQ [13].

Let aβ GQ be such that v(a) is negative at τu , τr. Then the
element aQeGΛ+, whose component is a at a finite place, and 1 at an
infinite place, belongs to ^ + . The action of aQ is given as follows: for
S e 5 * and T = aSa~\ we have

JSτ(<xd[ψτ(z)\ = φs(Φ)) (zeX).

In view of our construction, this follows directly from the main theorem
of [13].

Postscript This work was completed in the spring of 1977. A
different approach to the problem is given in Deligne [20]. When I learned
of the work of Deligne, I decided to write up a short note [21] construct-
ing canonical models in the sense of Deligne [2]. However, it has been
suggested to me that it would be useful to have available a more explicit,
down-to-earth construction of the canonical models in the sense of
Shimura [17]. I hope this paper serves that end for the cases considered
herein.
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