CONSTRUCTION OF ARITHMETIC AUTOMORPHIC FUNCTIONS FOR SPECIAL CLIFFORD GROUPS

KUANG-YEN SHIH

An important problem in the theory of arithmetic automorphic functions is to construct, for a reductive algebraic group over \boldsymbol{Q} which defines a bounded symmetric domain, a system of canonical models [2], [6], [18]. For the similitude group of a hermitian form over a quaternion algebra whose center is a totally real field, this is solved by Shimura [17], and for the similitude group of a hermitian form with respect to an involution of the second kind of a central division algebra over a $C M$ field, by Miyake [8]. In this paper, we show that this also can be done for the special Clifford group of a quadratic form Q over a totally real algebraic number field. (We have to impose certain conditions on the signature of Q in order that G defines a bounded symmetric domain, see 1.1.)

That this is possible is suggested by Satake's works [11], [12]. Instead of his symplectic embeddings, we introduce in § 3 an embedding of G into a reductive group G° of Shimura type. We then show that (§4) the system of canonical models constructed by Shimura for G^{*} gives rise to a system of canonical models for G. Here we adopt the technique employed by Shimura in [17, §6] (see also [2, § 5]).

Conversations with Stephen Kudla have been very helpful in this research. The author also would like to thank the University of Maryland for its hospitality.

Notation

We refer to [1], [3], [5] and [9] for general information concerning quadratic forms. For the definition of the Clifford algebra C of a quadratic form Q on a vector space V over a field F of characteristic $\neq 2$, see Chapter II of [1]. The subalgebra E of C consisting of all even

[^0]elements is called the even Clifford algebra. By the main involution con E, we mean the one induced by the identity mapping on V. This is called the main anti-automorphism in Chevalley's book. Let M be the matrix of Q with respect to a basis of V. We call $(-1)^{n(n-1) / 2} \operatorname{det} M$ a signed discriminant of Q, where $n=\operatorname{dim} V$. All signed discriminants of Q form a square class in F^{\times}, the multiplicative group of F.

For a number field F, F_{A}^{\times}denotes the idele group of F, and $F_{a b}$ the abelian closure of F. For $c \in F_{A}^{\times}$, let $[c, F]$ be the image of c in $\operatorname{Gal}\left(F_{a b} / F\right)$ under the Artin.map. We use F_{∞}^{\times}and F_{0}^{\times}to denote the infinite and finite part of F_{A}^{\times}respectively. The identity component of F_{∞}^{\times}is denoted by $F_{\infty+}^{\times}$, and the closure of $F^{\times} F_{\infty+}^{\times}$in F_{A}^{\times}is denoted by F_{c}.

For an algebraic group G over $\boldsymbol{Q}, G_{\boldsymbol{A}}$ denotes the adelization of G. We use $G_{\infty}\left(=G_{R}\right), G_{0}$ to denote the infinite and finite part of G_{A} respectively. The identity component of G_{∞} is denoted by $G_{\infty+}$.

1. Preliminaries

The purpose of this section is to introduce the notions those are needed in the subsequent discussions.
1.1. Let F be a totally real algebraic number field of degree g, V a ($p+2$)-dimensional vector space over F, where $p \geq 1$, and Q a nondegenerate quadratic form on V. Denote by E the even Clifford algebra of Q and ι the main involution on E (see Notation). Define an algebraic group G over \boldsymbol{Q} whose \boldsymbol{Q}-rational points are

$$
G_{Q}=\left\{g \in E^{\times} \mid g V g^{-1}=V\right\}
$$

In Chevalley's terminology [1], G_{Q} is the special Clifford group of Q. For $g \in G_{Q}$ put $\nu(g)=g g^{\ell}$. Then $\nu(g) \in F^{\times}$, see [1, II.3.5]. The semi-simple part of G is

$$
G^{u}=\{g \in G \mid \nu(g)=1\},
$$

which is simply connected. The Q-rational points of G^{u} form the spin group (or the "reduced Clifford group" in Chevalley's terminology) of Q over F.

Let $\tau_{1}, \cdots, \tau_{g}$ be the g distinct embeddings of F into \boldsymbol{R}. Denote the completion of F at τ_{ν} by $F_{\nu}, V_{\nu}=V \otimes_{F} F_{\nu}$, and Q_{ν} the extension of Q to V_{ν}. We assume the signature of Q_{ν} is either $(p, 2)$ or $(p+2,0)$, so that the quotient of G_{R}^{u} modulo a maximal compact subgroup has the structure
of a bounded symmetric domain. By rearranging the τ_{ν} 's, we shall assume that the signature of Q_{ν} is $(p, 2)$ when $\nu \leq r$ and $(p+2,0)$ otherwise. We exclude the case $r=0$, i.e. the case where G_{R}^{u} is a compact group, from our consideration. By [9, 101: 8], the image of $G_{\boldsymbol{Q}}$ under ν is the set of all $x \in F^{\times}$which is positive at $\tau_{r+1}, \cdots, \tau_{g}$.
1.2. Throughout this subsection, let V be a $(p+2)$-dimensional vector space over R, and Q a quadratic form of signature ($p, 2$) on V. Take an orthogonal basis $e_{1}, e_{2}, \cdots, e_{p+2}$ of V so that

$$
Q\left(e_{\nu}\right)=\left\{\begin{align*}
1 & \text { if } \nu=1, \cdots, p \tag{1.2.1}\\
-1 & \text { if } \nu=p+1, p+2 .
\end{align*}\right.
$$

A basis of the even Clifford algebra E of Q is given by

$$
e_{\nu 1} e_{\nu 2} \cdots e_{\nu 2 k} \quad\left(\nu_{1}<\nu_{2}<\cdots<\nu_{2 k}, k=0,1, \cdots,\left[\frac{p}{2}\right]+1\right) .
$$

Let Gpin (Q) (resp. Spin (Q)) be the special Clifford group (resp. spin group) of Q over R. Put $j=e_{p+1} e_{p+2} \in E$, and let

$$
K=\{g \in \operatorname{Spin}(Q) \mid g j=j g\}
$$

Then K is a maximal compact subgroup of $\operatorname{Spin}(Q)$. Furthermore, every maximal compact subgroup of $\operatorname{Spin}(Q)$ is obtained this way. Now fix an orthogonal basis $e_{1}, e_{2}, \cdots, e_{p+2}$ of V satisfying (1.2.1) and let K be the corresponding maximal compact subgroup of $\operatorname{Spin}(Q)$. It is possible to introduce two complex structures on the quotient $\operatorname{Spin}(Q) / K$. We fix one as follows.

Let \mathfrak{g} be the linear span of $\left\{e_{\nu_{1}} e_{\nu_{2}} \mid \nu_{1}<\nu_{2}\right\}$ in E. For $x, y \in \mathfrak{g},[x, y]=$ $x y-y x \in g$. Therefore, with this bracket operation g becomes a Lie algebra. This is the Lie algebra of $\operatorname{Spin}(Q)$, see [1,2.9]. Let \mathfrak{f} be the linear span of $\left\{e_{p+1} e_{p+2}\right\} \cup\left\{e_{\nu_{1}} e_{\nu_{2}} \mid \nu_{1}<\nu_{2} \leq p\right\}$, and \mathfrak{p} the linear span of $\left\{e_{\nu} e_{p+1} \mid \nu \leq p\right\} \cup\left\{e_{\nu} e_{p+2} \mid \nu \leq p\right\}$. Then

$$
\mathfrak{g}=\mathfrak{f}+\mathfrak{p}
$$

is the Cartan decomposition of g corresponding to the maximal compact subgroup K. Now $j=e_{p+1} e_{p+2}$ is in the center of \mathfrak{f}, and the restriction J of $\frac{1}{2} \operatorname{ad}(j)$ to \mathfrak{p} is a linear transformation with $J^{2}=-\mathrm{id}$. Identifying the tangent space of $\operatorname{Spin}(Q) / K$ at K with \mathfrak{p}, we use J to define a com-
plex structure on $\operatorname{Spin}(Q) / K$. (Another structure is given by $-J$.) The complex manifold $\operatorname{Spin}(Q) / K$ can be realized as a bounded domain X_{p} in C^{p} :

$$
X_{p}=\left\{\left.\left(z_{1}, \cdots, z_{p}\right) \in C^{p}\left|\sum_{v=1}^{p}\right| z_{\nu}\right|^{2}<\frac{1}{2}\left(1+\left|\sum_{v=1}^{p} z_{\nu}\right|^{2}\right)<1\right\},
$$

see for example [10, 3.5].
Let

$$
\operatorname{Gpin}^{+}(Q)=\{g \in \operatorname{Gpin}(Q) \mid \nu(g)>0\}
$$

be the identity component of $\operatorname{Gpin}(Q)$. For $g \in \operatorname{Gpin}^{+}(Q)$, define the action of g on $X_{p}=\operatorname{Spin}(Q) / K$ to be that of $(\nu(g))^{-1 / 2} g \in \operatorname{Spin}(Q)$.
1.3. Let z be a point of X_{p}. Then there is an orthogonal basis $e_{1}, e_{2}, \cdots, e_{p+2}$ of V satisfying (1.2.1) so that z corresponds to the maximal compact subgroup

$$
K_{z}=\{g \in \operatorname{Spin}(Q) \mid g j=j g\}
$$

where $j=e_{p+1} e_{p+2}$, and so that j (instead of $-j$) determines the given complex structure of X_{p}. This element j of E is uniquely determined by these properties. We shall refer to it as the complex structure of X_{p} at z. We have $j^{t}=-j$ and $j^{2}=-1$.

The R-linear span of K_{z} in E is

$$
Y_{z}=\{x \in E \mid x j=j x\}
$$

By [11, Proposition 2], c induces a positive involution on Y_{2}. It is obvious that $R[j]^{\times}$is contained in $\operatorname{Gpin}^{+}(Q)$, hence in the center of Y_{z}. Also it can be verified in a straightforward way that z is the only fixed point of $R[j]^{\times}$on X_{p}.
1.4. Let $V, Q, E, G, G^{u}, V_{\nu}, Q_{\nu}$ etc. be as in 1.1. Denote the completion of E, G and G^{u} at τ_{ν} by E_{ν}, G_{ν} and G_{ν}^{u} respectively. For $\nu>r$, the signature of Q_{ν} is $(p+2,0)$ and G_{ν}^{u} is compact. For $\nu \leq r$, the signature of Q_{ν} is $(p, 2)$ and $G_{\nu} \cong \operatorname{Gpin}\left(Q_{\nu}\right), G_{\nu}^{u} \cong \operatorname{Spin}\left(Q_{\nu}\right)$. For each $\nu \leq r$, we fix once and for all an orthogonal basis of V_{ν} with respect to Q_{ν} so that (1.2.1) holds for Q_{v}. Such a (ordered) basis determines uniquely a maximal compact subgroup K_{ν} of G_{ν}^{u} and a complex structure on G_{ν}^{u} / K_{ν} as described in 1.2.

We have an isomorphism

$$
\begin{equation*}
G_{R} \cong \prod_{i=1}^{z} G_{\nu} . \tag{1.4.1}
\end{equation*}
$$

Let K be the maximal compact subgroup of G_{R}^{u} corresponding to $\Pi_{\nu=1}^{r} K_{\nu} \times \prod_{v=r+1}^{s} G_{\nu}^{u}$ under the above isomorphism. We then fix a complex structure on G_{R}^{u} / K via the homeomorphism

$$
G_{R}^{u} / K \cong \prod_{\nu=1}^{r} G_{v}^{u} / K_{\nu}
$$

induced by (1.4.1). We denote the bounded symmetric domain G_{R}^{u} / K by X. This domain is equivalent to the product of r copies of X_{p}.

The identity component of G_{R} is

$$
G_{R}^{+}=\left\{g \in G_{R} \mid \nu(g) \text { is totally positive }\right\},
$$

which is isomorphic to $\prod_{v=1}^{r} \operatorname{Gpin}^{+}\left(Q_{v}\right) \times \prod_{\nu=r+1}^{\xi} G_{v}$ under (1.4.1). We define the action of G_{R}^{+}on $X \cong X_{p}^{r}$ component-wise.
1.5. Let Θ be a representation of F equivalent to $\sum_{v=1}^{r} \tau_{v}$. Define the reflex $\left(F^{\prime}, \Theta^{\prime}\right)$ of (F, θ) as in [17I, 1.1]. Put $\lambda=\operatorname{det} \theta^{\prime}$. Then λ is a homomorphism of $F^{\prime \times}$ to F^{\times}. Extend λ to a homomorphism of $F_{A}^{\prime \times}$ to F_{A}^{\times}, still denoted by λ. Denote by λ^{*} the composite of $\lambda: F_{A}^{\prime \times} \rightarrow \lambda\left(F_{A}^{\prime \times}\right) F_{c}$ with the natural mapping $\lambda\left(F_{A}^{\prime \times}\right) F_{c} \rightarrow \lambda\left(F_{A}^{\prime \times}\right) F_{c} / F_{c}$. Then λ^{*} is a surjective continuous open homomorphism [17 II, Lemma 2.5]. Denote by \mathfrak{f}^{*} the infinite abelian extension of F^{\prime} corresponding to the kernel of λ^{*}. Then

$$
\begin{equation*}
\operatorname{Gal}\left(£^{*} \mid F^{\prime}\right) \cong \lambda\left(F_{A}^{\prime \times}\right) F_{c} / F_{c}=\lambda^{*}\left(F_{A}^{\prime \times}\right) . \tag{1.5.1}
\end{equation*}
$$

Let $\nu^{*}: G_{A} \rightarrow F_{A}^{\times} \mid F_{c}$ be the composite of $\nu: G_{A} \rightarrow F_{A}^{\times}$with the natural homomorphism $F_{A}^{\times} \rightarrow F_{A}^{\times} \mid F_{c}$. We put

$$
\overline{\mathscr{G}}_{+}=\left\{g \in G_{A^{+}} \mid \nu^{*}(g) \in \lambda^{*}\left(F_{A}^{\prime \times}\right)\right\} .
$$

For $g \in \overline{\mathscr{G}}_{+}$, define $\rho(g)$ to be the element of $\operatorname{Gal}\left(\tilde{\imath}^{*} \mid F^{\prime}\right)$ corresponding to $\nu^{*}\left(g^{-1}\right) \in \lambda^{*}\left(F_{A}^{\prime \times}\right)$ under the isomorphism (1.5.1). Then ρ is a continuous homomorphism of $\overline{\mathscr{G}}_{+}$to $\mathrm{Gal}\left(\AA^{*} \mid F^{\prime}\right)$. We shall see that ρ is surjective and open (Proposition 7).
1.6. For $z \in X$, put

$$
G_{z}=\left\{\alpha \in G_{Q^{+}} \mid \alpha(z)=z\right\}
$$

and let Y be the F-linear span of G_{z} in E. Identify X with r copies of X_{p}, and let z_{1}, \cdots, z_{r} be the components of z. For each $\nu \leq r$, let $j_{\nu} \in E_{\nu}$ be the complex structure of X_{p} at z_{v}, see 1.3. Then $Y_{R}=Y \otimes_{Q} R$ can be
identified with an R-subalgebra of $Y_{z_{1}} \oplus \cdots \oplus Y_{z_{r}}$, where

$$
Y_{z_{\nu}}=\left\{x \in E_{\nu} \mid x j_{\nu}=j_{\nu} x\right\}
$$

Hence $Y \cap G_{Q^{+}}$fixes z. Therefore $G_{z}=Y \cap G_{Q^{+}}$.
Consider the centralizer H_{z} of G_{z} in $G_{Q^{+}}$. First note that for $\beta \in H_{z}$, $\beta(z)$ is fixed by G_{z}. Therefore, if z is the only fixed point of G_{z}, then $H_{z} \subset G_{z}$. On the other hand, since $R\left[j_{1}\right]^{\times} \times \cdots \times R\left[j_{r}\right]^{\times} \subset H_{z R}, z$ is the only fixed point of H_{z}. (See the remark at the end of § 1.3.) Hence, if $H_{z} \subset G_{z}$, then z is the only fixed point of G_{z}. This shows:

Proposition 1. Let the notation be as above. Then z is the only fixed point of G_{z} if and only if G_{z} contains its centralizer H_{z}. When this is the case, z is the only fixed point of H_{2}.

We call z an isolated fixed point of $G_{Q^{+}}$on X if it is the only fixed point of G_{z}.
1.7. Assume z is an isolated fixed point of G_{z}. Let P be the F linear span of H_{z}. Then $H_{z}=P \cap G_{Q^{+}}$. Obviously P is contained in Y, and contains the center of E. Now P is semi-simple because it has a positive involution. Write $P=P_{1} \oplus \cdots \oplus P_{t}$ with algebraic number fields P_{1}, \cdots, P_{t}. Then each P_{k} is either a totally real field or a $C M$ field. Since P_{R} contains $j_{1}, \cdots, j_{r}(r>0)$, we see that every P_{k} is a $C M$ field.
1.8. Fix $\nu \leq r$. We introduce a complex structure on the real vector space E_{ν} by defining $\sqrt{-1} x$ to be $j_{\nu} x$ for $x \in E_{\nu}$. Since every element of Y commutes with j_{ν}, the left multiplication on E_{ν} by Y defines a 2^{p}-dimensional complex representation Ψ_{ν} of Y. The restriction of Ψ_{ν} to P_{k} together with its complex conjugation contains all the embeddings of P_{k} into C extending τ_{ν} with the same multiplicity. Actually, we can use j_{ν} to define a complex structure on P_{R}. Then modulo a zero representation, the restriction of Ψ_{ν} to P_{k} is equivalent to a multiple of the representation $\Psi_{k \nu}$ of P_{k} in the complex vector space P_{R}. Put $m_{k}=$ $\left[P_{k}: F\right] / 2$. Then it is easy to see that there are embeddings $\chi_{k \nu}^{(i)}, i=1, \cdots, m_{k}$, of P_{k} into C so that $\left\{\chi_{k \nu}^{(i)}, \bar{\chi}_{k \nu}^{(i)} \mid i=1, \cdots, m_{k}\right\}$ coincides with the set of all embeddings of P_{k} into C extending τ_{ν}, and

$$
\Psi_{k \nu} \sim \sum_{i=1}^{m_{k}} \chi_{k \nu}^{(i)}+\text { (zero representation) }
$$

Now let Φ_{k} be a representation of P_{k} equivalent to

$$
\begin{equation*}
\sum_{v=1}^{r} \sum_{i=1}^{m_{k}} \chi_{k \nu}^{(i)} . \tag{1.8.1}
\end{equation*}
$$

Let $\left(P_{k}^{\prime}, \Phi_{k}^{\prime}\right)$ be the reflex of $\left(P_{k}, \Phi_{k}\right)$ in the sense of Shimura [171, 1.1]. Then each P_{k}^{\prime} contains F^{\prime}. Denote by P^{\prime} the composite of $P_{1}^{\prime}, \cdots, P_{k}^{\prime}$. We define a homomorphism $\eta: P^{\times \times} \rightarrow P^{\times}$by

$$
\eta(v)=\left(\Phi_{1}^{\prime}\left(N_{P^{\prime} / P_{1}^{\prime}}(v)\right), \cdots, \Phi_{t}^{\prime}\left(N_{P^{\prime} / P_{t}^{\prime}}(v)\right)\right) \quad\left(v \in P^{\prime \times}\right) .
$$

It can be shown that η is a \boldsymbol{Q}-homomorphism of $P^{\prime \times}$ into $H_{z} \subset G_{\boldsymbol{Q}^{+}}$ [2, 3.9]. Furthermore, by [16, (4.10.4)], we have

$$
\begin{equation*}
\nu(\eta(v))=\lambda\left(N_{P^{\prime} / F^{\prime}}(v)\right) \quad\left(v \in P^{\prime \times}\right) . \tag{1.8.2}
\end{equation*}
$$

Therefore $\eta\left(P_{A}^{\prime \times}\right) \subset \overline{\mathscr{G}}_{+}$.
1.9. Let V_{+}be a p-dimensional F-linear subspace of V so that the restriction of Q to V_{+}is positive definite at every infinite places. Denote by V_{-}the orthogonal complement of V_{+}. Then Q restricted to V_{-}is negative definite at $\tau_{1}, \cdots, \tau_{r}$ and positive definite at $\tau_{r+1}, \cdots, \tau_{g}$. The orthogonal decomposition $V=V_{+} \perp V_{-}$determines uniquely a point z of X (see 1.2). Take an orthogonal basis $\left\{e_{p+1}, e_{p+2}\right\}$ of V_{-}and put $e=e_{p+1} e_{p+2} \in E$. Then e^{2} is a totally negative number in F. With the notation of 1.6 and 1.7 , we have

$$
Y=\{\alpha \in E \mid \alpha \text { commutes with } e\}
$$

and

$$
P=Z[e],
$$

where Z is the center of E. The structure of Z is well-known, see for example [3, Satz 4.1].

Let $K=F[e]$. Then we can identify K with the even Clifford algebra of the restriction of Q to V_{-}. Note that K is a totally imaginary quadratic extension of F. Let $\delta \in F^{\times}$be a signed discriminant of Q (see Notation). Then from the structure of Z, we derive the following

Proposition 2. Let the notation be as above.
(i) If p is odd, then $P \cong K$.
(ii) If p is even, and δ is not a square in K, then $P \cong K[\sqrt{\delta}]$.
(iii) If p is even, and δ is a square in K, then $P \cong K \oplus K$.

Let $j_{\nu} \in E_{\nu}, \nu=1,2, \cdots, r$, be the complex structures determined by z. Then j_{ν} belongs to the completion K_{ν} of K at τ_{ν}. Use j_{ν} to define a
complex structure on K_{ν}. The multiplication by K on K_{ν} from the left gives rise to an embedding σ_{ν} of K into C extending τ_{ν}. Let Φ be a representation of K equivalent to $\sum_{v=1}^{r} \sigma_{\nu}$. Denote by P^{\prime} the field determined by the isolated fixed point z as in 1.8.

Proposition 3. Let $\left(K^{\prime}, \Phi^{\prime}\right)$ be the reflex of (K, Φ). Then K^{\prime} coincides with P^{\prime}.

This can be proved case by case according to the classification given in Proposition 2.
1.10. Assume $p=1$. In this case E is a quaternion algebra over F which is indefinite at $\tau_{1}, \cdots, \tau_{r}$ and definite at $\tau_{r+1}, \cdots, \tau_{g}$, see [9, 57:9]. The involution \subset coincides with the main involution of the quaternion algebra E, and

$$
G_{Q}=\left\{\alpha \in E^{\times} \mid \alpha \alpha^{\prime} \in F^{\times}\right\},
$$

see [3, 5.2]. So G belongs to the type of groups investigated by Shimura in [14], [17]. The symmetric domain X can be identified with r copies of the upper half plane $\mathfrak{K}=\{z=x+i y \in C \mid y>0\}$.

A decomposition $V=V_{+} \perp V_{-}$with a totally positive line V_{+} determines an isolated fixed point of $G_{Q^{+}}$on X. Conversely, every isolated fixed point comes from such a decomposition. In fact, given an isolated fixed point z, there is a totally imaginary quadratic extension K of F and a F-linear embedding f of K into E so that $G_{z}=f\left(K^{\times}\right)$[14, 2.6]. But K is embeddable in E if and only if $E \otimes_{F} K$ is isomorphic to $M_{2}(K)$, [14, 2.3], i.e., if and only if Q becomes isotropic over K. And this is the case if and only if there is a F-rational decomposition $V=V_{+} \perp V_{-}$ so that K is isomorphic to the even Clifford algebra of the restriction of Q to $V_{\text {_ }}$. This follows from [5, Lemma 3.1] if Q is anisotropic over F. For Q is isotropic, this can be proved in a straightforward way.
1.11. Now come back to the general case where $p \geq 1$.

Proposition 4. Given any algebraic extension R of F^{\prime}, there is an isolated fixed point $z \in X$ so that P^{\prime}, the field associated with z, is linearly disjoint with R over F^{\prime}.

This can be proved in a general fashion [2, Théorème 5.1]. Here we reduce the proposition to a corresponding assertion for Shimura's groups [16, 7.5]. We start with a 3-dimensional F-linear subspace W of V so
that the restriction Q^{\prime} of Q to W has signature (1,2) at $\tau_{1}, \cdots, \tau_{r}$ and $(3,0)$ at $\tau_{r+1}, \cdots, \tau_{g}$. Let G^{\prime} be the spin group of Q^{\prime}. Then there is a natural embedding i of G^{\prime} into G rational over \boldsymbol{Q}. Let X^{\prime} be the quotient of $G_{R}^{\prime \mu}$ modulo a maximal compact subgroup. We can give X^{\prime} a complex structure in such a way that i induces a holomorphic embedding of X^{\prime} into X. By [16, 7.5] there is an isolated fixed point Z^{\prime} of $G_{Q^{+}}^{\prime}$ on X^{\prime} so that the reflex field K^{\prime} associated with z^{\prime} is linearly disjoint with R over F^{\prime}. From the discussion of $1.10, z^{\prime}$ corresponds to a decomposition $W=W_{+} \perp W_{-}$. Let $V_{-}=W_{-}$and $V_{+}=W_{+} \perp(W)^{\perp}$. The decomposition $V=V_{+} \perp V_{-}$determines an isolated fixed point z of $G_{Q^{+}}$on X. In view of our choice of the complex structure on X^{\prime} and Proposition 3, we see that the field P^{\prime} determined by z coincides with the field K^{\prime} above.

2. Main Theorem

2.1. Let ρ be the homomorphism of $\overline{\mathscr{G}}_{+}$to $\operatorname{Gal}\left(\mathfrak{f}_{*} / F^{\prime}\right)$ defined in 1.4. Denote by G_{c+} the kernel of ρ. Since the strong approximation theorem holds for G^{u} [4], the argument of [17II], $\S \S 3.2,3.4$, can be used to prove the following propositions.

Proposition 5. We have

$$
G_{c^{+}}=F_{c} G_{\boldsymbol{Q}^{+}} G_{\boldsymbol{A}}^{u}=\text { the closure of } G_{\boldsymbol{Q}^{+}} G_{\boldsymbol{R}^{+}} \text {in } G_{\boldsymbol{A}^{+}}
$$

Proposition 6. Let $D_{+}=\left\{x \in G_{A^{+}} \mid \nu(x) \in \lambda\left(F_{A}^{\prime \times}\right)\right\}$.

Then

$$
\overline{\mathscr{G}}_{+}=G_{c+} D_{+}=F_{c} G_{Q^{+}} D_{+}=F_{c} D_{+} G_{Q^{+}} .
$$

2.2.

Proposition 7. The homomorphism $\rho: \overline{\mathscr{G}}_{+} \rightarrow \operatorname{Gal}\left(\mathfrak{f}^{*} / F^{\prime}\right)$ is a surjective open mapping. Especially ρ induces an isomorphism of $\overline{\mathscr{G}}_{+} / G_{c^{+}}$onto $\operatorname{Gal}\left(\mathfrak{f}^{*} / F^{\prime}\right)$.

Proof. We follow Miyake's argument [8, Prop. 15]. Take an isolated fixed point z. Let P, P^{\prime} and $\eta: P_{A}^{\prime \times} \rightarrow \overline{\mathscr{G}}_{+}$be as in 1.7, 1.8. To show that ρ is open, it suffices to show that the restriction of ρ to $\eta\left(P_{A}^{\prime \times}\right)$ is open. From (1.8.2) we have

$$
\begin{equation*}
\nu^{*}(\eta(v))=\lambda^{*}\left(N_{P^{\prime} / F^{\prime}}(v)\right) \quad\left(v \in P_{A}^{\prime \times}\right) . \tag{2.2.1}
\end{equation*}
$$

Since η is continuous, and both λ^{*} and $N_{P^{\prime} / F^{\prime}}$ are open, this shows the
restriction of ν^{*} to $\eta\left(P_{A}^{\prime \times}\right)$ is an open mapping from $\eta\left(P_{A}^{\prime \times}\right)$ to $\lambda^{*}\left(F_{A}^{\prime \times}\right) \cong$ $\mathrm{Gal}\left(\mathfrak{f}^{*} / F^{\prime}\right)$. Hence ρ is open.

To show that ρ is surjective, take another isolated fixed point w so that the reflex field Q^{\prime} associated with it is linearly disjoint with P^{\prime} over F^{\prime}. This is possible in view of Proposition 4. Let $\xi: Q_{A}^{\prime \times} \rightarrow \bar{G}_{+}$be the homomorphism determined by w. Then

$$
\nu^{*}(\xi(v))=\lambda^{*}\left(N_{Q^{\prime} / F^{\prime}}(v)\right) \quad\left(v \in D_{A}^{\prime \times}\right) .
$$

Together with (2.2.1), this shows $\nu^{*}\left(\eta\left(P_{A}^{\prime \times}\right) \cdot \xi\left(Q_{A}^{\prime \times}\right)\right)$ contains $\lambda^{*}\left(N_{P^{\prime} / F^{\prime}}\left(P_{A}^{\prime \times}\right)\right.$ $\cdot N_{Q^{\prime} F^{\prime}}\left(Q_{A}^{\prime \times}\right)$), which is $\lambda^{*}\left(F_{A}^{\prime \times}\right)$ because P^{\prime} and Q^{\prime} are linearly disjoint over F^{\prime}.
2.3. Let \mathscr{Z}^{*} be the set of all the subgroups S of $\overline{\mathscr{G}}_{+}$containing $F_{c} G_{R^{+}}$such that $S / F_{c} G_{R^{+}}$is open and compact in $\overline{\mathscr{G}}_{+} / F_{c} G_{R^{+}}$. For $S \in \mathscr{Z}^{*}$, $\rho(S)$ is open in Gal ($\left.\mathfrak{f}^{*} / F^{\prime}\right)$ in view of Proposition 7. We denote by k_{S} the finite abelian extension of F^{\prime} corresponding to $\rho(S)$. Put $\Gamma_{s}=S \cap G_{Q_{+}}$. Then Γ_{S} acts on X discontinuously and $\Gamma_{S} \backslash X$ has finite volume. Recall that a model (V, φ) of $\Gamma_{s} \backslash X$ consists of a Zariski open subset V of an absolutely irreducible projective variety, and a Γ_{s}-invariant holomorphic map φ of X into V which induces a biregular isomorphism of $\Gamma_{S} \backslash X$ to V [17I, 0.6].

2.4.

Main Theorem. There exists a system

$$
\left\{V_{S}, \varphi_{S}, J_{T S}(x),\left(S, T \in \mathscr{Z}^{*}, x \in \overline{\mathscr{G}}_{+}\right)\right\}
$$

formed by the objects satisfying the following conditions:
(2.4.1) For each $S \in \mathscr{Z}^{*},\left(V_{S}, \varphi_{S}\right)$ is a model of $\Gamma_{S} \backslash X$.
(2.4.2) $\quad V_{s}$ is defined over k_{s}.
(2.4.3) $J_{T s}(x)$, defined if and only if $x S x^{-1} \subset T$, is a morphism of V_{s} onto $V_{T}^{p(x)}$ rational over k_{s}, and has the following properties:
$\left(2.4 .3_{a}\right) J_{s s}(x)$ is the identity map if $x \in S$;
(2.4.3 $\left.3_{b}\right) \quad J_{T s}(x)^{\rho(y)} \circ J_{S R}(y)=J_{T R}(x y) ;$
$\left(2.4 .3_{c}\right) \quad J_{T s}(\alpha)\left[\varphi_{s}(z)\right]=\varphi_{T}(\alpha(z))$ if $\alpha \in G_{Q^{+}}\left(\right.$and $\left.\alpha S \alpha^{-1} \subset T\right)$.
(2.4.4) Let z be an isolated fixed point of $G_{Q^{+}}$on X, and let P^{\prime} and η be as in 1.8. Then for every $S \in \mathscr{Z}^{*}$, the point $\varphi_{s}(z)$ is rational over $P_{a b}^{\prime}$. Furthermore, for every $v \in P_{A}^{\prime \times}$, one has $\varphi_{T}(z)^{z}=J_{T s}\left(\eta(v)^{-1}\right)\left[\varphi_{s}(z)\right]$, where $\tau=\left[v, P^{\prime}\right]$ and $T=\eta(v)^{-1} S \eta(v)$.

This system is unique in the sense that if $\left\{V_{S}^{\prime}, \varphi_{s}^{\prime}, J_{T S}^{\prime}(x)\right\}$ is another canonical system for G, then there exists, for each $S \in \mathscr{Z}^{*}$, a biregular isomorphism M_{s} of V_{S} onto V_{s}^{\prime} rational over k_{s} such that $\varphi_{s}^{\prime}=M_{s} \circ \varphi_{s}$ and $M_{T}^{\rho(x)} \circ J_{T s}(x)=J_{T S}^{\prime}(x) \circ M_{s}$ for any $x \in \overline{\mathscr{G}}_{+}$satisfying $x S x^{-1} \subset T$. See [17I, 3.9] for proof.
2.5. We let $G \subset E$ act on E from the right in the natural way. Consider E as a Q-vector space. Let \mathfrak{m} be a Z-lattice in E. For a rational prime p, put $E_{p}=E \otimes_{Q} \boldsymbol{Q}_{P}$ and $\mathfrak{m}_{p}=\mathfrak{m} \otimes_{Z} \boldsymbol{Z}_{p}$. For $x \in G_{A}$, we can define a Z-lattice $\mathfrak{m} x$ as usual: if x_{p} denotes the p-component of x, then $(\mathfrak{m} x)_{p}=\mathfrak{m}_{p} x_{p}$. For a positive integer c, we write $x \equiv 1 \bmod _{0}(\mathfrak{m}, c)$ if $\mathfrak{m} x=\mathfrak{m}$ and $\mathfrak{m}_{p}\left(x_{p}-1\right) \subset c \mathfrak{m}_{p}$ for all p [17I, 0.5].

Put

$$
S(\mathfrak{m}, c)=F_{c} \cdot\left\{x \in \overline{\mathscr{G}}_{+} \mid x \equiv 1 \bmod _{0}(\mathfrak{m}, c)\right\} .
$$

Then $S(\mathfrak{m}, c) \in \mathscr{Z}^{*}$, and every member of \mathscr{Z}^{*} contains some $S(\mathfrak{m}, c)$. We have

$$
S(\mathfrak{m}, c) \cap G_{Q^{+}}=F^{\times} \cdot\left\{x \in G_{Q^{+}} \mid \mathfrak{m} x=\mathfrak{m} \text { and } \mathfrak{m}(x-1) \subset c \mathfrak{m}\right\} .
$$

2.6. We can extend $\overline{\mathscr{G}}_{+}$to a bigger group \mathfrak{A} as in [17II, §4], [8, § 3], and investigate a larger system of canonical models for G. These discussions are rather formal, and will be skipped here.
2.7. For $S \in \mathscr{Z}^{*}$, let L_{s} be the k_{s}-rational function field of V_{s}, and put

$$
\mathfrak{Z}_{s}=\left\{f \circ \varphi_{s} \mid f \in L_{s}\right\} .
$$

The union \mathfrak{R} of \mathfrak{R}_{s} for all $S \in \mathscr{Z}^{*}$ is a field containing \mathfrak{f}^{*}. We call it the field of arithmetic automorphic functions on X with respect to G. For $x \in \overline{\mathscr{G}}_{+}$and $f \in L_{S}, f^{\rho(x)}$ is a function on $V_{S}^{\rho(x)}$ rational over $k_{S}^{\rho(x)}$. Define

$$
\left(f \circ \varphi_{S}\right)^{\tau(x)}=f^{\rho(x)} \circ J_{S T}(x) \circ \varphi_{T} \quad\left(T=x^{-1} S x\right) .
$$

Then τ is a homomorphism of $\overline{\mathscr{G}}_{+}$into Aut $\left(\Omega / F^{\prime}\right)$. This fact is equivalent to (2.4.3 $)_{b}$. Properties (2.4.3) and (2.4.4) can also be translated into
statements about the field ․ For details see [17II, 6.2], [8, 4.2]. We have $\tau(x)=\rho(x)$ on ${ }^{*}$.
2.8. From the system of canonical models for G we can obtain a system of canonical models for the special orthogonal group of Q. This can be done as in [17I, 2.11]. Let G^{\prime} be the algebraic group over \boldsymbol{Q} so that the \mathbf{Q}-rational points of G^{\prime} form the special orthogonal group of \mathbf{Q} over F. There is a Q-homomorphism φ of G to G^{\prime} given by $v \varphi(g)=g v g^{-1}$ for $v \in V$. The sequence

$$
1 \longrightarrow F^{\times} \longrightarrow G \xrightarrow{\varphi} G^{\prime} \longrightarrow 1
$$

is exact. The action of $G_{R^{+}}$on X factors through $G_{R^{+}}^{\prime}$, and defines a natural action of $G_{R^{+}}^{\prime}$ on X.

Put $F_{A}^{\times 2}=\left\{a^{2} \mid a \in F_{A}^{\times}\right\}$and let $\pi: F_{A}^{\times} \rightarrow F_{A}^{\times} / F_{A}^{\times 2}$ be the natural homomorphism. Define $\nu^{\prime}: G_{A}^{\prime} \rightarrow F_{A}^{\times} / F_{A}^{\times 2}$ so that $\nu^{\prime} \circ \varphi=\pi \circ \nu$. For $g \in G_{\varrho}^{\prime}$, $\nu^{\prime}(g) \in F^{\times} / F^{\times 2}$ is the spinor norm of g. Let $\lambda^{\prime}=\pi \circ \lambda: F_{A}^{\prime \times} \rightarrow F_{A}^{\times} / F_{A}^{\times 2}$. Define

$$
D_{+}^{\prime}=\left\{x \in G_{A^{+}}^{\prime} \mid \nu^{\prime}(x) \in \lambda^{\prime}\left(F_{A}^{\prime \times}\right)\right\}
$$

and

$$
\overline{\mathscr{G}}_{+}^{\prime}=G_{R^{+}}^{\prime} D_{+}^{\prime} G_{Q^{+}}^{\prime}=D_{+}^{\prime} G_{Q^{+}}^{\prime}
$$

Now consider the set \mathscr{Z}^{\prime} of all subgroups S of $\overline{\mathscr{G}}_{+}^{\prime}$ satisfying the following two conditions:
(2.8.1) S contains $G_{R^{+}}^{\prime}$ and $S / G_{R^{+}}^{\prime}$ is compact in $\overline{\mathscr{G}}_{+}^{\prime} / G_{R^{+}}^{\prime}$.
(2.8.2) S contains the image of some member of \mathscr{Z}^{*} under φ.

For $S \in \mathscr{Z}^{\prime}$, let

$$
\mathfrak{X}_{S}^{\prime}=\left\{c \in F_{A}^{\prime \times} \mid \lambda^{\prime}(c) \in\left(F^{\times} F_{A}^{\times 2} / F_{A}^{\times 2}\right) \cdot \nu(S)\right\} .
$$

By (2.8.2), $\mathfrak{X}_{s}^{\prime}$ corresponds to a class field k_{s}^{\prime} over F^{\prime}. Let \mathfrak{l}^{\prime} be the composite of k_{s}^{\prime} for all $S \in \mathscr{Z}^{\prime}$. Define a homomorphism

$$
\rho^{\prime}: \overline{\mathscr{G}}_{+}^{\prime} \rightarrow \operatorname{Gal}\left(\mathfrak{f}^{\prime} \mid F^{\prime}\right)
$$

by $\rho^{\prime}(x)=\left[c^{-1}, F^{\prime}\right]$ on \mathfrak{f}^{\prime} with an element c of $F_{A}^{\prime \times}$ such that $\nu^{\prime}(x) / \lambda^{\prime}(c)$ $\in\left(F^{\times} F_{A}^{\times 2} / F_{A}^{\times 2}\right)$. A point z of X is an isolated fixed point of $G_{Q^{+}}$if and only if it is an isolated fixed point of $G_{Q^{+}}^{\prime}$. Let z be such a point and
let P^{\prime} be the reflex field associated with it (cf. 1.8). Denote by $\eta^{\prime}: P_{A}^{\prime \times}$ $\rightarrow D_{+}^{\prime}$ the composite of $\eta: P_{A}^{\prime x} \rightarrow D_{+}$with $\varphi: D_{+} \rightarrow D_{+}^{\prime}$. For $S \in \mathscr{Z}^{\prime}, \Gamma_{s}^{\prime}=$ $S \cap G_{Q^{+}}^{\prime}$ acts on X discontinuously, and $\Gamma_{S}^{\prime} \backslash X$ has finite volume.

2.9.

Theorem. The notation being as above, there exists a system

$$
\left\{V_{S}^{\prime}, \varphi_{S}^{\prime}, J_{T S}^{\prime}(x),\left(S, T \in \mathscr{Z}^{\prime} ; x \in \overline{\mathscr{G}}_{+}^{\prime}\right)\right\}
$$

satisfying the conditions exactly like (2.4.1-2.4.4) under the replacement of $\mathscr{Z}^{*}, \bar{G}_{+}, G_{Q^{+}}, V_{S}, \varphi_{S}, J_{T s}(x), \Gamma_{s}, \rho(x), \eta$ by $\mathscr{Z}^{\prime}, \bar{G}_{+}^{\prime}, G_{Q^{+}}^{\prime}, V_{S}^{\prime}, \varphi_{S}^{\prime}, J_{T s}^{\prime}(x), \Gamma_{s}^{\prime}, \rho^{\prime}(x), \eta^{\prime}$.
2.10. Let \mathfrak{o} be the ring of integers of F. Take an \mathfrak{o}-lattice \mathfrak{m} in V. Define

$$
S=\left\{x \in \overline{\mathscr{G}}_{+}^{\prime} \mid \mathfrak{m} x=\mathfrak{m}\right\}
$$

Then $S \in \mathscr{Z}^{\prime}$. Condition (2.8.1) is easy to see. To show (2.8.2), let $\mathfrak{o}_{\mathrm{m}}$ be the order of E generated by m [3, Satz 14.1]. Let

$$
W=F_{c} \cdot\left\{g \in \overline{\mathscr{G}}_{+} \mid \mathfrak{o}_{\mathrm{m}} g=\mathfrak{o}_{\mathrm{m}}\right\}
$$

This is a member of \mathscr{Z}^{*}. If $g \in W$, then $\mathfrak{m}^{\prime}=\mathfrak{m} \varphi(g)$ is an \mathfrak{o}-lattice which also generates \mathfrak{D}_{m}. In view of [3, Satz 14.2], there exists a fractional ideal \mathfrak{a} of F so that $\mathfrak{m}^{\prime}=\mathfrak{a m}$. But $\varphi(g)$ is an orthogonal transformation, so $\mathfrak{a}=\mathfrak{0}$. It follows that $\mathfrak{m} \varphi(g)=\mathfrak{m}$. Therefore $\varphi(W) \subset S$. This proves S is a member of \mathscr{Z}^{\prime}. Note that $\Gamma_{S}^{\prime}=S \cap G_{Q^{+}}^{\prime}$ is the unit group of \mathfrak{m}.

3. A certain embedding of G

3.1. Let W be a 3 -dimensional subspace of V so that the restriction Q^{\prime} of Q to W has signature $(1,2)$ at $\tau_{1}, \cdots, \tau_{r}$, and signature $(3,0)$ at $\tau_{r+1}, \cdots, \tau_{g}$. Let B be the even Clifford algebra of Q^{\prime}. Then B is a quaternion algebra which is indefinite at $\tau_{1}, \cdots, \tau_{r}$ and definite at τ_{r+1}, \cdots, τ_{g}. Via a natural embedding of B into E, we realize E as a left B module. Define a symmetric bilinear form $f(x, y)$ on E by

$$
f(x, y)=\operatorname{tr}_{E / F}\left(x y^{\prime}\right),
$$

where $\operatorname{tr}_{E / F}$ denotes the reduced trace of E to F. By [15, 1.6], there is a unique B-valued c-hermitian form $h(x, y)$ on E so that

$$
\operatorname{tr}_{B / F} h(x, y)=f(x, y)
$$

Define an algebraic group G^{*} over \boldsymbol{Q} whose \boldsymbol{Q}-rational points are

$$
G_{\dot{Q}}=\left\{\alpha \in G L(E, B) \mid h(x \alpha, y \alpha)=\mu(\alpha) h(x, y), \mu(\alpha) \in F^{\times}\right\} .
$$

Canonical models for groups of this type were constructed by Shimura [17]. The semi-simple part of G^{*} is

$$
G^{\cdot u}=\left\{\alpha \in G^{\cdot} \mid \mu(\alpha)=1\right\} .
$$

Let $i: E \rightarrow \operatorname{End}(E, F)$ be the injection defined by $x i(y)=x y(x, y \in E)$. Then i defines a Q-rational injection of G into G^{\cdot}. Note that $\mu(i(g))=$ $\nu(g)$ for $g \in G$.
3.2. Fix $\nu \leq r$. Let $j_{\nu} \in E_{\nu}$ be the complex structure of X_{p} at a point z_{ν}. We have $j_{\nu} \in G_{\nu}^{u}$. Hence $j_{\nu}=i\left(j_{\nu}\right)$ belongs to G_{ν}^{u}, the completion of $G^{\cdot u}$ at τ_{ν}. Let $K_{\nu}^{;}$be the centralizer of j_{ν} in $G_{\nu}^{\cdot u}$. Then $K_{\nu}^{;}$is a maximal compact subgroup. We fix a complex structure on $G_{\nu}^{\cdot u} / K_{\nu}$ by requiring the differential of j_{ν} on the tangent space at K_{ν} act as the multiplication by $\sqrt{-1}$. We can identify $G_{\nu}^{\cdot u} / K_{\nu}$ with Siegel's upper half space \mathfrak{S}_{n}, where $n=2^{p-1}$. Using the isomorphism

$$
G_{\boldsymbol{R}}^{\cdot u} \cong \prod_{\nu=1}^{r} G_{\nu}^{\cdot u} \times(\text { compact group }),
$$

we introduce a complex structure on the quotient of $G_{R}^{\cdot u}$ modulo a maximal compact subgroup. The complex manifold \mathfrak{S} thus obtained can be identified with r copies of \mathfrak{N}_{n}.

By our choice of the complex structure on \mathfrak{S}, we see that $i: G \rightarrow G^{\cdot}$ induces a holomorphic embedding h of X into \mathscr{S}.
3.3. Let $\mu^{*}: G_{A} \rightarrow F_{A}^{\times} / F_{c}$ be the composite of $\mu: G_{\dot{A}} \rightarrow F_{A}^{\times}$with the natural homomorphism $F_{A}^{\times} \rightarrow F_{A}^{\times} / F_{c}$. Put

$$
\overline{\mathscr{G}}_{+}=\left\{\alpha \in G_{\dot{A}^{+}} \mid \mu^{*}(\alpha) \in \lambda^{*}\left(F_{A}^{\prime \times}\right)\right\} .
$$

For $\alpha \in \overline{\mathscr{G}}_{+}^{+}$, define $\sigma(\alpha)$ to be the element of $\mathrm{Gal}\left(\mathfrak{q}^{*} / F^{\prime}\right)$ corresponding to $\mu^{*}\left(\alpha^{-1}\right) \in \lambda^{*}\left(F_{A}^{\prime \times}\right)$ under (1.4.1). We see that i maps $\overline{\mathscr{G}}_{+}$into $\overline{\mathscr{G}}_{+}$and $\sigma(i(g))=\rho(g)$ for $g \in \overline{\mathscr{G}}_{+}$.
3.4. Let $\mathscr{L} \cdot *$ be the set of all subgroups (S) of $\overline{\mathscr{G}}_{+}$containing $F_{c} \cdot G_{\boldsymbol{R}^{+}}$ so that $(S) / F_{c} \cdot G_{R^{+}}$is open and compact in $\bar{G}_{+} \mid F_{c} \cdot G_{R^{+}}$. For $(S) \in \mathscr{Z}^{* *}$, put $\Gamma_{(S)}=(S) \cap G_{\dot{Q}^{+}}$, and let $k_{(S)}$ be the class field over F^{\prime} corresponding to the open subgroup $\sigma((S))$ of $\operatorname{Gal}\left(\mathfrak{C}^{*} / F^{\prime}\right)$. The main theorem of [17] states that there exists a system of canonical models $\left\{V_{(S)}, \varphi_{(S)}, J_{(T)(S)}(x)\right.$, $\left.\left((S),(T) \in \mathscr{Z} \mathscr{Z}^{*}, x \in \overline{\mathscr{G}}_{+}^{+}\right)\right\}$for G^{*}. Here $\left(V_{(S)}, \varphi_{(S)}\right)$ is a model of $\Gamma_{(S)} \mid \mathcal{K}_{\mathcal{E}}$, and $V_{(S)}$ is defined over $k_{(S)}$.
3.5. Let $z=\left(z_{1}, \cdots, z_{r}\right) \in X$ be an isolated fixed point of G_{Q+}. As in 1.7, denote by H_{z} the centralizer of $G_{z}=\left\{\alpha \in G_{Q^{+}} \mid \alpha(z)=z\right\}$, and P the F linear span of H_{z}. Let $j_{\nu} \in E_{\nu}, \nu=1, \cdots, r$, be the complex structure at τ_{ν}. Then $H_{z R}$ contains $\left(j_{1}, \cdots, j_{r}\right)$. Hence $h(z) \in \mathscr{S}_{\Sigma}$ is the unique fixed point of $i(P) \cap G_{Q^{+}}$. Write P as the direct sum of $C M$-fields P_{1}, \cdots, P_{t}. Then the procedure of [16, 4.5-4.9] allows one to define a certain representation Ψ_{k} of P_{k} for each $k=1, \cdots, t$. We see that Ψ_{k} is equivalent to the representation Φ_{k} given by (1.8.1). Therefore the field P^{\prime} defined in [16, 4.9] coincides with the one defined in 1.8. Furthermore, if we let $\eta^{\cdot}: P_{A}^{\prime x} \rightarrow \overline{\mathscr{G}}_{+}$be defined as in [17I, (2.4.3)], then we have

$$
\begin{equation*}
\eta^{\cdot}(v)=i(\eta(v)) \quad\left(v \in P_{A}^{\prime \times}\right) . \tag{3.5.1}
\end{equation*}
$$

4. Construction of models

4.1. Let \mathfrak{m} be a lattice in E, and c a positive integer. Consider

$$
\begin{equation*}
S=S(\mathfrak{m}, c)=F_{c} \cdot\left\{\alpha \in \overline{\mathscr{G}}_{+} \mid \alpha \equiv 1 \bmod _{0}(\mathfrak{m}, c)\right\} \tag{4.1.1}
\end{equation*}
$$

Let $\mathscr{W}_{c}=\left\{p^{-1} S p \mid p \in G_{A}\right\}$ and $\mathscr{W}=\bigcup_{c=1}^{\infty} \mathscr{W}_{c}$. Then $\mathscr{W} \subset \mathscr{Z}^{*}$. Obviously, $x T x^{-1} \in \mathscr{W}$ for every $T \in \mathscr{W}$ and $x \in \overline{\mathscr{G}}_{+}$, i.e., \mathscr{W} is a normal subset of \mathscr{Z}^{*} in the sense of [171, 3.2]. Let $U=S(\mathfrak{m}, 1)$. Then every $S(\mathfrak{m}, c)$ is a normal subgroup of U. In view of [17I, Prop. 3.11], we only have to construct a weak canonical system

$$
\left\{V_{s}, \varphi_{S}, J_{T s}(x),\left(S, T \in \mathscr{W} ; x \in \overline{\mathscr{G}}_{+}\right)\right\}
$$

relative to $\left\{\mathscr{W}, F, F^{\prime}\right\}$ (see [17I, 3.2] for the definition). Actually, it suffices to construct a weak canonical system relative to $\left\{\mathscr{W}^{\prime}, F, F^{\prime}\right\}$, where \mathscr{W}^{\prime} is the union of \mathscr{W}_{c} with $c \geq c_{0}$ for some c_{0}.
4.2. We shall identify G with the subgroup $i(G)$ of G, and drop the injection i from now on. Define

$$
(S)=(S(\mathfrak{m}, c))=F_{c} \cdot\left\{\alpha \in \overline{\mathscr{G}}_{+}^{;} \mid \alpha \equiv 1 \bmod _{0}(\mathfrak{m}, c)\right\}
$$

Then $(S) \in \mathscr{Z}^{*}$. Let $S=S(\mathfrak{m}, c), T=p S p^{-1}$ and $(T)=p(S) p^{-1}$, where $p \in G_{A} \subset G_{\dot{A}}$. Then $T \in \mathscr{Z}^{*},(T) \in \mathscr{Z}^{*}$ and $T=(T) \cap \overline{\mathscr{G}}_{+} . \quad$ Note that $\nu(T) \subset \mu((T))$, hence $k_{T} \supseteq k_{(T)}$.

We have $\Gamma_{T}=\Gamma_{(T)} \cap G_{Q^{+}}$. Therefore the holomorphic embedding $h: X \rightarrow \mathfrak{F}_{\mathrm{E}}$ induces a rational map $h_{T}: \Gamma_{T} \backslash X \rightarrow \Gamma_{(T)} \backslash \mathfrak{K}$. For c sufficiently large (independent of p), say $c \geq c_{0}$, the quotient $\Gamma_{T} \backslash X$ and $\Gamma_{(T)} \backslash \mathcal{F}_{c}$ are
non-singular, and h_{T} is injective [2, Prop. 1.15]. Assume this is the case. Take the canonical model $\left(V_{(T)}, \varphi_{(T)}\right)$ for $\Gamma_{(T)} \backslash \mathfrak{S}$, and let $V_{r}=\varphi_{(T)}(h(X))$, $\varphi_{T}=\varphi_{(T)} \circ h$. Then $\left(V_{T}, \varphi_{T}\right)$ is a model for $\Gamma_{T} \backslash X$. Let \mathscr{W}^{\prime} be the union of \mathscr{W}_{c} for all $c \geq c_{0}$.
4.3. Let $x \in \overline{\mathscr{G}}_{+} \subset \overline{\mathscr{G}}_{+}, U=x^{-1} T x$ and $(U)=x^{-1}(T) x$. Then $J=J_{(T)(U)}(x)$ is a morphism of $V_{(U)}$ to $V_{(T)}^{\rho(x)}$ rational over $k_{(T)}$. Let k^{\prime} be an arbitrary finite algebraic extension of k_{T}, and τ an isomorphism of k^{\prime} into C so that $\tau=\rho(x)$ on k_{T}. Take an isolated fixed point $z \in X$ so that the field P^{\prime} associated with it is linearly disjoint with k^{\prime} over F^{\prime} (Prop. 4). Then we can extend τ to an automorphism π of C over P^{\prime}. We show that
(4.3.1) there is $\alpha \in G_{Q^{+}}$so that $\varphi_{T}(z)^{\pi}=J\left(\varphi_{U}(\alpha(z))\right)$.

We proceed as in [17I, 6.8].
By Prop. 6, there is $e \in F_{c}, \gamma \in G_{Q^{+}}, x_{1} \in D_{+}$so that $x=e x_{1} \gamma$. Pick $d \in F_{A}^{\prime \times}$ so that $\lambda(d)=\nu\left(x_{1}\right)$. Then we have $\left[d^{-1}, F^{\prime}\right]=\rho(x)=\pi$ on k_{r}. Take an element v of $P_{A}^{\prime \times}$ so that $\pi=\left[v, P^{\prime}\right]$ on $P_{a b}^{\prime}$, and put $w=N_{P^{\prime} / F^{\prime}}(v)$ $\in F_{A}^{\prime \times}$. Then from (1.8.2) we have $\nu(\eta(v))=\lambda(w)$, where $\eta: P_{A}^{\prime \times} \rightarrow \overline{\mathscr{G}}_{+}$is defined as in 1.8. Note that $\left[w, F^{\prime}\right]=\pi=\left[d^{-1}, F^{\prime}\right]$ on k_{r}, hence $\lambda(d w)$ $=\nu(s) u$ with $s \in T$ and $u \in F_{c}$. Since $F_{c}=F^{\times} F_{c}^{2}$ [17II, 2.2], and T contains F_{c}, we can assume $u \in F^{\times}$. Then $u \in F_{+}^{\times}$, because $\lambda(d)=\nu\left(x_{1}\right), \lambda(w)=\nu(\eta(v))$ and $\nu(s)$ are all positive at every infinite place. Therefore, there is $\varepsilon \in G_{Q^{+}}$ so that $\nu(\varepsilon)=u$. Now

$$
\nu\left(x_{1}^{-1} s \eta(v)^{-1} \varepsilon\right)=\lambda(d)^{-1} \nu(s) \lambda(w)^{-1} u=1 .
$$

By the strong approximation theorem for G^{u}, we can write $x_{1}^{-1} s \eta(v)^{-1} \varepsilon$ as $m \psi$, where $\psi \in G_{Q}^{u}$ and $m \in G_{A}^{u} \cap\left(x_{1}^{-1} T x_{1}\right)$. Put $\alpha=\gamma^{-1} \psi \varepsilon^{-1} \in G_{Q^{+}}$and $t=s^{-1} x_{1} m x_{1}^{-1} \in T$. Then we have $\eta(v)^{-1}=t e^{-1} x \alpha$. In view of (3.5.1) and the properties of canonical models for G° at isolated fixed points, we have

$$
\varphi_{T}(z)^{\pi}=\varphi_{(T)}(h(z))^{\pi}=J_{(T)(R)}\left(\eta(v)^{-1}\right)\left(\varphi_{(R)}(h(z))\right),
$$

where $(R)=\eta(v)(T) \eta(v)^{-1}=\alpha^{-1} x^{-1}(T) x \alpha=\alpha^{-1}(U) \alpha$. Now

$$
\begin{aligned}
J_{(T)(R)}\left(\eta(V)^{-1}\right) & =J_{(T)(R)}\left(t e^{-1} x \alpha\right) \\
& =J_{(T)(U)}(x) \circ J_{(U)(R)}(\alpha)=J \circ J_{(U)(R)}(\alpha) .
\end{aligned}
$$

Hence

$$
\begin{aligned}
\varphi_{T}(z)^{\pi} & =J \circ J_{(U)(R)}(\alpha)\left(\varphi_{(R)}(h(z))\right) \\
& =J\left(\varphi_{(U)}(\alpha(h(z)))\right)=J\left(\varphi_{(U)}(h(\alpha(z)))\right) \\
& =J\left(\varphi_{U}(\alpha(z))\right)
\end{aligned}
$$

4.4. We show that V_{T} is defined over k_{T}. First note that if $z \in X$ is an isolated fixed point, and P^{\prime} the reflex field associated with it, then $\varphi_{T}(z) \in V_{T}$ is rational over $P_{a b}^{\prime}$. For $\beta \in G_{Q^{+}}, \beta(z)$ is an isolated fixed point with the same P^{\prime} as its reflex field. Hence for any $\beta \in G_{Q^{+}}, \varphi_{r}(\beta(z))$ is also defined over $P_{a b}^{\prime}$. Since $\left\{\varphi_{T}(\beta(z)) \mid \beta \in G_{Q^{+}}\right\}$is dense in V_{T}, this shows V_{T} is defined over a finite algebraic extension k_{1} of k_{T}. Take k_{1} as k^{\prime} in 4.3. Let x, τ, z and π be as what they stand for in 4.3. Then we have (4.3.1). This still holds if we replace z by $\beta(z)$ for any $\beta \in G_{Q^{+}}$. Since the points $\varphi_{T}(\beta(z))$ are dense in V_{T}, and V_{T} is defined over k_{1}, we see that

$$
\begin{equation*}
J^{-1} \text { sends } V_{T} \text { into } V_{U} \tag{4.4.1}
\end{equation*}
$$

Now take x to be the identity element. Then $U=T$ and $J=$ id. Hence from (4.4.1) it follows that $V_{T}^{\tau}=V_{T}$. This being true for any isomorphism τ of k_{1} into C over k_{T}, we conclude that V_{T} is defined over k_{T}.
4.5. We have constructed, for any $T \in \mathscr{W}^{\prime}$, a model (V_{T}, φ_{T}) of $\Gamma_{T} \backslash X$ with V_{T} rational over k_{T}. Let $T=p^{-1} S p \in \mathscr{W}^{\prime}, x \in \overline{\mathscr{G}}_{+}$and $U=x^{-1} T x$. Consider the members $(T)=p^{-1}(S) p$ and $(U)=x^{-1}(T) x$ of \mathscr{Z}^{*}. Then $J=J_{(T)(U)}(x)$ is a morphism of $V_{(U)}$ onto $V_{(T)}^{\rho(x)}$ rational over $k_{(T)}$. Since V_{T} is rational over k_{T}, it follows from (4.4.1) that J sends V_{U} onto $V_{T}^{\rho(x)}$. Denote the restriction of J to V_{U} by $J_{T V}(x)$. Then $J_{T V}(x)$ is a morphism of V_{U} onto $V_{T}^{\rho(x)}$. It is rational over k_{T}, because J is rational over $k_{(T)}$, a subfield of k_{T}.

Now it is clear that

$$
\left\{V_{U}, \varphi_{U}, J_{T U}(x),\left(T, U \in \mathscr{W}^{\prime} ; x \in \overline{\mathscr{G}}_{+}\right)\right\}
$$

is a weak canonical system relative to $\left\{\mathscr{W}^{\prime}, F, F^{\prime}\right\}$. From this, as pointed out in 4.1, we can produce a system of canonical models for G using a standard procedure.

5. Remarks

Once the canonical models V_{s} are constructed, we can talk about some typical problems concerning them. For example, there is the
problem of determining the zeta-functions of these varieties [6], [7]. Another one deals with the number of connected components of the real points on V_{S} [19]. We mention here a related fact about the actions of "negative elements" of G_{Q} [13].

Let $\alpha \in G_{Q}$ be such that $\nu(\alpha)$ is negative at $\tau_{1}, \cdots, \tau_{r}$. Then the element $\alpha_{0} \in G_{A^{+}}$, whose component is α at a finite place, and 1 at an infinite place, belongs to $\overline{\mathscr{G}}_{+}$. The action of α_{0} is given as follows: for $S \in \mathscr{Z}^{*}$ and $T=\alpha S \alpha^{-1}$, we have

$$
J_{S T}\left(\alpha_{0}\right)\left[\varphi_{T}(z)\right]=\bar{\varphi}_{S}(\alpha(\bar{z})) \quad(z \in X) .
$$

In view of our construction, this follows directly from the main theorem of [13].

Postscript. This work was completed in the spring of 1977. A different approach to the problem is given in Deligne [20]. When I learned of the work of Deligne, I decided to write up a short note [21] constructing canonical models in the sense of Deligne [2]. However, it has been suggested to me that it would be useful to have available a more explicit, down-to-earth construction of the canonical models in the sense of Shimura [17]. I hope this paper serves that end for the cases considered herein.

References

[1] C. Chevalley, The algebraic theory of spinors, Columbia University Press, 1954.
[2] P. Deligne, Travaux de Shimura, Séminaire Bourbaki 1971, Exp. 389, Lecture notes in Math. \#244, Springer-Verlag.
[3] M. Eichler, Quadratische Formen und Orthogonale Gruppen, Springer-Verlag, 1952.
[4] M. Kneser, Starke Approximation in algebraischen Gruppen: I, J. Reine u. Angew. Math. 218 (1965), 190-203.
[5] T. Y. Lam, The algebraic theory of quadratic forms, Benjamin, 1973.
[6] R. Langlands, Some contemporary problems with origins in the Jugendtraum (Hilbert's problem 12), Mathematical developments arising from Hilbert problems, AMS publication (1976), 401-418.
[7] -, Shimura varieties and the Selberg trace formula, U.S.-Japan Seminar on applications of automorphic forms to number theory (1975), 63-74.
[8] K. Miyake, On models of certain automorphic function fields, Acta Math. 126 (1971), 245-307.
[9] O. T. O'Meara, Introduction to quadratic forms, Springer-Verlag, 1963.
[10] I. Satake, Holomorphic imbeddings of symmetric domains into a Siegel space, Amer. J. Math. 87 (1965), 425-461.
[11] -, Clifford algebras and families of abelian varieties, Nagoya Math. J. 27-2 (1966), 435-446.
[12] -, Symplectic representations of algebraic groups satisfying a certain analyticity condition, Acta Math. 117 (1967), 215-279.
[13] K-y. Shih, Anti-holomorphic automorphisms of arithmetic automorphic function fields, Ann. of Math. 103 (1976), 81-102.
[14] G. Shimura, Construction of class fields and zeta-functions of algebraic curves, Ann. of Math. 85 (1967), 58-159.
[15] -, Discontinuous groups and abelian varieties, Math. Ann. 168 (1967), 171199.
[16] ——, Algebraic number fields and symplectic discontinuous groups, Ann. of Math. 86 (1967), 503-592.
[17] - On canonical models of arithmetic quotients of bounded symmetric domains, I. Ann. of Math. 91 (1970), 144-222; II, 92 (1970), 528-549.
[18] - On arithmetic automorphic functions, Actes, Congrès intern. Math. (1970) Tom 2, 343-348.
[19] - On the real points of an arithmetic quotient of a bounded symmetric domain, Math. Ann. 215 (1975), 135-164.
[20] F. Deligne, Variétés de Shimura: Interprétation modulaire, et techniques de construction de modèles canoniques, to appear.
[21] K-y. Shih, Existence of certain canonical models, Duke Math. J. 45 (1978), 63-66.

Department of Mathematics

Ohio State University
Columbus, Ohio

[^0]: Received November 29, 1978.

